JPH04695B2 - - Google Patents

Info

Publication number
JPH04695B2
JPH04695B2 JP22505687A JP22505687A JPH04695B2 JP H04695 B2 JPH04695 B2 JP H04695B2 JP 22505687 A JP22505687 A JP 22505687A JP 22505687 A JP22505687 A JP 22505687A JP H04695 B2 JPH04695 B2 JP H04695B2
Authority
JP
Japan
Prior art keywords
heat
pipe
catalyst layer
disposed
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22505687A
Other languages
Japanese (ja)
Other versions
JPS6467248A (en
Inventor
Kenji Kataoka
Toshihiko Hirabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22505687A priority Critical patent/JPS6467248A/en
Publication of JPS6467248A publication Critical patent/JPS6467248A/en
Publication of JPH04695B2 publication Critical patent/JPH04695B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は外管内に触媒が充填され環状を成し
外管内に導入された原料ガスが通る触媒層を有
し、触媒層を通つたガスを系外に排出する反応装
置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention has a catalyst layer in which the outer tube is filled with a catalyst to form an annular shape, through which raw material gas introduced into the outer tube passes, and the gas passing through the catalyst layer is The invention relates to a reaction device that discharges water to the outside of the system.

〔従来の技術〕[Conventional technology]

第4図は従来装置、例えば特開昭58−151438号
公報に示されたものであり、図において、1は反
応管、2は外管であり、一端面に触媒3を取り入
れる取入口2aを有しており、他端側にエンドキ
ヤツプ4が接続されている。5は原料ガスを外管
2内に導入する導入管、6は外管2内に外管2と
同芯円状に配置された内管であり、内管6のガス
流と外管2のガス流とは一方の端部で連通してい
る。即ちエンドキヤツプ4部で連通している。7
は外管2と内管6との間に形成される環状空間部
に触媒3が充填されて形成された触媒層、8は触
媒3を支持する受け皿、9は内管6の他方の端部
に接続され、内管6内を流れる反応ガスを反応管
1外に導出する導出管であり、これら2〜9によ
り二重管構造の反応管1が構成されている。
FIG. 4 shows a conventional device, for example, the one shown in Japanese Patent Application Laid-Open No. 151438/1983. In the figure, 1 is a reaction tube, 2 is an outer tube, and one end face has an intake port 2a for taking in the catalyst 3. The end cap 4 is connected to the other end. Reference numeral 5 indicates an introduction pipe for introducing raw material gas into the outer pipe 2, and reference numeral 6 indicates an inner pipe arranged concentrically with the outer pipe 2 within the outer pipe 2. It communicates with the gas stream at one end. That is, they communicate through four end caps. 7
8 is a catalyst layer formed by filling the annular space formed between the outer tube 2 and the inner tube 6 with the catalyst 3; 8 is a receiving plate that supports the catalyst 3; 9 is the other end of the inner tube 6. This is a lead-out pipe that is connected to the inner pipe 6 and leads out the reaction gas flowing inside the inner pipe 6 to the outside of the reaction tube 1. These 2 to 9 constitute the reaction tube 1 having a double-tube structure.

次に動作について説明する。説明の便宜上、例
えば水蒸気改質反応装置を例に説明する。原料ガ
スである炭化水素とスチームは、例えば450℃程
度に予熱された後、導入管5より外管2内に導入
され、外管2と内管6との間に形成された触媒層
7内の触媒3と接触する。ここで、原料ガスは水
蒸気改質反応を生じ、H2,CO,CO2等の混合ガ
ス(改質ガス)となる。水蒸気改質反応は吸熱反
応であり、この熱量を補償するため、燃焼ガスに
よつて外管2の外部を加熱する。又、水蒸気改質
反応は高温程水素ガス成分が多くなるため、通常
の水素製造プラントでは、触媒層7出口の改質ガ
ス温度(反応温度)として、例えば800℃程度が
採用されている。燃焼ガスの加熱は、この改質ガ
ス温度の上昇にも使用されている。反応の終了し
た高温の改質ガスは、受け皿8の複数個の小孔
(図示せず)を通過し、エンドキヤツプ4にて流
れを反転し、内管6を通つて高温のまま導出管9
から反応管1の外に、即ち、系外に導出される。
Next, the operation will be explained. For convenience of explanation, a steam reforming reaction apparatus will be explained as an example. Hydrocarbons and steam, which are raw material gases, are preheated to about 450°C, for example, and then introduced into the outer tube 2 through the introduction tube 5, and are then introduced into the catalyst layer 7 formed between the outer tube 2 and the inner tube 6. contact with the catalyst 3 of. Here, the raw material gas undergoes a steam reforming reaction and becomes a mixed gas (reformed gas) of H 2 , CO, CO 2 and the like. The steam reforming reaction is an endothermic reaction, and in order to compensate for this amount of heat, the outside of the outer tube 2 is heated by combustion gas. Further, in the steam reforming reaction, the hydrogen gas component increases as the temperature increases, so in a typical hydrogen production plant, the reformed gas temperature (reaction temperature) at the outlet of the catalyst bed 7 is set at, for example, about 800°C. Combustion gas heating is also used to increase this reformed gas temperature. After the reaction, the high-temperature reformed gas passes through a plurality of small holes (not shown) in the receiving tray 8, reverses its flow at the end cap 4, passes through the inner tube 6, and exits at the outlet tube 9 while remaining at a high temperature.
From there, it is led out of the reaction tube 1, that is, out of the system.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の反応装置は以上のように構成されてお
り、内層6内の改質ガスと内管6の管壁との熱伝
達率を向上させるため、内管6を小口径として改
質ガスの流速を上げると伝熱面積が少なくなり、
逆に、伝熱面積を大きくすると内管6内の改質ガ
スの流速が低下し熱伝達率が低下する。従つて、
エンドキヤツプ4部での800℃程度の改質ガスが、
高温のまま系外に排出されるという熱的な無駄が
あるという問題点があつた。
The conventional reactor is configured as described above, and in order to improve the heat transfer coefficient between the reformed gas in the inner layer 6 and the wall of the inner tube 6, the inner tube 6 has a small diameter and the flow rate of the reformed gas is reduced. As the temperature increases, the heat transfer area decreases,
Conversely, when the heat transfer area is increased, the flow rate of the reformed gas in the inner tube 6 is reduced, and the heat transfer coefficient is reduced. Therefore,
The reformed gas at about 800℃ in the 4th part of the end cap is
There was a problem that there was a waste of heat as it was discharged out of the system while still being at a high temperature.

この発明における反応装置は内管内を通る高温
ガスの顕熱を無駄に捨てることなく、有効に利用
する反応装置を得ることを目的とする。
The purpose of the reactor of the present invention is to provide a reactor that effectively utilizes the sensible heat of the high-temperature gas passing through the inner tube without wasting it.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る反応装置は、吸熱部が触媒層を
通つたガス流中に配設され、放熱部が触媒層の原
料ガス導入側に配設され、第1の管体と第2の管
体により構成され、第1の管体と第2の管体との
間に長手方向に延在する中空溝が複数形成され、
その中空溝内部に作動液体が封入されたヒートパ
イプを設けたものである。
In the reactor according to the present invention, the heat absorbing section is disposed in the gas flow passing through the catalyst layer, the heat dissipating section is disposed on the raw material gas introduction side of the catalyst layer, and the first tube body and the second tube body A plurality of hollow grooves extending in the longitudinal direction are formed between the first tube body and the second tube body,
A heat pipe containing a working liquid is provided inside the hollow groove.

〔作用〕[Effect]

この発明における反応装置は、触媒層を通つた
高温のガス顕熱がヒートパイプの吸熱部に吸収さ
れ、その熱はヒートパイプの放熱部に輸送され、
放熱部を通して触媒層の原料ガス導入側に放熱さ
れる。
In the reactor according to the present invention, the sensible heat of the high temperature gas passing through the catalyst layer is absorbed by the heat absorption part of the heat pipe, and the heat is transported to the heat radiation part of the heat pipe,
Heat is radiated to the raw material gas introduction side of the catalyst layer through the heat radiating section.

〔発明の実施例〕 以下、この発明の一実施例を図について説明す
る。第1図,第2図において、1〜5,7〜9は
上述した従来装置の構成と同様である。10は触
媒層7の内周側に配設され、吸熱部10aが触媒
層7を通つた高温のガス流中に配設、即ち、エン
ドキヤツプ4側に配設され、放熱部10bが触媒
層7の原料ガス導入側に配設され、第1の管体1
1と第2の管体12とにより構成され、第1の管
体11と第2の管体12との間に長手方向に延在
する中空溝13が複数形成され、それら中空溝1
3の内部にセシウム、カリウム、ナトリウム等の
作動液体14が封入された環状のヒートパイプで
あり、このヒートパイプ10の放熱部10b端に
導出管9が取り付けられる。即ち、従来の内管6
を省略し、ヒートパイプ10に内管6の機能を持
たせている。15はヒートパイプ10と触媒層7
との間に配設された触媒保持管、16はヒートパ
イプ10の吸熱部10aを除く内周面に配設され
た例えば酸化アルミナ系からなる断熱材、17は
ヒートパイプ10の放熱部10bの外周に配設さ
れた例えばSUS(ステンレス)材からなる熱伝導
部材、18はヒートパイプ10の放熱部10bを
除く外周に配設された例えば酸化アルミナ系から
なる断熱材である。
[Embodiment of the Invention] An embodiment of the invention will be described below with reference to the drawings. In FIGS. 1 and 2, numerals 1 to 5 and 7 to 9 have the same structure as the conventional device described above. 10 is disposed on the inner circumferential side of the catalyst layer 7, the heat absorbing part 10a is disposed in the high temperature gas flow passing through the catalyst layer 7, that is, disposed on the end cap 4 side, and the heat dissipating part 10b is disposed in the high temperature gas flow passing through the catalyst layer 7. The first pipe body 1 is disposed on the raw material gas introduction side of the
A plurality of hollow grooves 13 are formed between the first tube body 11 and the second tube body 12 and extend in the longitudinal direction.
The heat pipe 3 is an annular heat pipe in which a working liquid 14 such as cesium, potassium, or sodium is sealed, and an outlet pipe 9 is attached to the end of the heat dissipation section 10b of the heat pipe 10. That is, the conventional inner tube 6
is omitted, and the heat pipe 10 has the function of the inner pipe 6. 15 is a heat pipe 10 and a catalyst layer 7
16 is a heat insulating material made of, for example, alumina oxide, provided on the inner circumferential surface of the heat pipe 10 except for the heat absorption part 10a; 17 is a catalyst holding tube disposed between the heat pipe 10 and the heat radiation part 10b; A heat conductive member 18 made of, for example, SUS (stainless steel) material arranged on the outer periphery is a heat insulating material made of, for example, alumina oxide, arranged on the outer periphery of the heat pipe 10 except for the heat radiation part 10b.

次に動作について説明する。原料ガスである炭
化水素とスチームは、例えば450℃程度に予熱さ
れた後、従来と同様に導入管5より外管2内に導
入され、触媒層7内で触媒3と接触し、水蒸気改
質反応を生じる。反応の終了した高温の改質ガス
は、受け皿8の複数個の小孔(図示せず)を通過
し、エンドキヤツプ4にて流れを反転し、ヒート
パイプ10の内周空間を通つて導出管9から系外
に排出される。ところで、触媒層7を通つた高温
の改質ガスはヒートパイプ10の吸熱部10aと
熱接触し、その高温の改質ガスの顕熱はヒートパ
イプ10の吸熱部10aに吸収される。即ち、ヒ
ートパイプ10の吸熱部10aを加熱し、この加
熱により各ヒートパイプ10の中空溝13内部に
封入された作動液体14も加熱され、高温の改質
ガスの顕熱を蒸発潜熱として奪い蒸気化し、ヒー
トパイプ10の放熱部10bへその中空溝13内
部で移動する。ヒートパイプ10の放熱部10b
へ移動した作動液体14の蒸気は熱伝導部材1
7、触媒保持管15を介して触媒層7に導入した
原料ガス中に放熱され、原料ガス若しくは改質ガ
スの昇温ないしは反応熱を補償する。このとき作
動液体14の蒸気は凝縮して液化する。凝縮して
液化した作動液体14はヒートパイプ10の吸熱
部10aへその中空溝13内部で移動して戻る。
このようにして、ヒートパイプ10内の作動液体
14の蒸気化、液化の繰り返しにより、触媒層7
を通つた高温の改質ガスの顕熱をヒートパイプ1
0の吸熱部10aによつて有効に吸収し、この熱
をヒートパイプ10の放熱部10bに輸送し、特
に反応が大きく吸熱量の大きい触媒層7の原料ガ
ス導入部に放熱して熱伝達することもでき、有効
な反応特性を得ることができる。有効に利用され
た後の改質ガスはヒートパイプ10の内周空間、
導出管9を通して系外に排出される。これに伴い
装置の小形化や補助燃料費の削減が可能となる。
Next, the operation will be explained. Hydrocarbons and steam, which are raw material gases, are preheated to about 450°C, for example, and then introduced into the outer tube 2 from the introduction tube 5 as in the conventional case, and come into contact with the catalyst 3 in the catalyst layer 7, where they undergo steam reforming. produce a reaction. After the reaction, the high-temperature reformed gas passes through a plurality of small holes (not shown) in the receiving tray 8, reverses its flow at the end cap 4, and passes through the inner peripheral space of the heat pipe 10 to the outlet pipe. 9 is discharged from the system. By the way, the high temperature reformed gas that has passed through the catalyst layer 7 comes into thermal contact with the heat absorption section 10a of the heat pipe 10, and the sensible heat of the high temperature reformed gas is absorbed by the heat absorption section 10a of the heat pipe 10. That is, the heat absorbing portion 10a of the heat pipe 10 is heated, and this heating also heats the working liquid 14 sealed inside the hollow groove 13 of each heat pipe 10, absorbing the sensible heat of the high-temperature reformed gas as latent heat of vaporization and converting it into steam. and moves inside the hollow groove 13 to the heat dissipation part 10b of the heat pipe 10. Heat radiation part 10b of heat pipe 10
The vapor of the working liquid 14 that has moved to the heat transfer member 1
7. Heat is radiated into the raw material gas introduced into the catalyst layer 7 via the catalyst holding pipe 15 to compensate for the temperature rise of the raw material gas or reformed gas or the heat of reaction. At this time, the vapor of the working liquid 14 is condensed and liquefied. The condensed and liquefied working liquid 14 moves inside the hollow groove 13 and returns to the heat absorption section 10a of the heat pipe 10.
In this way, by repeatedly vaporizing and liquefying the working liquid 14 in the heat pipe 10, the catalyst layer 7
The sensible heat of the high temperature reformed gas passing through the heat pipe 1
This heat is effectively absorbed by the heat absorption part 10a of the heat pipe 10, and the heat is transferred to the heat radiation part 10b of the heat pipe 10, and the heat is radiated and transferred to the raw material gas introduction part of the catalyst layer 7, where the reaction is particularly strong and the amount of heat absorbed is large. It is also possible to obtain effective reaction characteristics. After being effectively used, the reformed gas is stored in the inner circumferential space of the heat pipe 10,
It is discharged to the outside of the system through the outlet pipe 9. This makes it possible to downsize the device and reduce auxiliary fuel costs.

尚、上記実施例では第2の管体12を同筒状と
し、第1の管体11に長手方向に延在する溝を複
数形成し、第1の管体11と第2の管体12とを
一体化して中空溝13を形成する場合について述
べたが、第1の管体11を円筒状とし、第2の管
体12に長手方向に延在する溝を複数形成し、第
1の管体11と第2の管体12とを一体化して中
空溝13を形成するようにしてもよい。
In the above embodiment, the second tubular body 12 has the same cylindrical shape, and a plurality of grooves extending in the longitudinal direction are formed in the first tubular body 11, so that the first tubular body 11 and the second tubular body 12 The case has been described in which the hollow groove 13 is formed by integrating the first tube 11 with a cylindrical shape, the second tube 12 with a plurality of grooves extending in the longitudinal direction, and the first tube 11 with a cylindrical shape. The tubular body 11 and the second tubular body 12 may be integrated to form the hollow groove 13.

又、第3図は他の実施例を示し、ヒートパイプ
10の吸熱部10aの内周面に伝熱フインからな
る熱促進部材19を設け、ヒートパイプ10の吸
熱部10aの吸熱効果をさらに高め、高温の改質
ガスの顕熱の有効利用をさらに高めたものであ
る。熱促進部材19としては、伝熱フイン以外の
ものでもよく、例えばプレートバツフル板等のジ
ヤマ板とし、そのジヤマ板による乱流熱伝達を利
用するようにしても同様の効果を奏する。又、熱
促進部材19としてはこれら実施例に限定される
ものではない。
Further, FIG. 3 shows another embodiment, in which a heat promoting member 19 made of heat transfer fins is provided on the inner peripheral surface of the heat absorbing portion 10a of the heat pipe 10, and the heat absorbing effect of the heat absorbing portion 10a of the heat pipe 10 is further enhanced. , which further enhances the effective use of the sensible heat of high-temperature reformed gas. The heat promotion member 19 may be anything other than a heat transfer fin, for example, a deflection plate such as a plate baffle plate, and the same effect can be achieved even if the turbulent heat transfer by the deflection plate is utilized. Further, the heat promotion member 19 is not limited to these embodiments.

又、上記各実施例では触媒保持管15を設けた
場合について述べたが、必ずしも触媒保持管15
を設ける必要はない。
Furthermore, in each of the above embodiments, the case where the catalyst holding tube 15 is provided has been described, but the catalyst holding tube 15 is not necessarily provided.
There is no need to provide

又、図示はしないがさらに別の発明の実施例と
して、第1図における触媒保持管15、断熱材1
6,18、さらには熱伝達部材17を省略した構
造とすることも考えられ、触媒層7を通つた高温
の改質ガスの顕熱の有効利用は上述した各実施例
と同様の効果を奏する。さらに、この実施例にお
いては触媒層7内の温度差を小さくすることがで
きる。
Although not shown, as yet another embodiment of the invention, the catalyst holding tube 15 and the heat insulating material 1 in FIG.
6, 18, and even a structure in which the heat transfer member 17 is omitted may be considered, and the effective use of the sensible heat of the high temperature reformed gas passing through the catalyst layer 7 will produce the same effect as in each of the above-mentioned embodiments. . Furthermore, in this embodiment, the temperature difference within the catalyst layer 7 can be reduced.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した通り、触媒層の内周側
に配設され、吸熱部が触媒層を通つたガス流中に
配設され、放熱部が触媒層の原料ガス導入側に配
設され、第1の管体と第2の管体により構成さ
れ、第1の管体と第2の管体との間に長手方向に
延在する中空溝が複数形成し、その中空溝内部に
作動液体が封入されたヒートパイプを設け、触媒
層を通つた高速ガスの顕熱をヒートパイプの吸熱
部で吸収してヒートパイプの放熱部に熱輸送し、
ヒートパイプの放熱部を通して触媒層の原料ガス
導入側に放熱するようにしたので、触媒層を通つ
た高温ガスの顕熱を無駄に捨てることなく有効に
利用することができる。
As explained above, this invention is arranged on the inner peripheral side of the catalyst layer, the heat absorption part is arranged in the gas flow passing through the catalyst layer, and the heat radiation part is arranged on the raw gas introduction side of the catalyst layer, A plurality of hollow grooves extending in the longitudinal direction are formed between the first tube body and the second tube body, and a working liquid is contained inside the hollow grooves. A heat pipe is installed, and the sensible heat of the high-velocity gas passing through the catalyst layer is absorbed by the heat absorption part of the heat pipe, and the heat is transported to the heat radiation part of the heat pipe.
Since the heat is radiated to the raw material gas introduction side of the catalyst layer through the heat radiating part of the heat pipe, the sensible heat of the high-temperature gas that has passed through the catalyst layer can be used effectively without wasting it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による反応装置を
示す断面図、第2図は第1図−線における断
面図、第3図はこの発明の他の実施例による反応
装置を示す断面図、第4図は従来の反応装置を示
す断面図である。 図において、2は外管、3は触媒、7は触媒
層、10はヒートパイプ、10aは吸熱部、10
bは放熱部、11は第1の管体、12は第2の管
体、13は中空溝、14は作動液体である。尚、
図中同一符号は同一又は相当部分を示す。
FIG. 1 is a cross-sectional view showing a reaction apparatus according to one embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the line shown in FIG. 1, and FIG. 3 is a cross-sectional view showing a reaction apparatus according to another embodiment of the present invention. FIG. 4 is a sectional view showing a conventional reaction apparatus. In the figure, 2 is an outer tube, 3 is a catalyst, 7 is a catalyst layer, 10 is a heat pipe, 10a is a heat absorption part, 10
b is a heat radiation part, 11 is a first tube, 12 is a second tube, 13 is a hollow groove, and 14 is a working liquid. still,
The same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 外管内に触媒が充填され環状を成し上記外管
内に導入された原料ガスが通る触媒層と、上記触
媒層の内周側に配設され、吸熱部が上記触媒層を
通つたガス流中に配設され、放熱部が上記触媒層
の原料ガス導入側に配設され、第1の管体と第2
の管体により構成され、上記第1の管体と第2の
管体との間に長手方向に延在する中空溝が複数形
成され、その中空溝内部に作動液体が封入された
環状のヒートパイプとを備えたことを特徴とする
反応装置。 2 外管内に触媒が充填され環状を成し上記外管
内に導入された原料ガスが通る触媒層と、上記触
媒層の内周側に配設され、吸熱部が上記触媒層を
通つたガス流中に配設され、放熱部が上記触媒層
の原料ガス導入側に配設され、第1の管体と第2
の管体により構成され、上記第1の管体と第2の
管体との間に長手方向に延在する中空溝が複数形
成され、その中空溝内部に作動液体が封入された
環状のヒートパイプと、上記ヒートパイプの内周
側に配設された断熱材と、上記ヒートパイプの放
熱部外周に配設された熱伝導部材と、上記ヒート
パイプの放熱部を除く外周に配設された断熱材と
を備えたことを特徴とする反応装置。
[Scope of Claims] 1. A catalyst layer formed in an annular shape in which a catalyst is filled in an outer tube, through which the raw material gas introduced into the outer tube passes; disposed in the gas flow passing through the layer, a heat dissipation section is disposed on the source gas introduction side of the catalyst layer, and the first tube body and the second tube body are disposed in the gas flow passing through the layer.
An annular heating element comprising a tube body, a plurality of hollow grooves extending in the longitudinal direction are formed between the first tube body and the second tube body, and a working liquid is sealed inside the hollow grooves. A reaction device characterized by comprising a pipe. 2. A catalyst layer in which the outer tube is filled with a catalyst to form an annular shape, through which the raw material gas introduced into the outer tube passes; and an endothermic section disposed on the inner circumferential side of the catalyst layer, the gas flow passing through the catalyst layer. A heat dissipation part is disposed on the raw material gas introduction side of the catalyst layer, and the first pipe body and the second pipe body are disposed inside the catalyst layer.
An annular heating element comprising a tube body, a plurality of hollow grooves extending in the longitudinal direction are formed between the first tube body and the second tube body, and a working liquid is sealed inside the hollow grooves. a pipe, a heat insulating material disposed on the inner circumference side of the heat pipe, a heat conductive member disposed on the outer circumference of the heat dissipation part of the heat pipe, and a heat conduction member disposed on the outer circumference of the heat pipe excluding the heat dissipation part. A reaction device characterized by comprising: a heat insulating material.
JP22505687A 1987-09-08 1987-09-08 Reactor Granted JPS6467248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22505687A JPS6467248A (en) 1987-09-08 1987-09-08 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22505687A JPS6467248A (en) 1987-09-08 1987-09-08 Reactor

Publications (2)

Publication Number Publication Date
JPS6467248A JPS6467248A (en) 1989-03-13
JPH04695B2 true JPH04695B2 (en) 1992-01-08

Family

ID=16823347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22505687A Granted JPS6467248A (en) 1987-09-08 1987-09-08 Reactor

Country Status (1)

Country Link
JP (1) JPS6467248A (en)

Also Published As

Publication number Publication date
JPS6467248A (en) 1989-03-13

Similar Documents

Publication Publication Date Title
KR910018071A (en) Endothermic reactor
RU2005116117A (en) PROCESS AND REACTOR FOR HEAT EXCHANGE REACTIONS
JPS63162503A (en) Gas producer
JP2508287B2 (en) Reactor
RU97118856A (en) METHOD AND REACTOR FOR HETEROGENEOUS EXOTHERMIC SYNTHESIS FORMALDEHYDE
KR100934716B1 (en) Reactor and Reaction Method
US4331632A (en) Catalytic cartridge SO3 decomposer
JPH04695B2 (en)
JPH04693B2 (en)
NO865101L (en) DEVICE FOR USE IN GAS PREPARATION WITH HYDROGEN AND CARBON OXIDE CONTENTS.
JPH0714473B2 (en) Method of indirect heating in a reaction chamber for endothermic reaction and apparatus for carrying it out
JPH04694B2 (en)
JP3322933B2 (en) Fuel reformer
JPH0252538B2 (en)
JP2601707B2 (en) Catalytic reactor
JPH01264903A (en) Apparatus for reforming hydrocarbon
JPH0530498B2 (en)
JPH0124533B2 (en)
JPH0124534B2 (en)
JPS62186935A (en) Reactor
JPS5916536A (en) Catalytic reactor
JPS6287240A (en) Endothermic reactor
JP2600950B2 (en) Endothermic reactor
JPH01215340A (en) Fuel reformer
JPH0638907B2 (en) Endothermic reaction device