JPH0469436B2 - - Google Patents

Info

Publication number
JPH0469436B2
JPH0469436B2 JP58216186A JP21618683A JPH0469436B2 JP H0469436 B2 JPH0469436 B2 JP H0469436B2 JP 58216186 A JP58216186 A JP 58216186A JP 21618683 A JP21618683 A JP 21618683A JP H0469436 B2 JPH0469436 B2 JP H0469436B2
Authority
JP
Japan
Prior art keywords
receiving device
light receiving
electrode
oxide
photoconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58216186A
Other languages
Japanese (ja)
Other versions
JPS59112663A (en
Inventor
Eiichi Maruyama
Yoshinori Imamura
Saburo Adaka
Kyohisa Inao
Yukio Takasaki
Toshihisa Tsukada
Tadaaki Hirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58216186A priority Critical patent/JPS59112663A/en
Publication of JPS59112663A publication Critical patent/JPS59112663A/en
Publication of JPH0469436B2 publication Critical patent/JPH0469436B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/095Devices sensitive to infrared, visible or ultraviolet radiation comprising amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 本発明は蓄積モードで用いられる受光装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light receiving device used in accumulation mode.

従来から蓄積モードで使用される受光装置の代
表的な例としては第1図の光導電型撮像管があ
る。これは通常フエースプレートと称する透光性
基板1、透明導電膜2、光導電体層3、電子銃
4、外囲器5とからなる。フエースプレート1を
通して光導電体層3に結像された光像を光電変換
し、光導電体層3の表面に電荷パターンとして蓄
積し、走査電子ビーム6によつて、時系列的に読
み取る仕組になつている。
A typical example of a light receiving device conventionally used in an accumulation mode is a photoconductive type image pickup tube shown in FIG. It consists of a light-transmitting substrate 1, usually called a face plate, a transparent conductive film 2, a photoconductor layer 3, an electron gun 4, and an envelope 5. The optical image formed on the photoconductor layer 3 through the face plate 1 is photoelectrically converted, accumulated as a charge pattern on the surface of the photoconductor layer 3, and read out in time series by the scanning electron beam 6. It's summery.

このとき、光導電体層3に要求される重要な特
性は、特定の絵素が走査電子ビーム6によつて走
査される時間間隔(すなわち蓄積時間)のうち
に、電荷パターンが拡散によつて消滅してしまわ
ないことである。したがつて、通常、光導電体層
3の材料としては比抵抗が1010Ω・cm以上の半導
体、たとえばSb2S3、PbO、Se系カルコゲンガラ
スなどが用いられている。もしSi単結晶のように
比抵抗が1010Ω・cm未満の材料を用いる場合に
は、電子ビーム走査側の面をモザイク状に分割し
て電荷パターンの消滅を防ぐことが必要である。
これらの材料のなかで、Si単結晶は加工工程が複
雑であり他の高抵抗半導体は通常、光キヤリアの
走行を防げるトラツプ準位を高濃度に含むために
光応答特性が悪く、撮像デバイスとしては、長い
残像や焼付現象が発生するといつた不都合が起り
易い。本発明は上記の欠点を解消しようとするも
のである。本発明の目的は解像度の高い蓄積モー
ドの受光装置を提供するにある。更に本発明にな
る受光装置は焼付現象がきわめて少ないものであ
り、残像特性も好ましい。加えてその製造方法が
簡便なるものである。
At this time, an important characteristic required of the photoconductor layer 3 is that during the time interval (i.e., accumulation time) during which a particular picture element is scanned by the scanning electron beam 6, the charge pattern is changed by diffusion. It must not disappear. Therefore, the photoconductor layer 3 is usually made of a semiconductor having a specific resistance of 10 10 Ω·cm or more, such as Sb 2 S 3 , PbO, or Se-based chalcogen glass. If a material with a specific resistance of less than 10 10 Ω·cm, such as Si single crystal, is used, it is necessary to divide the surface on the electron beam scanning side into a mosaic pattern to prevent the charge pattern from disappearing.
Among these materials, Si single crystal has a complicated processing process, and other high-resistance semiconductors usually have poor photoresponse characteristics because they contain a high concentration of trap levels that prevent optical carriers from traveling, making them difficult to use as imaging devices. However, problems such as long afterimages and burn-in phenomena are likely to occur. The present invention seeks to overcome the above-mentioned drawbacks. An object of the present invention is to provide an accumulation mode light receiving device with high resolution. Furthermore, the light-receiving device according to the present invention exhibits very little image sticking and has favorable afterimage characteristics. In addition, the manufacturing method is simple.

本発明の基本的構成は次の通りである。 The basic configuration of the present invention is as follows.

受光装置は所定の基板上に少なくとも透明導電
膜と光導電体膜および第2の導電膜とを具備した
複数の受光素子部が配列される。そしてこの光導
電体膜は単層もしくは積層より成る。そして前記
光導電物質の単層もしくは積層の少なくとも一層
が50原子数パーセント以上のシリコンと10原子数
パーセント以上50原子数パーセント以下の水素を
含有してなる。更に好ましくは比抵抗が1010Ω・
cm以上なる非結晶材料から成る如く構成するもの
である。前記光導電体膜は厚さ100nmより20μm
の範囲より選択する。
In the light receiving device, a plurality of light receiving element portions each including at least a transparent conductive film, a photoconductor film, and a second conductive film are arranged on a predetermined substrate. This photoconductor film is composed of a single layer or a laminated layer. At least one of the single layer or laminated layer of the photoconductive material contains 50 atomic percent or more of silicon and 10 atomic percent or more and 50 atomic percent or less of hydrogen. More preferably, the specific resistance is 10 10 Ω・
It is constructed of an amorphous material of cm or more. The photoconductor film has a thickness of 100 nm to 20 μm.
Select from the range.

本発明者らによれば、シリコンと水素とを同時
に含有する非晶質材料は容易に1010Ω・cm以上の
高い比抵抗にすることができ、しかも光キヤリア
の走行をさまたげるトラツプが非常に少ない良質
の光導電材料であることが見出された。ここで、
シリコンと水素とを同時に含有する非晶質材料に
若干の不純物が含まれることも当然あり得る。ま
た、シリコンと同族元素であるゲルマニウム、カ
ーボン等が上記組成における残部として含有され
ることもある。この材料は薄膜状で使用される
が、薄膜試料はSiH4のグロー放電による分解、
水素を含む雰囲気中でのシリコン合金のスパツタ
リング、あるいは活性水素を含む雰囲気中でのシ
リコン合金の電子ビーム蒸着法など各種方法によ
つて形成することができる。第2図、第3図にそ
の代表的な装置の例の説明図を示す。第2図はグ
ロー放電を用いる場合の例である。20は試料、
21は真空に排気し得る容器、22はrfコイル、
23は試料ホールダー、24は温度測定用サーモ
カツプル、25はヒーター、26はSiH4などの
雰囲気ガス導入口、27はガスを混合させるため
のタンク、28は排気系への接続口である。第3
図はスパツタリング法による場合の例である。3
0は試料、31は真空に排気し得る容器、32は
スパツター用ターゲツトでシリコン焼結体等を用
いる。33はrf電圧を印加する電極、34は試料
ホールダー、35は測定用サーモカツプル、36
はアルゴン等の希ガスおよび水素等のガス導入
口、37は冷却用水の通路を示す。
According to the present inventors, an amorphous material containing silicon and hydrogen at the same time can easily have a high resistivity of 10 10 Ω・cm or more, and moreover, it has very few traps that hinder the travel of optical carriers. It was found that there are few good quality photoconductive materials. here,
Naturally, it is possible that the amorphous material containing silicon and hydrogen at the same time contains some impurities. Further, germanium, carbon, etc., which are elements in the same group as silicon, may be contained as the remainder in the above composition. This material is used in the form of a thin film, and the thin film sample is decomposed by glow discharge of SiH4
It can be formed by various methods such as sputtering of a silicon alloy in an atmosphere containing hydrogen or electron beam evaporation of a silicon alloy in an atmosphere containing active hydrogen. FIGS. 2 and 3 are explanatory diagrams of examples of typical devices. FIG. 2 is an example in which glow discharge is used. 20 is a sample,
21 is a container that can be evacuated, 22 is an RF coil,
23 is a sample holder, 24 is a thermocouple for temperature measurement, 25 is a heater, 26 is an inlet for atmospheric gas such as SiH 4 , 27 is a tank for mixing gases, and 28 is a connection port to an exhaust system. Third
The figure shows an example of the sputtering method. 3
0 is a sample, 31 is a container that can be evacuated, and 32 is a target for sputtering, which is made of a silicon sintered body or the like. 33 is an electrode for applying RF voltage, 34 is a sample holder, 35 is a thermocouple for measurement, 36
Reference numeral 37 indicates an inlet for introducing a rare gas such as argon and a gas such as hydrogen, and 37 indicates a cooling water passage.

高抵抗試料を得るために特に好ましいプロセス
は、水素とアルゴンの如き希ガスとの混合雰囲気
中でのシリコン合金の反応性スパツタリングによ
る方法である。スパツタ装置としてはマグネトロ
ン型の低温高速スパツタ装置が適している。水素
とシリコンを含む非晶質膜は通常350℃以上に加
熱されると水素を放出するので、膜形成中の基板
温度は100℃〜300℃に保持することが望ましい。
また、非晶質膜中に含まれる水素濃度は放電中の
雰囲気の圧力2×10-3Torr〜1×10-1Torrのう
ち、水素の分圧を0%から100%まで種々変化さ
せることにより大巾に変えることができる。スパ
ツタ用のターゲツトはシリコンの焼結体を用いる
が、必要に応じてp型不純物であるホウ素を添加
したもの、あるいはn型不純物であるリンを添加
したもの、さらにシリコンとゲルマニウムの混合
焼結体などを用いることもできる。このようにし
て作成される非晶質膜のうち、蓄積モードの受光
装置用として特に適する比抵抗1010Ω・cm以上で
トラツプ濃度の少ない膜が得られるのは膜内の含
有水素が10〜50原子%、同じく含有シリコンが50
原子%以上の場合が特に良好である。含有水素が
余り少ないと抵抗値が低下しすぎる。このため解
像度の低下をきたす。また、含有水素が余り多す
ぎると光導電性が低下し、光導電特性が十分でな
くなる。
A particularly preferred process for obtaining high resistance samples is by reactive sputtering of silicon alloys in a mixed atmosphere of hydrogen and a noble gas such as argon. A magnetron-type low-temperature, high-speed sputtering device is suitable as the sputtering device. Since an amorphous film containing hydrogen and silicon usually releases hydrogen when heated above 350°C, it is desirable to maintain the substrate temperature during film formation between 100°C and 300°C.
In addition, the hydrogen concentration contained in the amorphous film can be determined by varying the partial pressure of hydrogen from 0% to 100% within the pressure of the atmosphere during discharge from 2 × 10 -3 Torr to 1 × 10 -1 Torr. It can be changed to a large cloth. The target for sputtering uses a sintered body of silicon, but if necessary, it can be added with boron, which is a p-type impurity, or phosphorus, which is an n-type impurity, or a mixed sintered body of silicon and germanium. etc. can also be used. Among the amorphous films created in this way, a film with a specific resistance of 10 10 Ω・cm or more and a low trap concentration, which is particularly suitable for use in an accumulation mode photoreceptor, can be obtained if the hydrogen content in the film is 10 to 10. 50 atomic%, also contains 50 silicon
Particularly good results are obtained when the amount is at least atomic %. If the hydrogen content is too small, the resistance value will drop too much. This causes a decrease in resolution. On the other hand, if the hydrogen content is too large, the photoconductivity decreases and the photoconductive properties become insufficient.

蓄積モードの受光装置において、高い解像力を
得るために電荷パターンが蓄積されて一定時間保
持されるための高抵抗層は必らずしも光導電体層
全体である必要はなく、電荷パターンが出現する
面を含む光導電体層の一部分であつて差仕えな
い。通常、高抵抗層は等価回路的に容量成分とし
て動作するので、回路定数からの要求により、少
なくとも100nm以上厚さにあることが望ましい。
In an accumulation mode photoreceptor, the high resistance layer in which a charge pattern is accumulated and held for a certain period of time in order to obtain high resolution does not necessarily have to be the entire photoconductor layer; instead, the charge pattern appears. The portion of the photoconductor layer that includes the surface that Since the high resistance layer normally operates as a capacitive component in terms of an equivalent circuit, it is desirable to have a thickness of at least 100 nm or more depending on requirements from circuit constants.

本発明の実施例を第4図に基づいて説明する。
絶縁性の平滑な基板12上に金属クロムを1×
10-6Torrの真空度で100nmの厚みに蒸着して電
極10を形成する。この基板を高周波スパツタ装
置に入れ、基板温度130℃において、アルゴン5
×10-3Torrと水素3×10-3Torrの混合気体中で
シリコンターゲツトを用いて、厚さ10μmの非晶
質シリコン膜7を形成する。この非晶質シリコン
膜7は〜1011Ω・cmの比抵抗を有する。この基板
を200℃に保ち、その上に高周波スパツタによつ
て酸化ニオブの膜9を50nmの厚みに堆積する。
さらに、この基板を真空蒸着装置に入れ、基板温
度を150℃に保ち、1×10-3Torrの酸素雰囲気中
で金属インジウムを100nmの厚みに蒸着する。
これを1気圧の大気中にとりだし、150℃で1時
間の熱処理を行なうと金属インジウムは酸化イン
ジウムの透明電極2に変る。
An embodiment of the present invention will be described based on FIG.
1x metal chromium on an insulating smooth substrate 12
The electrode 10 is formed by vapor deposition to a thickness of 100 nm at a vacuum level of 10 -6 Torr. This substrate was placed in a high-frequency sputtering device, and at a substrate temperature of 130°C, argon gas was
An amorphous silicon film 7 having a thickness of 10 μm is formed using a silicon target in a gas mixture of ×10 −3 Torr and hydrogen of 3×10 −3 Torr. This amorphous silicon film 7 has a specific resistance of ~10 11 Ω·cm. This substrate is kept at 200° C., and a niobium oxide film 9 is deposited on it to a thickness of 50 nm by high-frequency sputtering.
Furthermore, this substrate is placed in a vacuum evaporation apparatus, the substrate temperature is maintained at 150° C., and metallic indium is evaporated to a thickness of 100 nm in an oxygen atmosphere of 1×10 −3 Torr.
When this is taken out into the atmosphere at 1 atm and heat treated at 150°C for 1 hour, the metallic indium changes to a transparent electrode 2 of indium oxide.

こうして作られた受光装置は酸化インジウム透
明電極が正に、金属クロム電極が負になるように
電圧を印加すると、逆バイアスされたホトダイオ
ードとして動作する。
When a voltage is applied so that the indium oxide transparent electrode becomes positive and the metal chromium electrode becomes negative, the light receiving device thus manufactured operates as a reverse biased photodiode.

また、次の様な受光装置も製作した。 We also manufactured the following light receiving device.

操絶縁性の平滑な基板12上に金属クロムを、1
×10-6Torrの真空度で100nmの厚みに蒸着して
電極10を形成する。この基板を高周波スパツタ
装置に入れ、基板温度130℃において、アルゴン
2×10-3Torrと水素2×10-3Torrの混合気体中
でシリコン90原子%、ゲルマニウム10原子%のタ
ーゲツトを用いて、厚さ10μmの非晶質膜7を形
成する。この非晶質膜7は2×1010Ω・cmの比抵
抗を有する。この基板を200℃に保ち、その上に
高周波スパツタによつて酸化ニオブの膜9を50n
mの厚みに堆積する。さらに、この基板を真空蒸
着装置に入れ、基板温度を150℃に保ち、1×
10-3Torrの酸素雰囲気中で金属インジウムを
100nmの厚みに蒸着する。これを1気圧の大気
中にとりだし、150℃で1時間の熱処理を行なう
と金属インジウムは酸化インジウム透明電極2に
変る。こうして受光装置が作製される。これは前
述と同様に動作させることが可能である。
Metal chromium is placed on a smooth insulating substrate 12.
The electrode 10 is formed by vapor deposition to a thickness of 100 nm at a vacuum level of ×10 −6 Torr. This substrate was placed in a high frequency sputtering device, and at a substrate temperature of 130°C, using a target of 90 atomic % silicon and 10 atomic % germanium in a mixed gas of 2 × 10 -3 Torr of argon and 2 × 10 -3 Torr of hydrogen. An amorphous film 7 with a thickness of 10 μm is formed. This amorphous film 7 has a specific resistance of 2×10 10 Ω·cm. This substrate was kept at 200°C, and a 50nm niobium oxide film 9 was deposited on it by high-frequency sputtering.
It is deposited to a thickness of m. Furthermore, this substrate was placed in a vacuum evaporation device, the substrate temperature was kept at 150℃, and 1×
Indium metal in an oxygen atmosphere of 10 -3 Torr
Deposit to a thickness of 100 nm. When this is taken out into the atmosphere at 1 atm and heat treated at 150° C. for 1 hour, the metallic indium changes to an indium oxide transparent electrode 2. In this way, a light receiving device is manufactured. This can be operated in the same manner as described above.

このようにして作製した受光装置において、基
板上の金属クロム電極を多数の素片に分割し、外
部スイツチによつて順次に蓄積電荷を読みとる回
路と接続することにより、1次元あるいは2次元
の固体光イメージセンサとすることができる。以
上、実施例を用いて説明してきたように、水素と
シリコンを含有する非晶質薄膜は、すぐれた光電
変換特性と高い比抵抗を有するので、特に蓄積型
の受光装置に用いることによつて、構造が簡単
で、高い解像力が得られ、工業上極めて大なる効
果を有するものである。
In the photodetector fabricated in this way, the metal chromium electrode on the substrate is divided into many pieces and connected to a circuit that sequentially reads the accumulated charge using an external switch. It can be an optical image sensor. As explained above using examples, amorphous thin films containing hydrogen and silicon have excellent photoelectric conversion properties and high resistivity, so they can be used particularly in storage-type light receiving devices. The structure is simple, high resolution can be obtained, and it has extremely great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は蓄積型受光装置の代表例である光導電
型撮像管の断面図、第2図および第3図は薄膜作
製用の装置例を示す説明図、第4図は本発明の一
実施例であり受光装置の受光部断面図である。 1……透光性基板、2……透明導電膜、3……
光導電体層、4……電子銃、5……外囲器、6…
…走査電子ビーム、7……高抵抗非晶質光導電体
層、9……n型酸化物層、10……電極、12…
…基板。
FIG. 1 is a cross-sectional view of a photoconductive image pickup tube, which is a typical example of a storage type light receiving device, FIGS. 2 and 3 are explanatory diagrams showing an example of a device for producing a thin film, and FIG. 4 is an embodiment of the present invention. It is an example and is a sectional view of a light receiving part of a light receiving device. 1... Transparent substrate, 2... Transparent conductive film, 3...
Photoconductor layer, 4... Electron gun, 5... Envelope, 6...
... Scanning electron beam, 7 ... High resistance amorphous photoconductor layer, 9 ... N-type oxide layer, 10 ... Electrode, 12 ...
…substrate.

Claims (1)

【特許請求の範囲】 1 絶縁性基板と、上記絶縁性基板上に多数の導
電膜の素片を配置して成る第1電極と、上記第1
電極上に配置された50原子数パーセント以上のシ
リコンと10原子数パーセント以上50パーセント以
下の水素を含有する非晶質材料より成る光導電体
層と、上記光導電体層上に配置された透明導電膜
から成る第2電極と、上記第1電極と第2電極の
間にスイツチを介して接続された蓄積電荷読み取
り回路とを具備したことを特徴とする受光装置。 2 上記非晶質材料の比抵抗が1010Ω・cm以上で
あることを特徴とする特許請求の範囲第1項記載
の受光装置。 3 上記非晶質材料の残部組成としてゲルマニウ
ムが含有されたいることを特徴とする特許請求の
範囲第1項又は第2項記載の受光装置。 4 上記光導電体層の厚さが100nmないし20μm
であることを特徴とする特許請求の範囲第1項記
載の受光装置。 5 上記第2電極と上記光導電体層の間にn型酸
化物層を設けたことを特徴とする特許請求の範囲
第1項又は第4項記載の受光装置。 6 上記n型酸化物層は、酸化セリウム、酸化タ
ングステン、酸化ニオブ、酸化ゲルマニウムおよ
び酸化モリブデンの群より選ばれた少なくとも一
つから成ることを特徴とする特許請求の範囲第5
項記載の受光装置。
[Claims] 1. An insulating substrate, a first electrode formed by disposing a number of conductive film pieces on the insulating substrate, and the first
A photoconductor layer made of an amorphous material containing 50 atomic percent or more of silicon and 10 atomic percent or more and 50 percent or less of hydrogen, disposed on the electrode, and a transparent photoconductor layer disposed on the photoconductor layer. A light receiving device comprising: a second electrode made of a conductive film; and an accumulated charge reading circuit connected between the first electrode and the second electrode via a switch. 2. The light receiving device according to claim 1, wherein the amorphous material has a specific resistance of 10 10 Ω·cm or more. 3. The light receiving device according to claim 1 or 2, wherein germanium is contained as the remainder of the amorphous material. 4 The thickness of the photoconductor layer is 100 nm to 20 μm
A light receiving device according to claim 1, characterized in that: 5. The light receiving device according to claim 1 or 4, characterized in that an n-type oxide layer is provided between the second electrode and the photoconductor layer. 6. Claim 5, wherein the n-type oxide layer is made of at least one selected from the group of cerium oxide, tungsten oxide, niobium oxide, germanium oxide, and molybdenum oxide.
The light-receiving device described in Section 1.
JP58216186A 1983-11-18 1983-11-18 Photodetector device Granted JPS59112663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58216186A JPS59112663A (en) 1983-11-18 1983-11-18 Photodetector device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58216186A JPS59112663A (en) 1983-11-18 1983-11-18 Photodetector device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5893478A Division JPS54150995A (en) 1978-05-19 1978-05-19 Photo detector

Publications (2)

Publication Number Publication Date
JPS59112663A JPS59112663A (en) 1984-06-29
JPH0469436B2 true JPH0469436B2 (en) 1992-11-06

Family

ID=16684633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58216186A Granted JPS59112663A (en) 1983-11-18 1983-11-18 Photodetector device

Country Status (1)

Country Link
JP (1) JPS59112663A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658951B2 (en) * 1985-07-17 1994-08-03 オリンパス光学工業株式会社 Stacked solid-state imaging device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010083A (en) * 1973-05-23 1975-02-01
JPS5027326A (en) * 1973-07-16 1975-03-20
JPS52144992A (en) * 1976-05-28 1977-12-02 Hitachi Ltd Light receiving element
JPS535523A (en) * 1976-07-05 1978-01-19 Hitachi Ltd Pickup tube target

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010083A (en) * 1973-05-23 1975-02-01
JPS5027326A (en) * 1973-07-16 1975-03-20
JPS52144992A (en) * 1976-05-28 1977-12-02 Hitachi Ltd Light receiving element
JPS535523A (en) * 1976-07-05 1978-01-19 Hitachi Ltd Pickup tube target

Also Published As

Publication number Publication date
JPS59112663A (en) 1984-06-29

Similar Documents

Publication Publication Date Title
US4255686A (en) Storage type photosensor containing silicon and hydrogen
US4360821A (en) Solid-state imaging device
GB2024186A (en) Photoconductive material
JPH0481353B2 (en)
GB2036426A (en) Radiation sensitive screen
EP0040076B1 (en) Photoelectric converter
EP0031663B1 (en) Photoelectric device
JPH0469436B2 (en)
EP0036779B1 (en) Photoelectric conversion device and method of producing the same
EP0045203B1 (en) Method of producing an image pickup device
JPH025017B2 (en)
KR820002330B1 (en) Photosensor
JPH0224031B2 (en)
KR900001981B1 (en) Manufacturing method of semiconductor film
KR880000140B1 (en) Photo sensing device
JPH0652428B2 (en) Photoconductor
JPS59112662A (en) Image pickup device
US4883562A (en) Method of making a photosensor
US4722880A (en) Photoconductor having amorphous silicon hydride
KR850000084B1 (en) Photoelectric conversion system
KR830000682B1 (en) Radiation receiving surface
JPS6340014B2 (en)
KR900000350B1 (en) Photoelectric converting apparatus
JPS58131646A (en) Unitube color camera tube
KR850001099B1 (en) Light sensitive screen and devices including the same