JPH0469405B2 - - Google Patents
Info
- Publication number
- JPH0469405B2 JPH0469405B2 JP59009998A JP999884A JPH0469405B2 JP H0469405 B2 JPH0469405 B2 JP H0469405B2 JP 59009998 A JP59009998 A JP 59009998A JP 999884 A JP999884 A JP 999884A JP H0469405 B2 JPH0469405 B2 JP H0469405B2
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- diode
- liquid helium
- superconducting coil
- switch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052734 helium Inorganic materials 0.000 claims description 8
- 239000001307 helium Substances 0.000 claims description 8
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 8
- 230000002085 persistent effect Effects 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/001—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for superconducting apparatus, e.g. coils, lines, machines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Description
【発明の詳細な説明】
〔発明の属する技術分野〕
本発明は、超電導永久電流モードで運転中の超
電導スイツチの超電導保護回路に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a superconducting protection circuit for a superconducting switch operating in superconducting persistent current mode.
従来の、液体ヘリウム中のダイオードを用いた
保護回路を第1図に示す。永久電流モードでは、
超電導コイル1と超電導スイツチ2に第1図の矢
印の向きに電流が流れている。この状態で超電導
スイツチ2がクエンチすると、超電導コイル1の
両端に電圧が発生してダイオード3に電流が流れ
込み、超電導スイツチ2を保護しながら超電導コ
イル1の蓄積エネルギーを消費する。ここで、ダ
イオード3の発熱は液体ヘリウムが吸収する。
A conventional protection circuit using diodes in liquid helium is shown in FIG. In persistent current mode,
Current flows through the superconducting coil 1 and the superconducting switch 2 in the direction of the arrow in FIG. When the superconducting switch 2 is quenched in this state, voltage is generated across the superconducting coil 1 and current flows into the diode 3, consuming the energy stored in the superconducting coil 1 while protecting the superconducting switch 2. Here, the heat generated by the diode 3 is absorbed by liquid helium.
一方、超電導スイツチ2がクエンチしたときの
超電導コイル1の電流の減衰の仕方は、超電導コ
イルのインダクタンスとダイオードに流れる電流
による電圧降下によつて決まり、自由に制御する
ことができなかつた。 On the other hand, the manner in which the current in the superconducting coil 1 attenuates when the superconducting switch 2 is quenched is determined by the voltage drop due to the inductance of the superconducting coil and the current flowing through the diode, and cannot be freely controlled.
ダイオードの電圧降下が超電導コイルのインダ
クタンスに比べて大きすぎるとコイル両端に大電
圧がかゝり、クエンチした超電導スイツチにも大
電流が流れてこれを破損する。逆にダイオードの
電圧降下が小さすぎると、超電導スイツチがクエ
ンチしてから電流がなくなるまでに時間がかかり
すぎ不都合であつた。 If the voltage drop across the diode is too large compared to the inductance of the superconducting coil, a large voltage will be applied across the coil, and a large current will also flow through the quenched superconducting switch, damaging it. On the other hand, if the voltage drop across the diode is too small, it takes too much time for the current to run out after the superconducting switch is quenched, which is inconvenient.
この発明は、上述した従来の保護回路の欠点を
改良したもので、超電導スイツチがクエンチした
場合に超電導コイルの両端電圧、および電流減衰
の時間を自由に制御することのできる保護回路を
提供することを目的とする。
The present invention improves the drawbacks of the conventional protection circuit described above, and provides a protection circuit that can freely control the voltage across the superconducting coil and the time of current decay when the superconducting switch is quenched. With the goal.
保護回路として動作しているときのダイオード
の接合面の温度は液体ヘリウム温度より高くな
る。一方ダイオードの特性は、第2図に示すよう
に温度が高くなる(T3>T2>T1)と電圧降下が
小さくなる。そこでダイオードの接合面の温度
を、ダイオードに適当な形状、表面積、体積をも
つ放熱板を装着することによつて制御し、これに
よつて超電導コイルのインダクタンスとつり合う
適当なダイオードの降下電圧を得る。
When operating as a protection circuit, the temperature of the junction surface of the diode is higher than the liquid helium temperature. On the other hand, as shown in FIG. 2, the characteristic of a diode is that the voltage drop decreases as the temperature increases (T 3 >T 2 >T 1 ). Therefore, the temperature of the junction surface of the diode is controlled by attaching a heat sink with an appropriate shape, surface area, and volume to the diode, thereby obtaining an appropriate voltage drop across the diode that balances the inductance of the superconducting coil. .
超電導コイルのインダクタンスに対してダイオ
ードの電圧降下を任意に制御できるので、超電導
スイツチがクエンチした後の超電導コイルの電流
の減衰の時間を自由に制御することができる。ま
たダイオード両端の電圧値すなわち超電導コイル
両端の電圧も放熱板によつて制御できるので、ク
エンチした超電導スイツチを確実に保護できる。
Since the voltage drop of the diode can be arbitrarily controlled with respect to the inductance of the superconducting coil, the time of decay of the current in the superconducting coil after the superconducting switch is quenched can be freely controlled. Furthermore, since the voltage across the diode, that is, the voltage across the superconducting coil, can be controlled by the heat sink, the quenched superconducting switch can be reliably protected.
第3図に実施例を示す。超電導コイル1と超電
導スイツチ2は液体ヘリウム9中に置かれてい
る。ダイオード3およびそれに装着された放熱板
6も液体ヘリウム9中にある。尚、7はリード
線、8はクライオスタツトである。
An example is shown in FIG. A superconducting coil 1 and a superconducting switch 2 are placed in liquid helium 9. The diode 3 and the heat sink 6 attached to it are also in liquid helium 9. Note that 7 is a lead wire and 8 is a cryostat.
〔発明の他の実施例〕
本発明は前述した実施例のダイオードに限定さ
れるものではなく、他の種々の回路においても使
用できることは、本発明の主旨から明らかであ
る。[Other Embodiments of the Invention] It is clear from the gist of the invention that the present invention is not limited to the diodes of the above-described embodiments, but can also be used in various other circuits.
第1図はダイオードによる超電導スイツチの保
護回路図、第2図はダイオードの温度による特性
の変化の傾向を示す特性図、第3図は本発明の実
施例を示す概略図である。
1……超電導コイル、2……超電導スイツチ、
3……保護用ダイオード、4……電源、5……
4.2K領域、6……放熱板、7……リード線、8
……クライオスタツト、9……液体ヘリウム。
FIG. 1 is a protection circuit diagram of a superconducting switch using diodes, FIG. 2 is a characteristic diagram showing the tendency of changes in characteristics of diodes depending on temperature, and FIG. 3 is a schematic diagram showing an embodiment of the present invention. 1... superconducting coil, 2... superconducting switch,
3...Protective diode, 4...Power supply, 5...
4.2K area, 6... Heat sink, 7... Lead wire, 8
...Cryostat, 9...Liquid helium.
Claims (1)
電導スイツチによる超電導永久電流モードで超電
導スイツチがクエンチした場合の回路保護に用い
る液体ヘリウム中の半導体素子に、放熱板をとり
つけることを特徴とする超電導保護回路。1. A superconducting protection circuit characterized in that a heat sink is attached to a semiconductor element in liquid helium used for circuit protection when a superconducting switch of a superconducting coil placed in liquid helium quenches in a superconducting persistent current mode. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59009998A JPS60154508A (en) | 1984-01-25 | 1984-01-25 | Superconductive protective circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59009998A JPS60154508A (en) | 1984-01-25 | 1984-01-25 | Superconductive protective circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60154508A JPS60154508A (en) | 1985-08-14 |
JPH0469405B2 true JPH0469405B2 (en) | 1992-11-06 |
Family
ID=11735508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59009998A Granted JPS60154508A (en) | 1984-01-25 | 1984-01-25 | Superconductive protective circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60154508A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07235412A (en) * | 1994-02-24 | 1995-09-05 | Mitsubishi Electric Corp | Superconducting magnet device |
-
1984
- 1984-01-25 JP JP59009998A patent/JPS60154508A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60154508A (en) | 1985-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3304466A (en) | Protective circuits for superconductive loads | |
JPS61114509A (en) | Superconductive coil device | |
JPH0469405B2 (en) | ||
US4956740A (en) | Protection technique for superconducting magnets | |
GB914541A (en) | Improvements in or relating to cryotron arrangements | |
JPS6174308A (en) | Superconductive device | |
JPS6086808A (en) | Protective device for superconducting device | |
US3280337A (en) | Cryogenic output translation device utilizing heating effects and different criticalcurrents | |
JPS60233808A (en) | Superconductive equipment | |
JPS60169110A (en) | Superconductive equipment | |
JPS60220912A (en) | Superconductive electromagnet | |
Biswas et al. | An autoprotecting gate drive circuit for GTO thyristors | |
JPS61265805A (en) | Superconducting apparatus | |
JPS62112109U (en) | ||
JPS62166588A (en) | Semiconductor laser | |
JPS61173625A (en) | Protector for superconductive magnet | |
JPH0466087B2 (en) | ||
JP2679020B2 (en) | Superconducting device and thermal permanent current switch | |
JPH031639U (en) | ||
JPH01198219A (en) | Protective device for motor | |
JPS58194310A (en) | Superconductive magnet protecting circuit | |
JP2520526Y2 (en) | Solenoid drive circuit | |
JPS58202509A (en) | Protecting circuit for superconductive magnet | |
SU828412A1 (en) | Magnetic transistorized switch | |
JPH0213966B2 (en) |