JPH0469131B2 - - Google Patents

Info

Publication number
JPH0469131B2
JPH0469131B2 JP58083810A JP8381083A JPH0469131B2 JP H0469131 B2 JPH0469131 B2 JP H0469131B2 JP 58083810 A JP58083810 A JP 58083810A JP 8381083 A JP8381083 A JP 8381083A JP H0469131 B2 JPH0469131 B2 JP H0469131B2
Authority
JP
Japan
Prior art keywords
nitric acid
acid
concentration
reaction
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58083810A
Other languages
Japanese (ja)
Other versions
JPS59210028A (en
Inventor
Mamoru Endo
Hiroaki Kaminakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP8381083A priority Critical patent/JPS59210028A/en
Publication of JPS59210028A publication Critical patent/JPS59210028A/en
Publication of JPH0469131B2 publication Critical patent/JPH0469131B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は有機化合物の酸化方法に関するもの
であり、アルデヒド・カルボン酸など含酸素有機
化合物の製造に用いることができる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for oxidizing organic compounds, and can be used for producing oxygen-containing organic compounds such as aldehydes and carboxylic acids.

(従来技術) 有機化学の分野における酸化方法のひとつとし
て、硝酸酸化法が古くから知られている。
(Prior Art) Nitric acid oxidation method has been known for a long time as one of the oxidation methods in the field of organic chemistry.

例えば西ドイツ特許932369号によるとグリオキ
ザールを30〜50%(重量%以下同じ)硝酸で酸化
することで高濃度のグリオキシル酸水溶液が得ら
れる。硝酸酸化は活性アルキル化合物や、炭素炭
素二重結合化合物の酸化にも用いられる。活性ア
ルキル化合物の例としては、アルキルカルボニル
化合物(アルデヒド・ケトン)、芳香族側鎖アル
キル化合物が挙げられる。これらの化合物ではカ
ルボニル基や芳香核に隣るα炭素原子上の炭素水
素結合が切断され炭素酸素結合を形成したアルデ
ヒドやカルボン酸を生ずる。アセトアルデヒドか
らグリオキザールへの酸化、プソイドクメンから
トリメリツト酸への酸化などがその例である。ま
た炭素炭素二重結合化合物の硝酸酸化の例として
は、テトラヒドロフタル酸無水物の酸化が挙げら
れ、炭素炭素結合が切断され、炭素酸素結合が形
成されたブタンテトラカルボン酸を生ずる。
For example, according to West German Patent No. 932369, a highly concentrated glyoxylic acid aqueous solution can be obtained by oxidizing glyoxal with 30 to 50% (the same percentage by weight) nitric acid. Nitric acid oxidation is also used to oxidize activated alkyl compounds and carbon-carbon double bond compounds. Examples of active alkyl compounds include alkyl carbonyl compounds (aldehydes and ketones) and aromatic side chain alkyl compounds. In these compounds, the carbon-hydrogen bond on the α carbon atom adjacent to the carbonyl group or aromatic nucleus is broken, producing aldehydes and carboxylic acids with carbon-oxygen bonds formed. Examples include the oxidation of acetaldehyde to glyoxal and the oxidation of pseudocumene to trimellitic acid. Also, an example of nitric acid oxidation of a carbon-carbon double bond compound is the oxidation of tetrahydrophthalic anhydride, which breaks a carbon-carbon bond and yields butanetetracarboxylic acid in which a carbon-oxygen bond is formed.

これらの硝酸酸化反応において用いられる硝酸
濃度はいろいろである。例えば小方芳郎著、有機
化合物の酸化と還元(南江堂)P.436〜452に示さ
れている多数の例からひろうと、低いもので5〜
15%、高いものでは90%に上る。しかし硝酸濃度
1%以下というようなきわめて低い濃度で満足す
べき速度で酸化のおこなわれる例は知られていな
いようであり、また反応を順調に進行させるため
にしばしば過剰性の硝酸が用いられる。
The nitric acid concentration used in these nitric acid oxidation reactions varies. For example, from the many examples shown in Yoshiro Ogata, Oxidation and Reduction of Organic Compounds (Nankodo), pp. 436-452, the lowest is 5 to 5.
15%, and as high as 90%. However, there seems to be no known example of oxidation occurring at a satisfactory rate at extremely low concentrations of nitric acid, such as 1% or less, and an excess of nitric acid is often used to make the reaction proceed smoothly.

硝酸は滴下などの逐次添加法で用いられること
も多いが、反応液中には5%前後又はそれ以上の
濃度で硝酸が存在するのが普通である。例えば特
開昭51−29441号公報に5〜7%などの記載があ
る。
Nitric acid is often used by a sequential addition method such as dropwise addition, but nitric acid is usually present in the reaction solution at a concentration of around 5% or more. For example, Japanese Patent Application Laid-Open No. 51-29441 describes 5 to 7%.

このように著量の硝酸を含む混合物が得られた
場合精製処理を必要とするが、蒸留法や晶析法の
適用しにくいものについてはイオン交換樹脂処
理、電気透析などコストの高い特別の精製法を用
いなければならなかつた。精製工程は更に目的物
の一部及び残留硝酸のロスをもたらしていた。
If a mixture containing a significant amount of nitric acid is obtained, purification treatment is required, but if it is difficult to apply distillation or crystallization methods, expensive special purification methods such as ion exchange resin treatment or electrodialysis may be necessary. The law had to be used. The purification process also resulted in the loss of some of the target product and residual nitric acid.

グリオキザール水溶液の硝酸酸化に際して硫
酸、塩酸、リン酸及び硝酸アルミニウムからなる
群より選ばれた化合物を存在させて反応を促進さ
せる方法が知られている(特開昭48−103517号公
報)。これらの物質はグリオキザールに対して通
常0.02〜0.2モルの使用で未反応グリオキザール
を減少させると同時にグリオキシル酸収率を高め
る。しかし、反応液中の硝酸濃度は滴下終了後80
℃1時間の熟成を経た後でも約3%あり、硝酸の
滴下反応中に5%前後又はそれ以上の濃度である
点については従来の硝酸酸化と特に異なるもので
はなかつた。
A method is known in which a compound selected from the group consisting of sulfuric acid, hydrochloric acid, phosphoric acid, and aluminum nitrate is present to accelerate the reaction during nitric acid oxidation of an aqueous glyoxal solution (Japanese Patent Laid-Open Publication No. 103517/1983). These substances are usually used in an amount of 0.02 to 0.2 mol relative to glyoxal to reduce unreacted glyoxal and at the same time increase the yield of glyoxylic acid. However, the nitric acid concentration in the reaction solution was 80% after the dropwise addition.
Even after aging for 1 hour at °C, the concentration was about 3%, which was not particularly different from conventional nitric acid oxidation in that the concentration was around 5% or more during the nitric acid dropwise addition reaction.

濃硝酸1容と濃塩酸3容とを混合してなる酸化
剤組成物は、王水の名で古くから知られており、 HNO3+3HClCl2+NOCl+2H2O のように発生期の塩素や塩化ニトロシルを含むの
で強力な酸化溶解性がある。また王水を水で倍に
うすめた希王水や、組成を逆転した硝酸3:塩酸
1の逆王水も知られているが、普通の王水も含め
て金属や鉱石など無機化学の分野の酸化溶解剤と
しての利用にとどまつていた。
The oxidizing agent composition made by mixing 1 volume of concentrated nitric acid and 3 volumes of concentrated hydrochloric acid has long been known as aqua regia, and contains nascent chlorine and nitrosyl chloride, such as HNO 3 +3HClCl 2 +NOCl+2H 2 O. It has strong oxidation solubility. In addition, dilute aqua regia, which is diluted aqua regia twice with water, and inverse aqua regia, which has a reversed composition of 3 parts nitric acid and 1 part hydrochloric acid, are also known. Its use was limited to its use as an oxidizing solubilizer.

このように硝酸と塩酸とを含む公知の水性酸化
剤組成物は、いずれもかなり高い濃度の硝酸を含
むものであり、また活性アルキル化合物や二重結
合化合物から含酸素有機化合物を製造する反応に
用いられたものでもなかつた。従つて硝酸塩酸混
合物を用い残存硝酸がきわめて低濃度の反応混合
物を直接に得る酸化方法は知られていない。
As described above, all of the known aqueous oxidizing agent compositions containing nitric acid and hydrochloric acid contain nitric acid at a fairly high concentration, and are not suitable for reactions that produce oxygen-containing organic compounds from active alkyl compounds or double bond compounds. It wasn't even used. Therefore, there is no known oxidation method that uses a nitrate acid mixture to directly obtain a reaction mixture with an extremely low concentration of residual nitric acid.

(発明の目的) 本発明は、公知の硝酸酸化法で必要とされた数
%又はそれ以上に比べてきわめて低い1%以下、
例えば0.1%前後又はそれ以下の硝酸濃度におい
て、満足すべき反応速度で有機基質を酸化、含酸
素有機化合物を得る方法である。この方法は反応
混合物からの硝酸の除去工程を不要にし、また硝
酸ロスをなくす利点がある。
(Object of the invention) The present invention provides nitric acid oxidation of 1% or less, which is extremely low compared to the several % or more required in the known nitric acid oxidation method.
For example, at a nitric acid concentration of around 0.1% or less, an organic substrate is oxidized at a satisfactory reaction rate to obtain an oxygen-containing organic compound. This method has the advantage of eliminating the step of removing nitric acid from the reaction mixture and eliminating nitric acid loss.

(発明の構成) 本発明者は硝酸を酸化源とはするが、それを直
接に有機基質と反応させるのではなく、硝酸濃度
1%以下になるように硝酸又は非酸化性強酸水溶
液中に逐次添加して系内に形成される水性酸化剤
組成物の形で有機基質を酸化することにより、系
内の硝酸濃度をきわめて低濃度に保つたまま、し
かも満足すべき速度で酸化生成物が得られること
を見出した。
(Structure of the Invention) The present inventor uses nitric acid as an oxidation source, but rather than reacting it directly with an organic substrate, it is sequentially added to nitric acid or a non-oxidizing strong acid aqueous solution so that the nitric acid concentration is 1% or less. By oxidizing the organic substrate in the form of an aqueous oxidant composition added and formed in the system, oxidation products are obtained at a satisfactory rate while keeping the nitric acid concentration in the system very low. I found out that it can be done.

(硫酸および非酸化性強酸) 非酸化性強酸としては塩酸が代表的なものであ
るが、臭化水素酸、トルエンスルホン酸のごと
く、水溶液中でほぼ完全に解離している強酸
(pKa<O)であつて、過塩素酸のような酸化性
のものでない酸は同じように使用できる。また、
硫酸、例えば希硫酸も同様に使用できる。以下、
特に断わりがない限り、非酸化性強酸および硫酸
を含めて、単に「非酸化性強酸」という。
(Sulfuric acid and non-oxidizing strong acids) Hydrochloric acid is a typical non-oxidizing strong acid, but strong acids such as hydrobromic acid and toluenesulfonic acid that are almost completely dissociated in aqueous solution (pKa<O ) and non-oxidizing acids such as perchloric acid can be used in the same manner. Also,
Sulfuric acid, such as dilute sulfuric acid, can be used as well. below,
Unless otherwise specified, non-oxidizing strong acids and sulfuric acid are included and simply referred to as "non-oxidizing strong acids."

酸の種類や濃度のちがいがあるので、いちがい
に王水と同様とは言えないが、非酸化性強酸、
水、硝酸の3つを出発物とする酸化剤組成物中で
化学反応により硝酸自身より強力な酸化種ができ
ているものと思われる。このような観点から非酸
化性強酸濃度は上記酸化剤組成物1Kg中のモル数
で表わす。逐次添加する硝酸中の水分により希釈
されてこの濃度は下つてゆくが、反応のはじめに
は1モル/Kg以上、終了時でも0.5モル/Kg以上
維持することが好ましい。この限界濃度は反応液
中の硝酸濃度をチエツクすることにより実験的に
きめることができる。
Because there are differences in the type and concentration of acids, it cannot be said that they are exactly the same as aqua regia, but they are non-oxidizing strong acids,
It is thought that an oxidizing species stronger than nitric acid itself is produced by a chemical reaction in an oxidizing agent composition containing water and nitric acid as starting materials. From this point of view, the concentration of non-oxidizing strong acid is expressed in terms of the number of moles per 1 kg of the oxidizing agent composition. Although this concentration decreases as it is diluted by the water in the nitric acid that is successively added, it is preferable to maintain it at 1 mol/Kg or more at the beginning of the reaction and at 0.5 mol/Kg or more at the end of the reaction. This critical concentration can be determined experimentally by checking the nitric acid concentration in the reaction solution.

他方、不必要に高濃度にすることはなく、硫酸
の場合、高濃度にすぎると酸化性になり、濃硫
酸、硝酸混酸はニトロ化剤であるというように別
のはたらきをもつ。塩酸の場合、通常供給される
濃度は10モル/Kg以下であり、この点も実用上の
上限になる。結局好ましい初濃度は1〜5モル/
Kg程度である。この値は滴下され系内に現存して
いる硝酸濃度(1%:0.16%以下)に比べて6倍
以上にあたる。
On the other hand, the concentration should not be made unnecessarily high; in the case of sulfuric acid, if the concentration is too high, it becomes oxidizing, and a mixed acid of concentrated sulfuric acid and nitric acid has other functions, such as being a nitrating agent. In the case of hydrochloric acid, the concentration usually supplied is 10 mol/Kg or less, which is also a practical upper limit. After all, the preferred initial concentration is 1 to 5 mol/
It is about kg. This value is more than 6 times the concentration of nitric acid that was dropped and currently exists in the system (1%: 0.16% or less).

非酸化性強酸の中でも、塩酸は、有機塩素化反
応の副生物として大量に余剰が出るなど入手が容
易であり、あまり高濃度でなくても有効であり、
反応選択率向上や、所望により除去する場合の蒸
発法が可能である点など最も好ましいものであ
る。
Among non-oxidizing strong acids, hydrochloric acid is easily available as a large surplus as a by-product of organic chlorination reactions, and it is effective even at low concentrations.
This is the most preferable method because it improves the reaction selectivity and allows removal if desired by evaporation.

酢酸のような弱酸はもとより、リン酸のような
中程度の強さの酸も反応液中の硝酸濃度を低下さ
せる本発明の作用はない。
Not only weak acids such as acetic acid but also moderately strong acids such as phosphoric acid do not have the effect of the present invention of reducing the nitric acid concentration in the reaction solution.

(硝酸の逐次添加) 低い硝酸濃度で反応を進めるという本発明の目
的からして、王水のような高濃度の硝酸を含む組
成物自体をそのままの形で用いるわけにはゆかな
い。硝酸濃度をできるだけ低くおさえ、塩酸や硫
酸の濃度を有効に使うために、基質と、塩酸や硫
酸とを含む水溶液中に硝酸を滴下する。もちろん
滴下以外の形で逐次添加してもよい。
(Sequential Addition of Nitric Acid) Considering the purpose of the present invention to proceed with the reaction at a low nitric acid concentration, a composition containing a high concentration of nitric acid such as aqua regia cannot be used as it is. In order to keep the nitric acid concentration as low as possible and effectively use the concentration of hydrochloric acid or sulfuric acid, nitric acid is dropped into an aqueous solution containing the substrate and hydrochloric acid or sulfuric acid. Of course, it may be added sequentially in a form other than dropwise addition.

これにより基質に対して当量的にはごく少い酸
化剤組成物で反応をはじめ、消費された酸化剤は
逐次添加された硝酸と系内に多量に存在する非酸
化性強酸とから再生する。相対的に多量に存在す
る非酸化性強酸は、硝酸を直ちに前記酸化剤組成
物に変え、基質を速やかに酸化するので系内硝酸
濃度を1%以下に保つことは容易である。従来技
術と同様の高濃度、例えば40〜50%の硝酸を滴下
しても反応液中の硝酸濃度は0.1%以下のことが
多い。
As a result, the reaction begins with a very small amount of the oxidizing agent composition equivalent to the substrate, and the consumed oxidizing agent is regenerated from the nitric acid that is successively added and the non-oxidizing strong acid that is present in large amounts in the system. Since the non-oxidizing strong acid present in a relatively large amount immediately converts nitric acid into the oxidizing agent composition and quickly oxidizes the substrate, it is easy to maintain the nitric acid concentration in the system at 1% or less. Even if high concentration nitric acid, for example 40 to 50%, is dropped as in the prior art, the nitric acid concentration in the reaction solution is often 0.1% or less.

(有機基質) 上記酸化法はまず含酸素有機化合物をより高次
の酸化階段の含酸素有機化合物に酸化する反応に
ついて見出された。この種の反応として、カルボ
ニル化合物からカルボン酸、アルコールからカル
ボニル化合物を得る反応が挙げられる。ベンゾイ
ンからビベンゾイルなど従来の硝酸酸化法が適用
できた反応と同種の基質について適用できる。ま
た活性アルキル化合物の酸化に用いることもでき
る。アルデヒドやケトンの如きアルキルカルボニ
ル化合物を酸化するとアルキル基はカルボニルの
隣(α−位)で酸化される。アセトアルデヒドか
らグリオキザールの生成はその例である。芳香族
側鎖のアルキル基も活性なα−位で酸化されるこ
と同様であり芳香族アルデヒドや芳香族カルボン
酸を生ずる。キシレン類、プソイドクメン、デユ
レン、ビス(3,4−ジメチルフエニル)エタン
などのメチル基を酸化することができる。p−ニ
トロトルエンの如きニトロ基をもつ芳香核の側鎖
アルキル基は前記のものに比べて酸化しにくい。
(Organic Substrate) The above oxidation method was first discovered regarding the reaction of oxidizing an oxygen-containing organic compound to a higher-order oxygen-containing organic compound. Examples of this type of reaction include reactions in which a carboxylic acid is obtained from a carbonyl compound and a carbonyl compound is obtained from an alcohol. It can be applied to the same types of substrates as those to which the conventional nitric acid oxidation method can be applied, such as from benzoin to bibenzoyl. It can also be used to oxidize active alkyl compounds. When alkylcarbonyl compounds such as aldehydes and ketones are oxidized, the alkyl group is oxidized next to the carbonyl (α-position). The production of glyoxal from acetaldehyde is an example. Similarly, the alkyl group of the aromatic side chain is oxidized at the active α-position, producing an aromatic aldehyde or an aromatic carboxylic acid. Methyl groups of xylenes, pseudocumene, duurene, bis(3,4-dimethylphenyl)ethane, etc. can be oxidized. The side chain alkyl group of an aromatic nucleus having a nitro group, such as p-nitrotoluene, is more difficult to oxidize than the above-mentioned ones.

炭素炭素二重結合をもつ化合物の酸化も本発明
の方法で実施できる。テトラヒドロフタル酸無水
物からはブタンテトラカルボン酸が得られる。そ
の他、シクロヘキセン、キノリンなどがこの種の
基質の例として挙げられる。
Oxidation of compounds with carbon-carbon double bonds can also be carried out by the method of the invention. Butanetetracarboxylic acid is obtained from tetrahydrophthalic anhydride. Other examples of this type of substrate include cyclohexene and quinoline.

(硝 酸) 硝酸は従来の硝酸酸化法におけるそれと同じよ
うな品質、濃度、添加法を用いることができる。
例えば45%前後の工業用硝酸を反応液中に滴下し
反応させる。硝酸の酸化能力は非酸化性強酸水溶
液との作用で得られる水性酸化剤組成物に移り、
有機基質は速やかに酸化される。消費された硝酸
に対応する酸化窒素は反応器の気相部に、出てく
る。オフガス中の酸化窒素は空気酸化、水吸収塔
を通すなど公知の方法で硝酸として回収できる。
(Nitric acid) Nitric acid can be used in the same quality, concentration, and addition method as in the conventional nitric acid oxidation method.
For example, about 45% industrial nitric acid is dropped into the reaction solution and reacted. The oxidizing ability of nitric acid is transferred to the aqueous oxidizer composition obtained by the action with a non-oxidizing strong acid aqueous solution,
Organic substrates are rapidly oxidized. Nitric oxide corresponding to the consumed nitric acid exits into the gas phase of the reactor. Nitrogen oxide in the off-gas can be recovered as nitric acid using known methods such as air oxidation or passing through a water absorption tower.

(反応条件) 反応温度は基質や目的物に応じ適宜選択でき
る。一般的には0〜100℃の範囲から、ガスの発
生や発熱で知られる反応の進行を確認しながら温
度をほぼ一定に保ちつつ硝酸を滴下する。下記の
記述は詳細な検討をおこなつたグリオキザールか
らグリオキシル酸への実験データにもとづいてい
るが、他の基質の場合にもほぼあてはまる。即ち
滴下の末期には反応液中の硝酸濃度が0.5%とい
うように多少上るが1%を超えることはない。硝
酸濃度は滴下終了後更に下つてゆき1時間もたて
ば通常0.005〜0.03%迄下り、特に精製を必要と
せずに残存硝酸濃度0.1%以下のグリオキシル酸
溶液が得られる。従来の硝酸酸化の場合は0.1モ
ル程度の硫酸や塩酸を添加して反応を促進した場
合でも40℃前後における硝酸滴下だけではグリオ
キザールの変化率自体が向上し難く、滴下終了後
80℃程度に昇温して熟成することが行なわれてい
たが、本発明の場合は特に昇温して熟成する必要
はない。
(Reaction conditions) The reaction temperature can be appropriately selected depending on the substrate and target product. Generally, nitric acid is added dropwise from a temperature range of 0 to 100°C while keeping the temperature almost constant while checking the progress of the reaction, which is known for gas generation and heat generation. The following description is based on detailed experimental data from glyoxal to glyoxylic acid, but is generally applicable to other substrates as well. That is, at the end of the dropping, the nitric acid concentration in the reaction solution rises to 0.5%, but never exceeds 1%. The nitric acid concentration further decreases after the completion of the dropwise addition, usually reaching 0.005 to 0.03% after one hour, and a glyoxylic acid solution with a residual nitric acid concentration of 0.1% or less can be obtained without any particular purification. In the case of conventional nitric acid oxidation, even if about 0.1 mol of sulfuric acid or hydrochloric acid is added to accelerate the reaction, it is difficult to improve the rate of change of glyoxal by just adding nitric acid dropwise at around 40℃, and after the completion of dropping
Ripening was carried out by raising the temperature to about 80°C, but in the case of the present invention, there is no particular need to ripen by raising the temperature.

反応には亜硝酸ナトリウムの如き公知の開始剤
を用いることもできる。また、アルミナ、バナジ
ン酸アンモニウム、銅粉末などを加えて反応させ
ることもできる。
Known initiators such as sodium nitrite can also be used in the reaction. Further, alumina, ammonium vanadate, copper powder, etc. can be added and reacted.

(発明の作用・効果) 多量の非酸化性強酸を含む水溶液中に硝酸を滴
下すると強力な酸化剤組成物が形成され、従来の
硝酸酸化法では酸化が進行しなかつたような低硝
酸濃度(1%以下)を保つたまま含酸素有機化合
物への酸化が進行する。これにより残存硝酸をほ
とんど含まない目的物の水溶液が容易に得られ
る。これにより従来必要とされていた残存硝酸除
去の工程を省いて直接有機合成反応に供すること
ができるようになつた。又、用途により強酸を含
まない目的物を必要とする場合は、例えば塩酸の
蒸発などの処理を行なえばよい。
(Operations and Effects of the Invention) When nitric acid is dropped into an aqueous solution containing a large amount of non-oxidizing strong acid, a strong oxidizing agent composition is formed, and the nitric acid concentration is so low that oxidation does not proceed in the conventional nitric acid oxidation method ( 1% or less), oxidation to oxygen-containing organic compounds progresses. As a result, an aqueous solution of the target product containing almost no residual nitric acid can be easily obtained. This has made it possible to omit the step of removing residual nitric acid, which was conventionally required, and to directly use it for organic synthesis reactions. Furthermore, if a target product that does not contain strong acids is required depending on the intended use, treatment such as evaporation of hydrochloric acid may be performed.

酸化剤として硝酸は大部分オフガス中の酸化窒
素から回収可能であるので、工業的には回収不能
でロスとなる硝酸は反応液中の残存硝酸にもとづ
くものが多かつた。本発明は、この残存硝酸を激
減させるので副原料節減の効果も大きい。また、
従来の硝酸酸化法においてしばしばみられた硝酸
の蓄積が起きないため反応が暴走するとか、一時
にNOxを含む排ガスを多量に出すことが無いた
め運転管理あるいは環境保全の立場から見ても非
常に有利である。
Since nitric acid as an oxidizing agent can be mostly recovered from nitrogen oxide in the off-gas, most of the nitric acid that cannot be recovered industrially and is lost is based on residual nitric acid in the reaction solution. Since the present invention drastically reduces this residual nitric acid, the effect of saving auxiliary raw materials is also large. Also,
Since the accumulation of nitric acid that often occurs in conventional nitric acid oxidation methods does not occur, the reaction does not run out of control, and large amounts of exhaust gas containing NOx are not emitted at once, making this method very effective from the standpoint of operation management and environmental conservation. It's advantageous.

(実施例) 実施例 1 水59.3g、硫酸30g(水溶液中の濃度3.4モ
ル/Kg)とテトラヒドロフタル酸無水物45.6g、
銅粉末0.7g、バナジン酸アンモニウム0.3gと共
に仕込み、加熱したところ70〜80℃で均一になつ
た。68%硝酸を滴下し、90〜100℃で反応を続け
た。反応終了時までの滴下量60g中の水を加える
と終了時の水性酸化剤組成物中の硫酸濃度は2.8
モル/Kgであつた。反応混合物から析出した結晶
(4.8g)はブタンテトラカルボン酸であつた。濾
液をメチルエステル化して分析したところブタン
テトラカルボン酸がエステルの形で濾液中にも見
出された。
(Example) Example 1 59.3 g of water, 30 g of sulfuric acid (concentration in aqueous solution 3.4 mol/Kg), 45.6 g of tetrahydrophthalic anhydride,
When the mixture was charged with 0.7 g of copper powder and 0.3 g of ammonium vanadate and heated, it became uniform at 70 to 80°C. 68% nitric acid was added dropwise and the reaction continued at 90-100°C. When water is added to the amount of 60 g dropped until the end of the reaction, the sulfuric acid concentration in the aqueous oxidizer composition at the end of the reaction is 2.8.
It was mol/Kg. The crystals (4.8 g) precipitated from the reaction mixture were butanetetracarboxylic acid. When the filtrate was methyl esterified and analyzed, butanetetracarboxylic acid was also found in the filtrate in the form of an ester.

実施例 2 35.5%塩酸149g、10%亜硝酸ソーダ水溶液8
g(HCl9.3モル/Kg)をアセトアルデヒド335g
と混合し、44%硝酸288gを40〜42℃で、1.5時間
かけて滴下した。反応液中の硝酸濃度は0.25%以
下であり、アセトアルデヒドの約55%が反応し
た。35.5%塩酸の代りに5.15%塩酸149g用い、
10%亜硝酸ソーダ水溶液を加え(HCl1.34モル/
Kg)、355gのアセトアルデヒドと共に40℃に加熱
しアルミナ5gを加え、44%硝酸288gを滴下し
(40℃、1.5時間)反応させた。反応液及びトラツ
プ中に残つていたアセトアルデヒドとパラアルデ
ヒドをさしひくと変化率は約31%であり、反応液
中に得られたグリオキザールは65.9gであつた。
反応液(696.1g)中にはこの他ギ酸(3.0%)、
酢酸(4.4%)、グリオキシル酸などその他の酸分
(11.1%)が分析された。
Example 2 35.5% hydrochloric acid 149g, 10% sodium nitrite aqueous solution 8
g (HCl9.3mol/Kg) to 335g of acetaldehyde
288 g of 44% nitric acid was added dropwise at 40 to 42°C over 1.5 hours. The nitric acid concentration in the reaction solution was 0.25% or less, and about 55% of the acetaldehyde reacted. Using 149g of 5.15% hydrochloric acid instead of 35.5% hydrochloric acid,
Add 10% sodium nitrite aqueous solution (HCl 1.34 mol/
Kg), heated to 40°C with 355g of acetaldehyde, 5g of alumina was added, and 288g of 44% nitric acid was added dropwise (40°C, 1.5 hours) to react. Subtracting the acetaldehyde and paraaldehyde remaining in the reaction solution and trap, the conversion rate was about 31%, and 65.9 g of glyoxal was obtained in the reaction solution.
The reaction solution (696.1g) also contained formic acid (3.0%),
Other acids such as acetic acid (4.4%) and glyoxylic acid (11.1%) were analyzed.

実施例 3 18.2%硫酸139g、3%硫酸10g、10%亜硝酸
ソーダ10g(H2SO4、1.6モル/Kg)を用い、ア
セトアルデヒド355g、アルミナ10gと共に混合
し、44%硝酸288gを40℃で滴下した。反応液
(717.2g)中にはアセトアルデヒド(26.62%)
とパラアルデヒド(4.96%)が残つているが、反
応生成物としてグリオキザール(9.37%)67.2g
が得られた。この他ギ酸(2.27%)、酢酸(4.26
%)、グリオキシル酸などの酸分(12.64%)が分
析された。
Example 3 139 g of 18.2% sulfuric acid, 10 g of 3% sulfuric acid, and 10 g of 10% sodium nitrite (H 2 SO 4 , 1.6 mol/Kg) were mixed with 355 g of acetaldehyde and 10 g of alumina, and 288 g of 44% nitric acid was added at 40°C. dripped. Acetaldehyde (26.62%) in the reaction solution (717.2g)
and para-aldehyde (4.96%) remain, but 67.2 g of glyoxal (9.37%) remains as a reaction product.
was gotten. In addition, formic acid (2.27%), acetic acid (4.26%),
%) and acids such as glyoxylic acid (12.64%).

参考例 1 濃塩酸(HCl9.7モル/Kg)300g中にデユレン
40.3gを加え、68%硝酸167gを滴下した。反応
温度70〜95℃でガスの発生、原料の消失などから
酸化反応の進行が認められた。原料としてビス
(3,4−ジメチルフエニル)エタンを用いた場
合も同様に活性メチル基の酸化がみられた。
Reference example 1 Duurene in 300g of concentrated hydrochloric acid (HCl9.7mol/Kg)
40.3 g was added, and 167 g of 68% nitric acid was added dropwise. Progress of the oxidation reaction was observed at a reaction temperature of 70 to 95°C, as gas was generated and raw materials disappeared. Oxidation of active methyl groups was similarly observed when bis(3,4-dimethylphenyl)ethane was used as a raw material.

参考例 2 シクロヘキセンと塩酸(濃度15.3%)の不均一
相混合物中に40℃で45%硝酸を滴下したところ酸
化反応が進み、酸素と塩素の導入された生成物が
得られた。
Reference Example 2 When 45% nitric acid was dropped at 40°C into a heterogeneous phase mixture of cyclohexene and hydrochloric acid (concentration 15.3%), an oxidation reaction proceeded and a product containing oxygen and chlorine was obtained.

Claims (1)

【特許請求の範囲】 1 硫酸またはpKa<0の非酸化性強酸の水溶液
中に硝酸濃度1%以下に保つように硝酸を逐次添
加し、系内に形成される水性酸化剤組成物により
有機基質(但し、グリオキザールを除く)を酸化
し、含酸素有機化合物を得ることを特徴とする酸
化方法。 2 有機基質が活性アルキル化合物又は炭素炭素
二重結合を有する化合物である特許請求の範囲第
1項記載の酸化方法。 3 硫酸又は非酸化性強酸として塩酸を用いる特
許請求の範囲第1項又は第2項記載の酸化方法。
[Claims] 1. Nitric acid is successively added to an aqueous solution of sulfuric acid or a non-oxidizing strong acid with pKa < 0 so as to maintain the nitric acid concentration at 1% or less, and the aqueous oxidizing agent composition formed in the system removes organic substrates. (excluding glyoxal) to obtain an oxygen-containing organic compound. 2. The oxidation method according to claim 1, wherein the organic substrate is an active alkyl compound or a compound having a carbon-carbon double bond. 3. The oxidation method according to claim 1 or 2, in which hydrochloric acid is used as the sulfuric acid or the non-oxidizing strong acid.
JP8381083A 1983-05-13 1983-05-13 Method for oxidation Granted JPS59210028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8381083A JPS59210028A (en) 1983-05-13 1983-05-13 Method for oxidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8381083A JPS59210028A (en) 1983-05-13 1983-05-13 Method for oxidation

Publications (2)

Publication Number Publication Date
JPS59210028A JPS59210028A (en) 1984-11-28
JPH0469131B2 true JPH0469131B2 (en) 1992-11-05

Family

ID=13813020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8381083A Granted JPS59210028A (en) 1983-05-13 1983-05-13 Method for oxidation

Country Status (1)

Country Link
JP (1) JPS59210028A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2654428B1 (en) * 1989-11-16 1992-03-06 Hoechst France NEW PROCESS FOR THE CONTINUOUS INDUSTRIAL MANUFACTURE OF AN AQUEOUS GLYOXYLIC ACID SOLUTION.

Also Published As

Publication number Publication date
JPS59210028A (en) 1984-11-28

Similar Documents

Publication Publication Date Title
EP0657408B1 (en) Fluorination in the vapour phase using crystallized catalysts
US8754255B2 (en) Process of preparation of glyoxylic acid aqueous solution
JPH0469131B2 (en)
EP0065447A1 (en) Fluor-containing silica catalysts; their preparation, and their use in the preparation of nitriles
KR100498527B1 (en) Process for producing methacrolein and methacrylic acid
JPH04330047A (en) Method for synthesizing azine compound
JPS6144852B2 (en)
JPH02222726A (en) Method for regenerating catalyst for oxidation dehydrogenation of isobutyric acid
KR0161527B1 (en) Process for a continuous industrial preparation of an aqueous solution of glyoxylic acid
EP0779883B1 (en) Method for preparing a substituted 4-hydroxybenzaldehyde
JP3297198B2 (en) Nitrophenol production method
JPH06145124A (en) Production of alpha-hydroxyisobutyric acid amide
JP2000290235A (en) Production of 3-nitro-2-methylbenzoic acid
JP2000191582A (en) Production of methacrylic acid
JPS61500617A (en) Nitration of phthalic acid and phthalic anhydride using nitric acid
JP4352191B2 (en) Production of pyromellitic acid
JPH0745430B2 (en) Method for producing 2,2-bis (hydroxymethyl) alkanoic acid
JPH0475903B2 (en)
JPH07258174A (en) Production of 2-nitrobenzaldehydes
US4447662A (en) Beta-dicarbonyl compounds for the promotion of aromatic nitration by nitrogen tetroxide
WO2004062798A1 (en) Method for preserving catalyst
JP2928397B2 (en) Method for producing unsaturated carboxylic acid
FR2803285A1 (en) Reducing nitrates to nitrogen or ammonia in acidic effluents, by hydrogenation over metal catalyst, with preliminary neutralization to prevent formation of hydroxylamine
BE620549A (en)
JPS58120507A (en) Continuous manufacture of hydrazine