JPS58120507A - Continuous manufacture of hydrazine - Google Patents

Continuous manufacture of hydrazine

Info

Publication number
JPS58120507A
JPS58120507A JP331382A JP331382A JPS58120507A JP S58120507 A JPS58120507 A JP S58120507A JP 331382 A JP331382 A JP 331382A JP 331382 A JP331382 A JP 331382A JP S58120507 A JPS58120507 A JP S58120507A
Authority
JP
Japan
Prior art keywords
methyl ethyl
ethyl ketone
azine
solvent
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP331382A
Other languages
Japanese (ja)
Inventor
Kazuhiko Hiromoto
広本 和彦
Nobuyuki Nagato
伸幸 永戸
Ryoji Ishioka
領治 石岡
Tatsu Terao
寺尾 達
Yuichi Kikuhara
菊原 勇一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP331382A priority Critical patent/JPS58120507A/en
Publication of JPS58120507A publication Critical patent/JPS58120507A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture hydrazine industrially advantageously in a method for synthesizing azine from ketone, NH3 and H2O2, by using methanol as a solvent and by recovering methyl ethyl ketone as a by-product together with a reaction product contg. methanol. CONSTITUTION:In an azine synthesizing stage A, a liq. starting material consisting of methyl ethyl ketone (MEK), NH3, H2O2 and CH3OH is continuously fed 1 to a fixed bed packed with silica gel catalyst, and the material is reacted under heating. The liq. reaction product 2 is fed to a separating and recovering stage B, where unreacted NH3 is recovered, H2O2 is decomposed, and CH3OH is separated by distillation. At this time, a liq. mixture 5 of MEK with water separated in the latter hydrolyzing stage C besides the liq. reaction product 2 is fed to a distilling column for recovering a solvent in the stage B. An azeotropic mixture of MEK with CH3OH is obtd. from the top of the column, circulated 6, and used as it is as part of a starting material and part of a solvent in the stage A.

Description

【発明の詳細な説明】 本発明はメチルエチルケトンとアンモニア及び過酸化水
素を固体触媒と接触反応させてメチルエチルケトンアジ
ンを合成し、次いでこれを加水分解してヒドラジンを製
造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for synthesizing methyl ethyl ketone azine by contacting methyl ethyl ketone, ammonia and hydrogen peroxide with a solid catalyst, and then hydrolyzing the same to produce hydrazine.

ケトンとアンモニア及び過酸化水素を触媒の存在下に反
応させて対応する=4ジンとし、これを加水分解する方
法は公知である。
A method is known in which a ketone, ammonia and hydrogen peroxide are reacted in the presence of a catalyst to form the corresponding =4 zine, which is then hydrolyzed.

2 RCOR’+ 2 NH3+ H,,02RR → ) C= N−N=C<R,+ 4 H20R′ RR R,)C=N−N=C<R,+2Hρ →NH2NH2+ 2 RCOR’ (但し、R及びR′はそれぞれアルキル基又は了り−ル
基を示す。) 上記反応式が示す通シ、この方法に於いては後段のケタ
ジンの加水分解工程にてヒドラジンの生成に伴ってその
2倍モルのケトンガ副生ずる。従って、この副生ケトン
を回収して出発原料として再使用することができれば、
理論的にはアンモニアと過酸化水素を原料としてiドラ
ジンを製造するプロセスが成り立ち、更には、上記2つ
の反応の間を循環再使用されるべきケトンの種類として
、ケトンの中でも最も価格が安く、また低沸点であるた
め蒸留による分離回収のコストの低いアセトンを用いれ
ば、経済的に非常に有利なプロセスとなることが期待さ
れる。
2 RCOR'+ 2 NH3+ H,,02RR → ) C= N-N=C<R, + 4 H20R' RR R,) C=N-N=C<R, +2Hρ →NH2NH2+ 2 RCOR' (However, R and R' each represent an alkyl group or an aryl group.) As shown in the above reaction formula, in this method, in the subsequent hydrolysis step of ketazine, hydrazine is produced and twice the mole of ketazine is generated. Ketonga is a by-product. Therefore, if this by-product ketone can be recovered and reused as a starting material,
Theoretically, the process of producing i-drazine using ammonia and hydrogen peroxide as raw materials is possible, and furthermore, as the type of ketone that should be recycled and reused between the above two reactions, it is the cheapest of the ketones, Moreover, if acetone is used, which has a low boiling point and therefore requires low cost for separation and recovery by distillation, it is expected that the process will be economically very advantageous.

しかし、実際上はこのケトンとアンモニア及び過酸化水
素からアジンを合成する反応は比較的離しい反応であり
、副生物の抑制を含め目的物のアジンを収率良く取得す
るためには、種々の改良、工夫がなされなければならな
い。また、プロセスを工業的に実施するに当り経済的に
有利なものとするためには、単に反応成績を向上するだ
けでは不充分であり、これに加えて更に反応の連続化、
未反応及び副生ずる有用物の活用、これらの分離、回収
コストの転減、運転操作の容易性等もまた重ゝ要な因子
として考慮しなければならない。
However, in reality, the reaction of synthesizing azine from this ketone, ammonia, and hydrogen peroxide is a relatively distant reaction, and in order to obtain the target azine in good yield, including suppressing by-products, various steps must be taken to obtain the desired azine in good yield. Improvements and innovations must be made. In addition, in order to make the process economically advantageous for industrial implementation, it is not enough to simply improve the reaction performance;
Utilization of unreacted and by-product useful substances, separation of these, reduction of recovery costs, ease of operation, etc. must also be considered as important factors.

ケトン、アンモニア、過酸化水素からのアジン合成法と
しては、例えば、二) IJルやアミドを共反応剤とす
る方法(特開昭47−1371.同47−14098、
同49−18815等)、セレンやテルル化合物を触媒
とする方法(特開昭50−50310 )等が知られて
いるが、これらの方法では共反応剤や触媒が反応液中に
溶解した状態で反応が行われるため、反応液からの分離
が面倒であると共に特に、前者の方法では、共反応剤と
してのニトリルやアミドが反応によってそれぞれアミド
、カルボン酸アンモニウム塩へと変化するため、その再
生を考えねばならず、反応生成物からの分離、回収、再
生等複雑な工程を組合わせなければならない費用も含め
、経済的に到底有利な方法とは言い難く。
As a method for synthesizing azine from ketone, ammonia, and hydrogen peroxide, for example, 2) a method using IJ or amide as a co-reactant (JP-A No. 47-1371, No. 47-14098,
49-18815, etc.) and methods using selenium or tellurium compounds as catalysts (Japanese Patent Application Laid-open No. 50-50310). However, in these methods, the co-reactant and catalyst are dissolved in the reaction solution. Since the reaction takes place, separation from the reaction solution is troublesome, and especially in the former method, the nitrile and amide as co-reactants change into amide and carboxylic acid ammonium salt, respectively, so it is difficult to regenerate them. It is difficult to say that it is an economically advantageous method, including the cost of combining complicated steps such as separation from reaction products, recovery, and regeneration.

また、後者の方法に於ける触媒としてのセレン、テルル
は毒性の強い物質であり、安全対策上、その取扱い及び
製造工程からの排水処理等に万全の措置を講じなければ
ならない等工業的製造法として必ずしも適当な方法では
ない。一方、特開昭54−135718に開示されてい
るシリカゲル等の固体触媒を用いれば、移動床、固定床
いずれにしても反応液からの分離は容易であシ、上記問
題点は回避される。ところで、この反応においては原料
ケトンの種類により、得られるアジンの収率に及ぼす影
響が比較的大きく、また、溶媒との組合せによりアジン
合成工程に於ける未反応分や加水分解]°程に於ける副
生分の分離回収のプロセス及びその効率が大きく異なる
ことが認められる。例えば、価格や沸点の点からは一見
してアセトンが有利なように考えられるが、反応性(ア
ジン収率)の点からはメチルエチルケトンの方が高収率
が得られ、また、蒸留分離する場合でも後述の如く数々
の有利な点があることが認められた。一方、溶媒に関し
ては、不使用の場合には原料ケトンが実質的に溶媒的な
役割を果すこととなるが、この場合原料ケトンの縮合に
よる副反応の増加が顕著となり、また、他の原料との供
給比の調整上も問題がある。
In addition, selenium and tellurium as catalysts in the latter method are highly toxic substances, and for safety reasons, thorough measures must be taken to handle them and treat wastewater from the manufacturing process, etc. in industrial manufacturing methods. This is not necessarily an appropriate method. On the other hand, if a solid catalyst such as silica gel disclosed in JP-A-54-135718 is used, separation from the reaction solution is easy regardless of whether it is a moving bed or a fixed bed, and the above-mentioned problems can be avoided. By the way, in this reaction, the type of raw material ketone has a relatively large effect on the yield of the azine obtained, and the combination with the solvent can reduce the amount of unreacted components and hydrolysis in the azine synthesis process. It is recognized that the separation and recovery process of by-products and its efficiency differ greatly. For example, acetone may seem advantageous at first glance from the point of view of price and boiling point, but from the point of view of reactivity (azine yield), methyl ethyl ketone provides a higher yield, and when separated by distillation, However, it was recognized that it had a number of advantages as described below. On the other hand, regarding the solvent, if it is not used, the starting material ketone will essentially play the role of a solvent, but in this case, there will be a noticeable increase in side reactions due to condensation of the starting material ketone, and it will also There are also problems in adjusting the supply ratio.

また、前記の理由から原料ケトンとしてメチルエチルケ
トンを用いたとき溶媒不使用の場合には、アジン合成工
程の未反応分として回収する際、通常の蒸留ではメチル
エチルケトンと水が共沸混合物として留出するため、こ
れをそのままアジン合成工程に循環使用すると反応系に
水が蓄積したり、アジン収率が低下したシする等種々の
不都合を生ずる。しかし、溶媒としてメタノールを用い
た場合、副生物の生成が減少してアジンの収率が向上す
ること、長時間運転による触媒の活性及び目的物への選
択性の低下が僅少であること等反応への好影響に加えて
更には、分離回収の点でもメチルエチルケトンとの組合
せに於いて、反応終了後生成物から溶媒及び未反応原料
を蒸留分離する際、メタノールとメチルエチルケトンが
共沸混合物として水を含まない状態で回収できる利点を
有することが認められた。即ち、アジン合成工程に於け
る反応液中の溶媒、未反応原料、目的生成物、副生成物
(有機物及び水)を蒸留分離する際、メタノールとメチ
ルエチルケトンの組合せに於いては、共沸混合物を形成
し、その沸点がメチルエチルケトンと水の共沸系より常
圧で約10℃も低く、他に近似の沸点を有する共沸系は
存在しないため水を含まない状態で反応液からの分離が
容易となる。
In addition, for the above reasons, when methyl ethyl ketone is used as a raw material ketone and no solvent is used, when recovering it as an unreacted component in the azine synthesis step, methyl ethyl ketone and water will distill out as an azeotrope in normal distillation. If this product is recycled as it is to the azine synthesis step, various problems will occur, such as accumulation of water in the reaction system and a decrease in the azine yield. However, when methanol is used as a solvent, the production of by-products is reduced and the yield of azine is improved, and the catalyst activity and selectivity to the target product are only slightly reduced due to long-term operation. Furthermore, in terms of separation and recovery, in combination with methyl ethyl ketone, when the solvent and unreacted raw materials are distilled off from the product after the completion of the reaction, methanol and methyl ethyl ketone form an azeotrope and release water. It was recognized that it has the advantage of being able to be recovered without containing it. That is, when distilling and separating the solvent, unreacted raw materials, desired products, and by-products (organic substances and water) in the reaction solution in the azine synthesis process, an azeotrope is formed in the combination of methanol and methyl ethyl ketone. The boiling point is approximately 10°C lower at normal pressure than the azeotropic system of methyl ethyl ketone and water, and there is no other azeotropic system with a similar boiling point, so it is easy to separate from the reaction liquid without containing water. becomes.

この分離回収されたメタノール/メチルエチルケトンの
混合物は溶媒及び反応原料としてそのまま反応工程に循
環することができるが、更に有利な  ′プロセスとし
て、後段の加水分解反応工程から分離される。メチルエ
チルケトンと水の共沸混合物を併せて処理することによ
り該工程からのメチルエチルケトンの脱水も可能となシ
実用上極めて経済的なプロセスとなる。
This separated and recovered methanol/methyl ethyl ketone mixture can be recycled as it is to the reaction process as a solvent and a reaction raw material, but in a more advantageous process, it is separated from the subsequent hydrolysis reaction process. By treating the azeotrope of methyl ethyl ketone and water together, it is possible to dehydrate methyl ethyl ketone from the process, making it a very economical process in practice.

本発明者らは上記に説明した如く、反応出発物質、触媒
及び溶媒を最も効果的に選定し、これらを巧みに組合せ
て連続プロセスとすることに成功し、本発明の方法を完
成するに至ったものである。
As explained above, the present inventors have succeeded in selecting the most effective reaction starting materials, catalysts, and solvents and skillfully combining them to create a continuous process, and have completed the method of the present invention. It is something that

即ち、本発明はメタノール溶媒の共存下にメチルエチル
ケトン、アンモニア及び過酸化水素を固体触媒と連続的
に接触反応させてメチルエチルケトンアジンを合成し、
これを加水分解してヒドラジンを取得すると共に未反応
及び副生メチルエチルケトンを回収して循環再使用する
方法に於いて、加水分解工程に於ける副生メチルエチル
ケトンをアジン合成工程に於ける未反応メチルエチルケ
トン及びメタノール溶媒を含む反応混合物と併せて溶媒
回収工程に送り、メタノールとの共沸混合物として蒸留
分離してこれをアジン合成工程に循環することを特徴と
する方法を提供せんとするものである。
That is, the present invention synthesizes methyl ethyl ketone azine by continuously contacting and reacting methyl ethyl ketone, ammonia, and hydrogen peroxide with a solid catalyst in the coexistence of a methanol solvent.
In this method, hydrazine is obtained by hydrolyzing the hydrazine, and unreacted and by-product methyl ethyl ketone is recovered and reused. It is an object of the present invention to provide a method characterized in that it is sent to a solvent recovery step together with a reaction mixture containing a methanol solvent, separated by distillation as an azeotrope with methanol, and recycled to the azine synthesis step.

以下、本発明の方法について添付の図面を基に更に詳細
に説明する。
Hereinafter, the method of the present invention will be explained in more detail with reference to the accompanying drawings.

添付の図面は本発明の方法を概念的に示すブロックダイ
ヤグラムであシ、囚はアジン合成工程、0は未反応原料
、溶媒、生成物等の分離、回収工程、0は加水分解工程
を示し、(1)〜(6)の数字は物質の流れを示す。
The attached drawing is a block diagram conceptually showing the method of the present invention, where 0 indicates the azine synthesis step, 0 indicates the separation and recovery step of unreacted raw materials, solvents, products, etc., and 0 indicates the hydrolysis step. Numbers (1) to (6) indicate the flow of substances.

ア 岬ジン合成工程に於いては、シリカゲル触媒(特開昭5
4−135718)等の固体触媒の固定床又は移動床に
メチルエチルケトン、アンモニア、過酸化水素、メタノ
ールからなる原料液が連続的に供給され(1)加熱下に
反応させる。同、過酸化水素は通常水溶液として用いら
れ、また、安定剤としてアルキレンポリアミンのポリカ
ルボン酸若しくはその塩又はリン酸化合物等が添加され
ることもあるため、原料液には上記の他少量の水及び安
定剤等が含まれる。
In the Amisaki gin synthesis process, silica gel catalyst (Unexamined Japanese Patent Publication No. 5
A raw material liquid consisting of methyl ethyl ketone, ammonia, hydrogen peroxide, and methanol is continuously supplied to a fixed bed or a moving bed of a solid catalyst such as 4-135718) (1) and reacted under heating. Similarly, hydrogen peroxide is usually used as an aqueous solution, and polycarboxylic acids of alkylene polyamines or their salts or phosphoric acid compounds may be added as stabilizers, so the raw material solution contains a small amount of water in addition to the above. and stabilizers.

反応器に供給される原料液の組成、供給速度、反応温度
圧力等の反応条件については、必ずしも厳密な制限はな
いが、反応を効率良〈実施するためには通常は以下の如
き範囲で行うことが好ましい。原料液の組成については
、原料液中の過酸化水素濃度05〜3モル/l、ケトン
及びアンモニアは過酸化水素1モル当りそれぞれ1〜1
0モル更に好ましくは2〜5モルであり、この組成の原
料液を触媒11当D o、11/hr 〜5 l/hr
の速度で供給するのが好ましい。又、反応温度は40〜
120℃、更に好ましくは50〜90℃、反応圧力は、
常圧〜50にダ/ cr/Iである。
There are no strict restrictions on reaction conditions such as the composition of the raw material liquid supplied to the reactor, supply rate, reaction temperature and pressure, but in order to carry out the reaction efficiently, it is usually carried out within the following ranges. It is preferable. Regarding the composition of the raw material liquid, the hydrogen peroxide concentration in the raw material liquid is 05 to 3 mol/l, and the ketone and ammonia are each 1 to 1 mol/l per 1 mol of hydrogen peroxide.
0 mol, more preferably 2 to 5 mol, and the raw material liquid of this composition is used as catalyst 11/hr to 5 l/hr.
It is preferable to feed at a rate of . In addition, the reaction temperature is 40~
120°C, more preferably 50-90°C, reaction pressure:
Normal pressure to 50 da/cr/I.

アジン合成工程からの反応液(2)は分離回収工程にて
未反応のアンモニアの回収、過酸化水素の分解等の処理
を行い、更にメタノール溶媒を蒸留分離する。この場合
、溶媒回収の蒸留塔への供給液としては、反応液(2)
の他、後段の加水分解工程にて分離されるメチルエチル
ケトンと水の混合液(5)も併せて処理される。溶媒回
収塔の頂部からはメタノール及びこれとメチルエチルケ
トンとの共沸混合物が得られ、これはそのままアジン合
成工程の溶媒及び原料の一部として循環(6)使用され
る。
The reaction solution (2) from the azine synthesis step is subjected to treatments such as recovery of unreacted ammonia and decomposition of hydrogen peroxide in a separation and recovery step, and further the methanol solvent is separated by distillation. In this case, the reaction liquid (2) is used as the feed liquid to the distillation column for solvent recovery.
In addition, a mixed solution (5) of methyl ethyl ketone and water separated in the subsequent hydrolysis step is also treated. Methanol and an azeotropic mixture of methanol and methyl ethyl ketone are obtained from the top of the solvent recovery column, and this is recycled (6) and used as it is as part of the solvent and raw material for the azine synthesis step.

溶媒回収塔の底部からはメチルエチルケトンアジン及び
副生物としてのメチルエチルケトオキシム等や水が留出
するので、これより副生物を分離除去し更に必要に応じ
て組成を調整して加水分解原料として(3)加水分解工
程に供給する。メチルエチルケトンア、ジンの加水分解
は比較的容易でろ力、無触媒でも水と共に加熱すること
によシはぼ定量的にヒドラジンとメチルエチルケトンが
生成する。
Methyl ethyl ketone azine, methyl ethyl ketoxime, etc. as by-products, and water are distilled out from the bottom of the solvent recovery tower, so the by-products are separated and removed, and the composition is adjusted as necessary to use as a raw material for hydrolysis (3) Feed to the hydrolysis process. Hydrolysis of methyl ethyl ketone and zine is relatively easy, and even without a catalyst, hydrazine and methyl ethyl ketone are produced almost quantitatively by heating with water.

勿論、必要に応じて触媒を用いることは可能であシ、反
応器の形式についても特に制限はない。原料供給速度、
反応温度、圧力等加水分解工程に於ける反応条件につい
ても反応形式や触媒使用の有無等によって異なるため特
に規定することはできないが、棚段塔や充填塔等の塔式
反応器にて無触媒で行う場合を例にすれば、一般にメチ
ルエチルケトンアジン1モル当シ水を3〜30モル、塔
底温度150〜230℃、塔内の圧力2〜25Kg/−
の如き範囲で行うことが適当である。
Of course, it is possible to use a catalyst if necessary, and there are no particular restrictions on the type of reactor. raw material supply rate,
The reaction conditions in the hydrolysis process, such as reaction temperature and pressure, cannot be specified because they vary depending on the reaction type and whether or not a catalyst is used. For example, in general, 1 mole of methyl ethyl ketone azine is used, 3 to 30 moles of water, the bottom temperature of the column is 150 to 230°C, and the pressure inside the column is 2 to 25 kg/-.
It is appropriate to do this within the following range.

加水分解工程にて生成するメチルエチルケトンは系内に
存在する水と共に共沸混合物として分離される。これは
比較的多量の水を含むため直接アジン合成工程に循環す
ることはできないが、前述の如くアジン合成工程からの
反応液(2)と併せて(5)、溶媒回収塔にて蒸留する
ことにより実質的に水と分離することができる。加水分
解工程の生成液(4)は、通常の方法により精製されて
ヒドラジンを得る。
Methyl ethyl ketone produced in the hydrolysis step is separated as an azeotrope together with water present in the system. Since this contains a relatively large amount of water, it cannot be directly recycled to the azine synthesis process, but as mentioned above, it can be distilled together with the reaction liquid (2) from the azine synthesis process (5) in a solvent recovery column. can be substantially separated from water. The product liquid (4) of the hydrolysis step is purified by a conventional method to obtain hydrazine.

かくの如き本発明の方法によれば、溶媒、原料及び触媒
が工業的に容易に入手が可能でかつ安価な化合物であり
、得られる矢Jジンの収率も高収率である。又、←ジン
合成反応は反応原料液を触媒が存在する層を接触的に通
過させるだけで良いので反応生成液と触媒との分離が容
易′Cあり、従って触媒等の回収及び廃水処理等に多大
の費用を要する欠点もない。更に又本発明の方法によれ
ば←≠ジン合成反応に使用される過剰のメチルエア チルケトン及び−ジンの加水分解工程から回収されるメ
チルエチルケトンを、別に脱水工程を設ける事なく、脱
水された状態で回収出来るために、郷ジン合成反応を有
利に行う事が出来、エネルギTの使用量も減する事が出
来る。
According to the method of the present invention, the solvent, raw material, and catalyst are industrially easily available and inexpensive compounds, and the yield of Yajijin obtained is also high. In addition, in the gin synthesis reaction, it is only necessary to pass the reaction raw material liquid through the layer where the catalyst is present, so it is easy to separate the reaction product liquid from the catalyst. There are no disadvantages that require significant costs. Furthermore, according to the method of the present invention, excess methyl air ethyl ketone used in the gin synthesis reaction and methyl ethyl ketone recovered from the gin hydrolysis step can be dehydrated without a separate dehydration step. Since it can be recovered in , the Gojin synthesis reaction can be carried out advantageously, and the amount of energy T used can also be reduced.

以上の如く、本発明の方法による多くの利点から明らか
であるが、本発明はヒドラジンを工業的に有利に製造す
る方法を提供せんとするものである。
As is clear from the many advantages of the method of the present invention as described above, the present invention aims to provide an industrially advantageous method for producing hydrazine.

以下、本発明の方法について代表的な例を示し、更に具
体的に説明するが、これは本発明の方法についての理解
を容易にするために示す単なる例示であり、本発明の方
法はこれのみに限定されないことは勿論のことこれによ
って何ら制限されないことは言うまでもない。
Hereinafter, typical examples of the method of the present invention will be shown and explained in more detail, but these are merely examples shown to facilitate understanding of the method of the present invention, and this is the only method of the present invention. Needless to say, the invention is not limited to this, and is not limited to this in any way.

実施例 アジン化反応は、粒状シリカゲルが充填された内径16
■、長さ3 m (ジャケット付)のステンレス反応管
2本を直列につないで行う。反応原料液は毎時231.
84.9の速度で供給される。これは、アンモニア回収
塔及び溶剤回収塔から循環されたアンモニア6゜28g
メチルエチルケトン←峡−篩漸i略冊今52.78 g
、メタノール155.21水0.42.。
Example azination reaction was carried out using an inner diameter 16 mm filled with granular silica gel.
(2) Two 3 m long stainless steel reaction tubes (with jackets) are connected in series. The rate of reaction raw material liquid is 231.0% per hour.
It is fed at a rate of 84.9. This is 6.28g of ammonia recycled from the ammonia recovery tower and solvent recovery tower.
Methyl ethyl ketone
, methanol 155.21 water 0.42. .

9と追加される65チ過欧化水素水溶液10.94g(
BDTA・2Na 2■とリン酸二水素ナトリウム1■
を溶解しである)及びアンモニア6.18gを混合した
ものである。アジン化反応の圧力は6.OK5/dであ
り、ジャケット温度は70℃に保った。アジン化反応の
触媒活性は、反応初期に2〜3%の低下はあるが、以後
安定化し、はぼ一定となる。
9 and 10.94 g of 65% hydrogen peroxide aqueous solution (
BDTA・2Na 2■ and sodium dihydrogen phosphate 1■
) and 6.18 g of ammonia were mixed. The pressure of the azination reaction is 6. It was OK5/d, and the jacket temperature was kept at 70°C. The catalytic activity of the azination reaction decreases by 2 to 3% at the initial stage of the reaction, but thereafter stabilizes and becomes approximately constant.

300時間連続してアジン化反応を行った後のメチルエ
チルケトンアジンの生成・速度は23.55 g、にで
ありこれは、供給された過酸化水素に対し、80.3%
の収率に相当する。この他に0.82 El/hrGF
ik酸化水素に対し4.5 %に相当)のメチルエチル
ケトオキシムが生成していた。この反応液中の残存過酸
化水素を分解したあとアンモニア回収塔に供給し、アン
モニアを回収する。アンモニア回収塔の塔頂からは3.
04p/hrのアンモニアが回収され、同時にメチルエ
チルケトン7.599/hr 、メタノール17.71
 jJ/hrも同伴される。この塔頂液中の水の含量は
0.2Wt 1以下であった。塔頂からの留出液はアジ
ン化工程に還付される。アンモニア回収塔のア   。
After 300 hours of continuous azination reaction, the production rate of methyl ethyl ketone azine was 23.55 g, which was 80.3% based on the supplied hydrogen peroxide.
This corresponds to a yield of In addition to this, 0.82 El/hrGF
Methyl ethyl ketoxime (equivalent to 4.5% based on ik hydrogen oxide) was produced. After the residual hydrogen peroxide in this reaction liquid is decomposed, it is supplied to an ammonia recovery tower to recover ammonia. 3. From the top of the ammonia recovery tower.
04p/hr of ammonia was recovered, while methyl ethyl ketone 7.599/hr and methanol 17.71/hr were recovered.
jJ/hr will also be accompanied. The water content in this tower top liquid was 0.2Wt 1 or less. The distillate from the top of the column is returned to the azination step. A of the ammonia recovery tower.

塔底から出た溶液は悼シン加水分解塔塔頂液及び補充の
メチルエチルケトン等を合わせて溶剤回収塔に供給する
。溶媒回収塔には、199.019A1rの速度で液が
供給されこの液にはメチルエチルヶ) y 37.60
.9/Ilrメタノール119.82 fi/hr、水
25.70 g/hr、アンモニア0.19.!7/h
rの他にメチルエチルケトンアジン、メチルエチルケト
ンオキシム等が含有されている。溶剤回収塔では、塔底
の温度が80℃に保たれる様に若干の減圧とし、塔頂か
らはメチルエチルケトン、メタノール、アンモニアが回
収されアンモニア回収塔の塔頂液とともにアジン化工程
に循環する。なお、この回収液中の水の混入量はQ、2
wt%以下であった。溶剤回収塔の塔底液からは、水、
及び副生物であるメチルエチルケトンオキシムその他の
副生物を除去したあと、加水分解塔に供給される。加水
分解塔は回収部、中間部、濃縮部から成り立っている。
The solution discharged from the bottom of the column is combined with the top liquid of the Soshin hydrolysis column and supplementary methyl ethyl ketone, etc. and supplied to the solvent recovery column. A liquid is supplied to the solvent recovery column at a rate of 199.019A1r, and this liquid contains methyl ethyl (methyl ethyl)y 37.60
.. 9/Ilr methanol 119.82 fi/hr, water 25.70 g/hr, ammonia 0.19. ! 7/h
In addition to r, methyl ethyl ketone azine, methyl ethyl ketone oxime, etc. are contained. In the solvent recovery column, the pressure is slightly reduced so that the temperature at the bottom of the column is maintained at 80° C., and methyl ethyl ketone, methanol, and ammonia are recovered from the top of the column and recycled to the azination process together with the top liquid of the ammonia recovery column. The amount of water mixed in this recovered liquid is Q,2
It was less than wt%. The bottom liquid of the solvent recovery tower contains water,
After removing methyl ethyl ketone oxime and other by-products, it is fed to a hydrolysis tower. The hydrolysis tower consists of a recovery section, an intermediate section, and a concentration section.

加水分解反応及び、同時にメチルエチルケトンの回収が
塔内の圧力8〜肩、塔頂温度140℃、塔底温度180
℃で運転された。加水分解塔へのメチルエチルケトンア
ジンの供給速度は23.60g/hrであり、水の供給
速度は21.189/hrでアジンよシも上部に供給さ
れる。塔頂からはメチルエチルケトンと水の共沸組成液
(アジンが0.15Wt %含まれている)が回収され
、溶剤回収塔に循環される。
The hydrolysis reaction and the simultaneous recovery of methyl ethyl ketone are carried out at a pressure in the column of 8 to shoulder, a temperature at the top of the column of 140℃, and a temperature at the bottom of the column at 180℃.
It was operated at ℃. The feed rate of methyl ethyl ketone azine to the hydrolysis tower is 23.60 g/hr, and the feed rate of water is 21.189/hr, so that azine and azine are also fed to the top. An azeotropic composition of methyl ethyl ketone and water (containing 0.15 wt % azine) is recovered from the top of the column and recycled to the solvent recovery column.

塔底からは47.5%のヒドラジンヒトラード水溶液が
回収された。
A 47.5% aqueous hydrazine Hitlerde solution was recovered from the bottom of the column.

【図面の簡単な説明】[Brief explanation of the drawing]

特許出願人  昭和電工株式会社 代理人 菊地精− Patent applicant: Showa Denko Co., Ltd. Agent Sei Kikuchi

Claims (1)

【特許請求の範囲】[Claims] メタノール溶媒の共存下にメチルエチルケトン、アンモ
ニア及び過酸化水素を固体触媒と連続的に接触反応させ
てメチルエチルケトンアジンを合成し、これを加水分解
してヒドラジンを取得すると共に未反応及び副生メチル
エチルケトンを回収して循環再使用する方法に於いて、
加水分解工程に於ける副生メチルエチルケトンをアジン
合成工程に於ける未反応メチルエチルケトン及びメタノ
ール溶媒を含む反応混合物と併せて、溶媒回収工程に送
9、メタノールとの共沸混合物として蒸留分離してこれ
をアジン合成工程に循環することを特徴とする方法。
Methyl ethyl ketone azine is synthesized by continuously contacting methyl ethyl ketone, ammonia, and hydrogen peroxide with a solid catalyst in the coexistence of a methanol solvent, and this is hydrolyzed to obtain hydrazine, and unreacted and by-product methyl ethyl ketone is recovered. In the method of circular reuse,
The by-product methyl ethyl ketone in the hydrolysis step is sent to the solvent recovery step together with the reaction mixture containing unreacted methyl ethyl ketone and methanol solvent in the azine synthesis step 9, and is separated by distillation as an azeotrope with methanol. A method characterized by recycling the azine to the azine synthesis step.
JP331382A 1982-01-14 1982-01-14 Continuous manufacture of hydrazine Pending JPS58120507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP331382A JPS58120507A (en) 1982-01-14 1982-01-14 Continuous manufacture of hydrazine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP331382A JPS58120507A (en) 1982-01-14 1982-01-14 Continuous manufacture of hydrazine

Publications (1)

Publication Number Publication Date
JPS58120507A true JPS58120507A (en) 1983-07-18

Family

ID=11553863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP331382A Pending JPS58120507A (en) 1982-01-14 1982-01-14 Continuous manufacture of hydrazine

Country Status (1)

Country Link
JP (1) JPS58120507A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197113A (en) * 1984-10-16 1986-05-15 ソシエテ アトケム Manufacture of hydrazine hydride
FR2647444A1 (en) * 1989-05-24 1990-11-30 Atochem
JP2022533648A (en) * 2019-05-16 2022-07-25 アルケマ フランス Improved process for producing hydrazine hydrate with oxime recycle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197113A (en) * 1984-10-16 1986-05-15 ソシエテ アトケム Manufacture of hydrazine hydride
FR2647444A1 (en) * 1989-05-24 1990-11-30 Atochem
JP2022533648A (en) * 2019-05-16 2022-07-25 アルケマ フランス Improved process for producing hydrazine hydrate with oxime recycle

Similar Documents

Publication Publication Date Title
JP3962872B2 (en) Method for synthesizing ketazine
US4359587A (en) Method for preparing carbonyl compounds
JP2604342B2 (en) Method for synthesizing azines
JPS6013740A (en) Production of tetracarboxylic acid
JPH09110766A (en) Production of bisphenol a
JPS58120507A (en) Continuous manufacture of hydrazine
JP2734876B2 (en) Method for producing optically active 4-chloro-3-hydroxybutyronitrile
JPS61238745A (en) Production of allyl alcohol
US6162946A (en) Processing for producing allyl 2-hydroxyisobutyrate
JPS5929633A (en) Method for recovering acetic acid from aqueous solution of acetate
JP4131025B2 (en) Method for producing ketazine and hydrated hydrazine
US3979432A (en) Preparation of nitriles
JPS59222449A (en) Manufacture of diphenyl amine and aniline
JPH0115505B2 (en)
JPS635037A (en) Production of 2,3-dichloro-1-propene
JP2001206883A (en) Method for producing 3,4-methylenedioxymandelic acid
JPH0798785B2 (en) Method for producing oximes
JPH01104035A (en) Production of aliphatic nitriles
JPH03275644A (en) Production of alpha-hydroxyisobutyric acid
WO1999008998A1 (en) Process for producing formamide
JP3334206B2 (en) Method for producing 2,3,5,6-tetrafluoroaniline
JPS59157039A (en) Production of xylylene glycol
JPS6343130B2 (en)
US3843692A (en) 3-carbamoyl-3,4-epoxybutyric acid and the alkali metal,alkaline earth metal and ammonium salts
JPS6127979A (en) Preparation of hydroxyflavan compound