JPH0468298A - Flow-down liquid film type evaporator - Google Patents

Flow-down liquid film type evaporator

Info

Publication number
JPH0468298A
JPH0468298A JP17787290A JP17787290A JPH0468298A JP H0468298 A JPH0468298 A JP H0468298A JP 17787290 A JP17787290 A JP 17787290A JP 17787290 A JP17787290 A JP 17787290A JP H0468298 A JPH0468298 A JP H0468298A
Authority
JP
Japan
Prior art keywords
water
cold water
temperature
heat transfer
water temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17787290A
Other languages
Japanese (ja)
Other versions
JP2730793B2 (en
Inventor
Tetsuharu Yamashita
山下 徹治
Giichi Amo
天羽 義一
Masaru Kaneko
賢 金子
Hisashi Ichinoseki
一関 寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17787290A priority Critical patent/JP2730793B2/en
Publication of JPH0468298A publication Critical patent/JPH0468298A/en
Application granted granted Critical
Publication of JP2730793B2 publication Critical patent/JP2730793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To detect the temperature of cold water quickly and detect the quick reduction of water temperature in an evaporator quickly when the flow of cold water is stopped by a method wherein the temperature sensitive unit of a water temperature sensor is inserted into the vicinity of the outlet ports of one or several pieces of a plurality of downstream side heat transfer tubes or upstream side heat transfer tubes. CONSTITUTION:A water temperature sensor 10 is arranged in a water chamber 9, in which water in the end of a downflow liquid film type evaporator is turned, while the temperature sensitive unit 11 of the sensor 10 is inserted into one of a plurality of heat transfer tubes 42 at the downstream side of the water chamber 9. When the flow of cold water is stopped during refrigerantion cycle operation, heat exchange between stagnated water and refrigerant is continued and, therefore, the temperature of the cold water is reduced quickly. The temperature sensitive unit 11 of the water temperature sensor 10 is inserted into the downstream side heat transfer tube 42, in which heat exchange between the water and the refrigerant is being effected, and therefore, the reduction of the cold water temperature is detected sooner than a case wherein the temperature sensitive unit of the water temperature sensor is arranged in the other part in which heat exchange is not being effected whereby a signal can be taken out before the start of the refrigeration of the water due to the reduction of the cold water temperature and the operation of the refrigeration cycle can be stopped.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、各種機器に冷却用の冷水を供給し、あるいは
空調用のファンコイルユニット等に冷水を供給するため
の装置、特に、冷媒の液膜を流下して蒸発させ、その気
化熱で水を冷却する流下液膜式蒸発器の構造に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an apparatus for supplying cold water for cooling to various devices or for supplying cold water to a fan coil unit for air conditioning, etc. This invention relates to the structure of a falling film evaporator that evaporates a liquid film and cools water with the heat of vaporization.

[従来の技術] 第2図に従来の流下液膜式蒸発器を示す。液状もしくは
気液二相状の冷媒(例えばフロン)は蒸発器シェル1の
上部の液冷媒人口2から流入する。
[Prior Art] Fig. 2 shows a conventional falling film evaporator. A liquid or gas-liquid two-phase refrigerant (for example, fluorocarbon) flows into the evaporator shell 1 from a liquid refrigerant port 2 in the upper part thereof.

液冷媒受板3には、蒸発器シェル1内の多数の伝熱管4
□、4□、43が緩く貫通している穴があり、入口2か
ら入った液冷媒は、受板3の穴からこれら伝熱管の外表
面上を薄膜状に流下し、これらの伝熱管内を流れる冷水
5の熱を液冷媒が蒸発することで奪い、該冷水を冷却す
る。熱交換によりガス化された冷媒は冷媒ガス出口8よ
り流出する。
The liquid refrigerant receiving plate 3 has a large number of heat transfer tubes 4 inside the evaporator shell 1.
There are holes through which □, 4□, and 43 are loosely penetrated, and the liquid refrigerant that entered from the inlet 2 flows down in a thin film form from the holes in the receiving plate 3 over the outer surfaces of these heat exchanger tubes, and flows inside these heat exchanger tubes. The liquid refrigerant evaporates and removes the heat from the cold water 5 flowing through it, thereby cooling the cold water. The refrigerant gasified by heat exchange flows out from the refrigerant gas outlet 8.

このガス出口8より流出、したガス冷媒を再び液化して
液冷媒人口2に戻す様に冷凍サイクル(不図示)が組ま
れている。他方、冷水5は冷水人口6から入り、伝熱管
内を通過して上記の如く冷却された後、冷水呂ロアより
蒸発器外へ出て冷却対象(負荷)へ流れ、循環して再度
冷水人口6へ戻る。
A refrigeration cycle (not shown) is constructed to liquefy the gas refrigerant flowing out from the gas outlet 8 and return it to the liquid refrigerant population 2. On the other hand, the cold water 5 enters from the cold water population 6, passes through the heat transfer tube and is cooled as described above, then exits the evaporator from the cold water tank lower, flows to the object to be cooled (load), circulates, and returns to the cold water population. Return to 6.

蒸発器内での冷水の流れは、冷水人口6の直後の水室1
6から複数の伝熱管4□に分流し、水室9で合流し、更
に下流側の複数の伝熱管4□に分流し、更に水室17で
合流し、更に複数の伝熱管4、に分流した後、水室18
で合流して冷水出ロアから流出する様になっている。
The flow of cold water in the evaporator is from water chamber 1 immediately after cold water population 6.
6 to a plurality of heat transfer tubes 4□, merges in a water chamber 9, further branches to a plurality of downstream heat transfer tubes 4□, further merges in a water chamber 17, and further branches to a plurality of heat transfer tubes 4. After that, water chamber 18
The cold water flows out from the lower cold water outlet.

冷水温度の制御は、上記の流下液膜式蒸発器の外部の冷
水流路中にて上記の冷水人口6の上流側もしくは冷水出
ロアの下流に配置した水温センサの検出水温により行わ
れるのが従来一般的であった。
The cold water temperature is controlled by the water temperature detected by a water temperature sensor placed upstream of the cold water intake 6 or downstream of the cold water outlet lower in the cold water flow path outside the falling film evaporator. It was common in the past.

流下液膜式蒸発器の従来例については例えば特開昭59
−21261号、同昭62−266389号を参照され
たい。
Regarding conventional examples of falling film type evaporators, for example, see Japanese Patent Application Laid-open No. 1983
Please refer to No.-21261 and No. 62-266389.

[発明が解決しようとする課M] 前記従来技術では、水温センサを流下液膜式蒸発器の外
部の冷水流路中に配置しであるので、水温検出に遅れが
生じ、冷水温度の制御に好ましくない。特に、冷凍サイ
クル運転中にもし冷水の流れが停止した場合、流下液膜
式蒸発器内の停滞した水は冷媒による冷却作用を受けて
急速に温度が低下するが、前記従来技術の様に該蒸発器
の外に配置された温度センサでは、冷水の流れの停止に
因る上記の水温の急速な低下を検出することができない
ため、冷凍サイクルの運転を止める等の保護措置を速や
かに行えず、流下液膜式蒸発器内で水が凍結する事態を
招き勝ちであった。
[Problem M to be solved by the invention] In the prior art, the water temperature sensor is placed in the cold water flow path outside the falling film evaporator, which causes a delay in water temperature detection and makes it difficult to control the cold water temperature. Undesirable. In particular, if the flow of cold water stops during refrigeration cycle operation, the temperature of the stagnant water in the falling film evaporator will rapidly drop due to the cooling effect of the refrigerant. Temperature sensors placed outside the evaporator cannot detect the above-mentioned rapid drop in water temperature due to the stoppage of the flow of chilled water, so protective measures such as stopping the operation of the refrigeration cycle cannot be taken promptly. This often led to water freezing inside the falling film evaporator.

本発明の目的は、流下液膜式蒸発器において、冷水の温
度検出の遅れをなくすこと、また冷水の流れが停止した
とき該蒸発器内の水温の急速な低下を速やかに検知する
こと、を可能にすることにある。
An object of the present invention is to eliminate the delay in detecting the temperature of cold water in a falling film evaporator, and to promptly detect a rapid drop in the water temperature in the evaporator when the flow of cold water stops. It's about making it possible.

[課題を解決するための手段] 上記目的達成のため、本発明の流下液膜式蒸発器は特許
請求の範囲の各請求項に記載の構成を有する。
[Means for Solving the Problems] In order to achieve the above object, a falling film evaporator of the present invention has the configuration described in each claim.

[作   用〕 水温センサは、水と冷媒との熱交換が行なわれる伝熱管
内へ挿入されているため、水温検知の遅れがなく、また
、冷水停止時の水温低下を速やかに直接検知できる。
[Function] Since the water temperature sensor is inserted into the heat transfer tube where heat exchange between water and refrigerant takes place, there is no delay in detecting the water temperature, and a drop in water temperature when cold water is stopped can be immediately and directly detected.

また、水温センサが水室から下流側の伝熱管内入口附近
に挿入されている場合は、冷水が流れている通常運転中
、上流側伝熱管より来た水室内の均一な冷水温度を実質
的に検知していることになるので、水温センサ挿入によ
る下流側伝熱管の管路抵抗増大、それによる流量低下の
影響を受けず。
In addition, if the water temperature sensor is inserted near the inlet of the heat exchanger tube on the downstream side from the water chamber, during normal operation when cold water is flowing, it will be possible to detect the uniform temperature of the cold water in the water chamber coming from the upstream heat exchanger tube. Therefore, it is not affected by the increase in pipe resistance of the downstream heat exchanger tube due to the insertion of the water temperature sensor and the resulting decrease in flow rate.

水温検出は偏った誤差を生ずることがない。Water temperature detection does not produce biased errors.

[実 施 例] 以下、本発明の流下液膜式蒸発器の1実施例を説明する
。その全体的な構成・機能は前記第2図と同様であるか
ら、重複する説明は省略し、特に本実施例に関係する部
分について第1図に示す部分拡大断面図により説明する
[Example] Hereinafter, one example of the falling film type evaporator of the present invention will be described. Since its overall configuration and functions are the same as those shown in FIG. 2, redundant explanations will be omitted, and particularly the parts related to this embodiment will be explained with reference to the partially enlarged cross-sectional view shown in FIG. 1.

第1図において、流下液膜式蒸発器端部の水がターンす
る水室9には、水温センサ10が配設され、その感温部
11は水室9の下流側の複数本の伝熱管4つのうちの1
本の内部に且つその入口近くに挿入されている。この様
に伝熱管の内部に水温センサの感温部が位置しているの
で、該蒸発器の運転中、その中を流れている冷水の温度
を遅れなしに検出することができる。
In FIG. 1, a water temperature sensor 10 is disposed in a water chamber 9 at the end of the falling film evaporator where water turns, and the temperature sensor 11 is connected to a plurality of heat transfer tubes on the downstream side of the water chamber 9. 1 out of 4
It is inserted inside the book and near its entrance. Since the temperature sensing part of the water temperature sensor is located inside the heat transfer tube in this manner, the temperature of the cold water flowing therethrough can be detected without delay while the evaporator is in operation.

冷凍サイクル運転中、冷水の流れが停止すると、停滞し
た水と冷媒の熱交換が続行されるため冷水温度が急速に
低下する。水温センサ10の感温部11は、水と冷媒と
の熱交換が行われている下流側伝熱管4□の内部へ挿入
されているため冷水温度低下が、熱交換の行われていな
い他の部分(例えば水室9内)に水温センサの感温部を
配置した場合よりも早く検知され、冷水温度の低下によ
る水の凍結が始まる前に信号を取り出して冷凍サイクル
の運転を停止させることができる。
During operation of the refrigeration cycle, when the flow of chilled water stops, heat exchange between the stagnant water and the refrigerant continues, resulting in a rapid drop in the temperature of the chilled water. The temperature-sensing part 11 of the water temperature sensor 10 is inserted into the downstream heat exchanger tube 4□ where heat exchange between the water and the refrigerant is taking place. It is possible to detect the temperature earlier than when the temperature-sensing part of the water temperature sensor is placed in a part (for example, inside the water chamber 9), and to take out a signal and stop the operation of the refrigeration cycle before the water begins to freeze due to a drop in the cold water temperature. can.

もちろん、冷水の流れが停止した場合は、下流側伝熱管
4□の内部も上流側伝熱管41の内部も一様に冷却され
るので、水温センサ感温部11は下流側伝熱管42内で
なくて、上流側伝熱管4□内に挿入されていても、冷水
の流れの停止時の水温検知に関しては、同様の効果が得
られる。
Of course, when the flow of cold water stops, the inside of the downstream heat exchanger tube 4□ and the inside of the upstream heat exchanger tube 41 are uniformly cooled, so the water temperature sensor temperature sensing part 11 is cooled inside the downstream heat exchanger tube 42. Even if it is not inserted into the upstream heat exchanger tube 4□, the same effect can be obtained regarding water temperature detection when the flow of cold water is stopped.

一方、通常の冷凍サイクル運転状態で冷水が流れている
場合、冷水の流量は上流側の複数の伝熱管41内では概
ね均一であり、それが合流する水室9内の水温も概ね均
一である。しかし、水室9の下流側の複数の伝熱管4□
についてみるに、そのうちの、水温センサの挿入されて
いる伝熱管と水温センサの挿入されていない伝熱管とを
較べると、前者の伝熱管は水温センサの分だけ管内流路
面積が狭められているため、前者の伝熱管内を流れる冷
水の流量が後者の伝熱管内を流れる冷水の流量よりも少
ないので、前者の伝熱管出口での冷水温度は後者の伝熱
管出口での冷水温度よりも低くなる。従って、水温セン
サを複数本の伝熱管4□のうちの1本の伝熱管内部の出
口近くの水温を検知する様に配置した場合には、複数の
伝熱管4□の全部についての平均冷水温度よりも低目の
温度が検出されることになり、その検出に誤差が・生し
ることになる。
On the other hand, when cold water is flowing in a normal refrigeration cycle operating state, the flow rate of the cold water is approximately uniform within the plurality of heat transfer tubes 41 on the upstream side, and the water temperature within the water chamber 9 where they join is also approximately uniform. . However, a plurality of heat exchanger tubes 4□ on the downstream side of the water chamber 9
When comparing the heat exchanger tubes with the water temperature sensor inserted and the heat exchanger tubes without the water temperature sensor inserted, the former heat exchanger tube's internal flow area is narrowed by the amount of the water temperature sensor. Therefore, the flow rate of cold water flowing through the former heat exchanger tube is smaller than the flow rate of cold water flowing through the latter heat exchanger tube, so the temperature of the cold water at the outlet of the former heat exchanger tube is lower than that at the outlet of the latter heat exchanger tube. Become. Therefore, when the water temperature sensor is arranged to detect the water temperature near the outlet inside one of the heat exchanger tubes 4□, the average cold water temperature for all of the plurality of heat exchanger tubes 4□ A temperature lower than that will be detected, and an error will occur in the detection.

これに対し、本実施例の如く、水室9の下流側伝熱管4
2の入口近くの内部に水温センサ感温部を配置した場合
には、水温センサは、下流側伝熱管4□の前記流路面積
の不平等の影響をいまだ殆んど受けていない、上流側の
水室9から来た均一な冷水温度を検出することができ、
しかも検出の応答の遅れがない。均一な冷水温度の検出
の観点で考えれば水温センサの感温部を水室9内に配置
するのがよいが、水と冷媒との熱交換は伝熱管内で行わ
れるので、その様な水温センサの配置では冷水湿度検出
の応答性が悪くなり、特に、冷水の流れが停止した際の
冷水温度低下を速やかに検出できないことになる。
On the other hand, as in this embodiment, the heat exchanger tube 4 on the downstream side of the water chamber 9
When the water temperature sensor temperature sensing part is placed inside near the inlet of the heat exchanger tube 2, the water temperature sensor is located near the inlet of the upstream heat exchanger tube 4, which is still hardly affected by the inequality in the flow path area of the downstream heat exchanger tube 4. The uniform cold water temperature coming from the water chamber 9 can be detected,
Moreover, there is no delay in detection response. From the perspective of detecting a uniform chilled water temperature, it is better to place the temperature-sensing part of the water temperature sensor inside the water chamber 9, but since heat exchange between the water and the refrigerant takes place within the heat transfer tube, such a water temperature The arrangement of the sensors deteriorates the responsiveness of cold water humidity detection, and in particular, it becomes impossible to promptly detect a drop in the cold water temperature when the flow of cold water is stopped.

更に本実施例において、水温センサの設定値を適当に調
整(例えば水温センサ感温部が流下液膜式蒸発器中の水
の経路の中央にあれば入ロ出ロ間水温差の半分だけ降下
した水温に調整)すれば、冷水流量の低下や冷水入口温
度の低下に伴う冷水出口温度低下による凍結の恐れに対
しても保護をすることが可能となる。
Furthermore, in this example, the setting value of the water temperature sensor is adjusted appropriately (for example, if the water temperature sensor's temperature sensing part is located in the center of the water path in the falling film evaporator, the water temperature will drop by half of the water temperature difference between the inlet and the outlet). By adjusting the water temperature to a certain level (adjusted to a certain temperature), it is possible to protect against the risk of freezing due to a decrease in the cold water flow rate or a decrease in the cold water outlet temperature due to a decrease in the cold water inlet temperature.

上記の実施例では、下部水室9に設けた水温センサめ感
温部を該水室9の下流側伝熱管42の入口附近内部に挿
入したが、その代りに、第1図の上部水室17に設けた
水温センサの感温部を該水室17の下流側伝熱管4.の
入口附近の内部に挿入しても、上記実施例と同じ目的、
効果を達成し得る。
In the above embodiment, the water temperature sensor provided in the lower water chamber 9 was inserted into the interior near the inlet of the downstream heat transfer tube 42 of the water chamber 9, but instead, The temperature sensitive part of the water temperature sensor provided in the water chamber 17 is connected to the downstream heat exchanger tube 4. Even if it is inserted inside near the entrance of the
effect can be achieved.

なお、水温センサをその感温部が水室17の上流側の複
数本の伝熱管41のうちの1本の内部で且つその出口附
近に挿入されている様に配置した場合にも、冷凍サイク
ル運転中、流れている冷水の温度を遅れなく検知すると
いう目的、および、冷水の流れが停止した際の停滞した
冷水の温度低下を早期に検知するという目的は達成し得
る。しかし、この場合、前述したのと同様の理由で、複
数の上流側伝熱管41において、水温センサの挿入され
ているものと、いないものとでは、流路面積の相違、冷
水流量の相違、ひいては該伝熱管41の出口での冷水温
度の相違が生じ、水温センサの検出は誤差を持つことに
なる。かかる誤差の殆んどない均一な冷水温度を検出す
るには、先に述べた実施例の如く、上流側伝熱管が合流
する水室の下流側の伝熱管内の人口附近に水温センサの
感温部を挿入する方がよい。
Note that even when the water temperature sensor is arranged such that its temperature sensing part is inserted inside one of the plurality of heat transfer tubes 41 on the upstream side of the water chamber 17 and near the outlet, the refrigeration cycle During operation, the purpose of detecting the temperature of flowing cold water without delay and the purpose of early detecting a decrease in the temperature of stagnant cold water when the flow of cold water is stopped can be achieved. However, in this case, for the same reason as mentioned above, there are differences in flow path area and cold water flow rate between the plurality of upstream heat exchanger tubes 41 with and without a water temperature sensor inserted. There will be a difference in the temperature of the cold water at the outlet of the heat transfer tube 41, and the detection by the water temperature sensor will have an error. In order to detect a uniform chilled water temperature with almost no errors, as in the embodiment described above, a water temperature sensor is placed near the population inside the heat exchanger tube on the downstream side of the water chamber where the upstream heat exchanger tubes merge. It is better to insert a warm part.

要するに、冷凍サイクル運転中、流下液膜式蒸発器内を
流れる冷水温度を遅れなく検知し、また冷水の流れが停
止したときの該蒸発器内の停滞水の温度低下を速やかに
検知するためには、水温センサは上流側伝熱管内の出口
附近または下流側伝熱管内に挿入すればよい。上記検知
において、更に、均一冷水温度の検知をすることを望む
場合には、上流側伝熱管の合流する水室の下流側の伝熱
管内にてその入口附近に水温センサを挿入するのがよい
In short, during refrigeration cycle operation, the temperature of the cold water flowing in the falling film evaporator can be detected without delay, and when the flow of cold water has stopped, the temperature drop of the stagnant water in the evaporator can be immediately detected. In this case, the water temperature sensor may be inserted near the outlet of the upstream heat transfer tube or into the downstream heat transfer tube. In the above detection, if you wish to further detect uniform cold water temperature, it is recommended to insert a water temperature sensor near the inlet in the downstream heat transfer tube of the water chamber where the upstream heat transfer tubes merge. .

伝熱管への水温センサの挿入部には伝熱管との間に適当
なスペーサを設けて、水温センサと伝熱管との接触を防
ぐ様にするのがよい。
It is preferable to provide an appropriate spacer between the insertion portion of the water temperature sensor into the heat transfer tube and the heat transfer tube to prevent contact between the water temperature sensor and the heat transfer tube.

複数本の伝熱管のうちの1本だけでなく、そのうちの若
干本に水温センサを挿入し、それらの検知出力により水
温検知をする様にしてもよい。
Water temperature sensors may be inserted into not only one of the plurality of heat transfer tubes but also some of them, and the water temperature may be detected based on their detection outputs.

水の凍結防止の目的には、水温センサとしてガスチャー
ジ式サーモスタットを用い、最低水温を拾う様にしても
よい。
For the purpose of preventing water from freezing, a gas-charged thermostat may be used as a water temperature sensor to detect the lowest water temperature.

なお、冷水凍結による本蒸発器の破損を防止するための
保護手段として、蒸発器内の氷の成長による水室圧力上
昇を検知して冷凍サイクルの運転を止める手段を設けて
もよい。
As a protection means for preventing damage to the evaporator due to freezing of the cold water, a means may be provided to detect an increase in water chamber pressure due to the growth of ice in the evaporator and stop the operation of the refrigeration cycle.

[発明の効果] 本発明によれば、流下液膜式蒸発器を流れる冷水の温度
を遅れなく検知することができ、また、冷水の流れが停
止した際に水温低下を早期に検出できるので該蒸発器内
の冷水の凍結防止に資することができる。
[Effects of the Invention] According to the present invention, the temperature of cold water flowing through a falling film evaporator can be detected without delay, and when the flow of cold water stops, a drop in water temperature can be detected at an early stage. It can contribute to preventing freezing of cold water in the evaporator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例になる流下液膜式蒸発器の部分
縦断面図、第2図は従来技術による流下膜式蒸発器の縦
断面図である。 2・・・液冷媒人口   4□、4□、4.・・・伝熱
管5・・・冷水      6・・・冷水入ロア・・・
冷水出口    8・・・ガス冷媒出口9.16,17
,18・・・水室 10・・・水温センサ  11・・・感温部化1名 第1図 第2図
FIG. 1 is a partial longitudinal sectional view of a falling film evaporator according to an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of a falling film evaporator according to the prior art. 2...Liquid refrigerant population 4□, 4□, 4. ...Heat transfer tube 5...Cold water 6...Cold water lower part...
Chilled water outlet 8...Gas refrigerant outlet 9.16, 17
, 18...Water chamber 10...Water temperature sensor 11...Temperature sensing section 1 person Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1 複数本の上流側伝熱管内を分流した水を水室内で合
流させた後、該水室に連なる複数本の下流側伝熱管内に
分流させ、上記各伝熱管の外面に冷媒液を薄膜状に流下
させて蒸発熱伝達を行わせることにより、伝熱管内を流
れる水を冷却する様にした流下液膜式蒸発器において、
前記複数本の下流側伝熱管のうちの1本もしくは若干本
の内部に、または、前記複数本の上流側伝熱管のうちの
1本もしくは若干本の出口附近の内部に、水温センサの
感温部を挿入したことを特徴とする流下液膜式蒸発器。 2 前記複数本の下流側伝熱管のうちの1本もしくは若
干本の入口附近の内部に水温センサの感温部を挿入した
請求項1記載の流下液膜式蒸発器。 3 前記水室は、前記複数本の上流側伝熱管から出た水
をUターンさせて前記複数本の下流側伝熱管に流入させ
るものである請求項1又は2記載の流下液膜式蒸発器。
[Scope of Claims] 1 Water that has been divided into a plurality of upstream heat exchanger tubes is combined in a water chamber, and then divided into a plurality of downstream heat exchanger tubes that are connected to the water chamber, and the water is divided into a plurality of downstream heat exchanger tubes that are connected to the water chamber. In a falling film evaporator, water flowing inside a heat transfer tube is cooled by causing a refrigerant liquid to flow down in a thin film on the outer surface to transfer evaporative heat.
A water temperature sensor is installed inside one or some of the plurality of downstream heat exchanger tubes, or inside near the outlet of one or some of the plurality of upstream heat exchanger tubes. A falling film type evaporator characterized by having a part inserted therein. 2. The falling film evaporator according to claim 1, wherein a temperature sensitive part of a water temperature sensor is inserted inside near the inlet of one or some of the plurality of downstream heat transfer tubes. 3. The falling film evaporator according to claim 1 or 2, wherein the water chamber makes a U-turn on the water coming out of the plurality of upstream heat transfer tubes and causes it to flow into the plurality of downstream heat transfer tubes. .
JP17787290A 1990-07-05 1990-07-05 Falling liquid film evaporator Expired - Fee Related JP2730793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17787290A JP2730793B2 (en) 1990-07-05 1990-07-05 Falling liquid film evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17787290A JP2730793B2 (en) 1990-07-05 1990-07-05 Falling liquid film evaporator

Publications (2)

Publication Number Publication Date
JPH0468298A true JPH0468298A (en) 1992-03-04
JP2730793B2 JP2730793B2 (en) 1998-03-25

Family

ID=16038536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17787290A Expired - Fee Related JP2730793B2 (en) 1990-07-05 1990-07-05 Falling liquid film evaporator

Country Status (1)

Country Link
JP (1) JP2730793B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185174A (en) * 2007-01-31 2008-08-14 Yamaha Miyuujitsuku Trading Kk Auxiliary device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185174A (en) * 2007-01-31 2008-08-14 Yamaha Miyuujitsuku Trading Kk Auxiliary device

Also Published As

Publication number Publication date
JP2730793B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
US5704221A (en) Refrigeration exchanger, method for control thereof and cooling installation including such exchanger
MX2007007795A (en) Method and apparatus for dehumidification.
EP0974792A2 (en) Heat exchange equipment
JPH0468298A (en) Flow-down liquid film type evaporator
JPH074759A (en) Cooler
JP3036227B2 (en) Vending machine cooling method
JP3839915B2 (en) Refrigerant cooling device
JP2717716B2 (en) refrigerator
JP2880424B2 (en) Mirror circuit temperature controller for cooler for laser beam machine
JP3070723B2 (en) Refrigeration equipment
JP3167471B2 (en) Method of detecting frost formation on outdoor heat exchanger of heat pump type air conditioner
JPH04329698A (en) Cooling unit
JPH02115639A (en) Heat accumulation type heat source
JPH06221690A (en) Freezer device
JP3634467B2 (en) Refrigeration equipment
US10352594B2 (en) Sealed heat exchange system and air conditioner
JPH0327252Y2 (en)
JP2000121175A (en) Chiller
JPS6152910B2 (en)
JPH04327762A (en) Freezing cycle in thermostatic device
JP3556798B2 (en) Temperature control device for refrigerated open showcase
JPH08233398A (en) Engine-driven type freezing device
JPH07239161A (en) Defroster of refrigerator
JPH0534589B2 (en)
JPWO2022085177A5 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees