JP2730793B2 - Falling liquid film evaporator - Google Patents

Falling liquid film evaporator

Info

Publication number
JP2730793B2
JP2730793B2 JP17787290A JP17787290A JP2730793B2 JP 2730793 B2 JP2730793 B2 JP 2730793B2 JP 17787290 A JP17787290 A JP 17787290A JP 17787290 A JP17787290 A JP 17787290A JP 2730793 B2 JP2730793 B2 JP 2730793B2
Authority
JP
Japan
Prior art keywords
water
heat transfer
transfer tubes
water temperature
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17787290A
Other languages
Japanese (ja)
Other versions
JPH0468298A (en
Inventor
徹治 山下
義一 天羽
賢 金子
寿 一関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17787290A priority Critical patent/JP2730793B2/en
Publication of JPH0468298A publication Critical patent/JPH0468298A/en
Application granted granted Critical
Publication of JP2730793B2 publication Critical patent/JP2730793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、各種機器に冷却用の冷水を供給し、あるい
は空調用のファンコイルユニット等に冷水を供給するた
めの装置、特に、冷媒の液膜を流下して蒸発させ、その
気化熱で水を冷却する流下液膜式蒸発器の構造に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a device for supplying chilled water for cooling to various devices or for supplying chilled water to a fan coil unit or the like for air conditioning. The present invention relates to a falling film evaporator structure in which a liquid film flows down and evaporates, and water is cooled by the heat of vaporization.

[従来の技術] 第2図に従来の流下液膜式蒸発器を示す。液状もしく
は気液二相状の冷媒(例えばフロン)は蒸発器シェル1
の上部の液冷媒入口2から流入する。液冷媒受板3に
は、蒸発器シェル1内の多数の伝熱管41,42,43が緩く貫
通している穴があり、入口2から入った液冷媒は、受板
3の穴からこれら伝熱管の外表面上を薄膜状に流下し、
これらの伝熱管内を流れる冷水5の熱を液冷媒が蒸発す
ることで奪い、該冷水を冷却する。熱交換によりガス化
された冷媒は冷媒ガス出口8より流出する。このガス出
口8より流出したガス冷媒を再び液化して液冷媒入口2
に戻す様に冷凍サイクル(不図示)が組まれている。他
方、冷水5は冷水入口6から入り、伝熱管内を通過して
上記の如く冷却された後、冷水出口7より蒸発器外へ出
て冷却対象(負荷)へ流れ、循環して再度冷水入口6へ
戻る。
[Prior Art] FIG. 2 shows a conventional falling liquid film type evaporator. The liquid or gas-liquid two-phase refrigerant (eg, chlorofluorocarbon) is supplied to the evaporator shell 1
Flows from the liquid refrigerant inlet 2 at the upper part of the liquid refrigerant. The liquid refrigerant receiving plate 3 has a hole through which a number of heat transfer tubes 4 1 , 4 2 , and 4 3 in the evaporator shell 1 penetrate loosely. Flows down on the outer surface of these heat transfer tubes in a thin film form,
The liquid refrigerant evaporates the heat of the cold water 5 flowing through these heat transfer tubes, thereby cooling the cold water. The refrigerant gasified by the heat exchange flows out from the refrigerant gas outlet 8. The gas refrigerant flowing out of the gas outlet 8 is liquefied again to form a liquid refrigerant inlet 2.
A refrigeration cycle (not shown) is set up to return to. On the other hand, the chilled water 5 enters through the chilled water inlet 6, passes through the heat transfer tube, is cooled as described above, and then goes out of the chilled water outlet 7 to the outside of the evaporator, flows to the cooling object (load), circulates, and is circulated again. Return to 6.

蒸発器内での冷水の流れは、冷水入口6の直後の水室
16から複数の伝熱管41に分流し、水室9で合流し、更に
下流側の複数の伝熱管42に分流し、更に水室17で合流
し、更に複数の伝熱管43に合流した後、水室18で合流し
て冷水出口7から流出する様になっている。
The flow of cold water in the evaporator is the water chamber just after the cold water inlet 6.
16 flowed plurality of heat transfer tubes 4 into one over, merged with water chamber 9, further plurality of heat transfer tubes 4 flows 2 half downstream, further merges with the water chamber 17, further merges into a plurality of heat transfer tubes 4 3 After that, they join in the water chamber 18 and flow out of the cold water outlet 7.

冷水温度の制御は、上記の流下液膜式蒸発器の外部の
冷水流路中にて上記の冷水入口6の上流側もしくは冷水
出口7の下流に配置した水温センサの検出水温により行
われるのが従来一般的であった。
The control of the chilled water temperature is performed by a detected water temperature of a water temperature sensor disposed upstream of the chilled water inlet 6 or downstream of the chilled water outlet 7 in the chilled water flow path outside the falling liquid film evaporator. Conventionally it was common.

流下液膜式蒸発器の従来例については例えば特開昭59
−21261号、同昭62−266389号を参照されたい。
For a conventional example of a falling film evaporator, see, for example,
-21261 and 62-266389.

[発明が解決しようとする課題] 前記従来技術では、水温センサを流下液膜式蒸発器の
外部の冷水流路中に配置してあるので、水温検出に遅れ
が生じ、冷水温度の制御に好ましくない。特に、冷凍サ
イクル運転中にもし冷水の流れが停止した場合、流下液
膜式蒸発器内の停滞した水は冷媒による冷却作用を受け
て急速に温度が低下するが、前記従来技術の様に該蒸発
器の外に配置された温度センサでは、冷水の流れの停止
に因る上記の水温の急速な低下を検出することができな
いため、冷凍サイクルの運転を止める等の保護措置を速
やかに行えず、流下液膜式蒸発器内で水が凍結する事態
を招き勝ちであった。
[Problems to be Solved by the Invention] In the conventional technique, since the water temperature sensor is disposed in the cold water flow path outside the falling liquid film evaporator, a delay occurs in the detection of the water temperature, which is preferable for controlling the cold water temperature. Absent. In particular, if the flow of cold water stops during the refrigeration cycle operation, the temperature of the stagnant water in the falling film evaporator is rapidly reduced by the cooling action of the refrigerant. The temperature sensor located outside the evaporator cannot detect the above-mentioned rapid decrease in water temperature due to the stoppage of the flow of cold water, so that protection measures such as stopping the operation of the refrigeration cycle cannot be performed promptly. This has led to a situation in which water freezes in the falling film evaporator.

本発明の目的は、流下液膜式蒸発器において、冷水の
温度検出の遅れをなくすこと、また冷水の流れが停止し
たとき該蒸発器内の水温の急速な低下を速やかに検知す
ること、を可能にすることにある。
An object of the present invention is to eliminate a delay in detecting the temperature of cold water in a falling liquid film evaporator, and to quickly detect a rapid decrease in water temperature in the evaporator when the flow of cold water stops. Is to make it possible.

[課題を解決するための手段] 上記目的達成のため、本発明の流下液膜式蒸発器は特
許請求の範囲の各請求項に記載の構成を有する。
[Means for Solving the Problems] In order to achieve the above object, a falling liquid film type evaporator of the present invention has a configuration described in each claim of the claims.

[作用] 水温センサは、水と冷媒との熱交換が行なわれる伝熱
管内へ挿入されているため、水温検知の遅れがなく、ま
た、冷水停止時の水温低下を速やかに直接検知できる。
[Operation] Since the water temperature sensor is inserted into the heat transfer tube in which heat exchange between water and the refrigerant is performed, there is no delay in the detection of the water temperature, and the water temperature sensor can directly detect a drop in the water temperature when the cold water is stopped.

また、水温センサが水室から下流側の伝熱管内入口附
近に挿入されている場合は、冷水が流れている通常運転
中、上流側伝熱管より来た水室内の均一な冷水温度を実
質的に検知していることになるので、水温センサ挿入に
よる下流側伝熱管の管路抵抗増大、それによる流量低下
の影響を受けず、水温検出は偏った誤差を生ずることが
ない。
When the water temperature sensor is inserted near the inlet of the heat transfer pipe on the downstream side from the water chamber, during the normal operation in which the cold water is flowing, the uniform cold water temperature in the water chamber coming from the upstream heat transfer pipe is substantially measured. Therefore, the water temperature sensor is not affected by the increase in the pipe resistance of the downstream heat transfer tube due to the insertion of the water temperature sensor and the flow rate is reduced by the water temperature sensor.

[実 施 例] 以下、本発明の流下液膜式蒸発器の1実施例を説明す
る。その全体的な構成・機能は前記第2図と同様である
から、重複する説明は省略し、特に本実施例に関係する
部分について第1図に示す部分拡大断面図により説明す
る。
[Embodiment] An embodiment of a falling liquid film type evaporator of the present invention will be described below. Since the overall configuration and functions are the same as those in FIG. 2, the overlapping description will be omitted, and the parts related to the present embodiment will be particularly described with reference to the partially enlarged sectional view shown in FIG.

第1図において、流下液膜式蒸発器端部の水がターン
する水室9には、水温センサ10が配設され、その感温部
11は水室9の下流側の複数本の伝熱管42のうちの1本の
内部に且つその入口近くに挿入されている。この様に伝
熱管の内部に水温センサの感温部が位置しているので、
該蒸発器の運転中、その中を流れている冷水の温度を遅
れなしに検出することができる。
In FIG. 1, a water temperature sensor 10 is provided in a water chamber 9 where water at the end of a falling film evaporator turns, and a temperature sensing part thereof is provided.
11 is inserted and in that near the entrance to the internal one of the heat transfer tubes 4 2 of the plurality of downstream side of the water chamber 9. Since the temperature sensing part of the water temperature sensor is located inside the heat transfer tube,
During operation of the evaporator, the temperature of the chilled water flowing therein can be detected without delay.

冷凍サイクル運転中、冷水の流れが停止すると、停滞
した水と冷媒の熱交換が続行されるため冷水温度が急速
に低下する。水温センサ10の感温部11は、水と冷媒との
熱交換が行われている下流側伝熱管42の内部へ挿入され
ているため冷水温度低下が、熱交換の行われていない他
の部分(例えば水室9内)に水温センサの感温部を配置
した場合よりも早く検知され、冷水温度の低下による水
の凍結が始まる前に信号を取り出して冷凍サイクルの運
転を停止させることができる。
When the flow of the chilled water is stopped during the refrigeration cycle operation, the heat exchange between the stagnant water and the refrigerant is continued, so that the chilled water temperature rapidly decreases. Temperature sensitive portion of the temperature sensor 10 11, chilled water temperature drop because heat exchange is inserted into the inside of the downstream side heat transfer tubes 4 2 which is made of water and refrigerant, a heat exchange takes place are not even in other It is detected earlier than the case where the temperature sensing part of the water temperature sensor is arranged in a portion (for example, in the water chamber 9). it can.

もちろん、冷水の流れが停止した場合は、下流側伝熱
管42の内部も上流側伝熱管41の内部も一様に冷却される
ので、水温センサ感温部11は下流側伝熱管42内でなく
て、上流側伝熱管41内に挿入されていても、冷水の流れ
の停止時の水温検知に関しては、同様の効果が得られ
る。
Of course, if the cold water flow is stopped, since the interior of the internal or of the upstream side heat transfer tubes 4 1 downstream heat transfer tubes 4 2 is also uniformly cooling water temperature sensor temperature sensing unit 11 downstream heat transfer tubes 4 2 not be internal, be inserted upstream side heat transfer tube 4 in 1, with respect to the water temperature detected at the time of cold water flow stops, the same effect can be obtained.

一方、通常の冷凍サイクル運転状態で冷水が流れてい
る場合、冷水の流量は上流側の複数の伝熱管41内では概
ね均一であり、それが合流する水室9内の水温も概ね均
一である。しかし、水室9の下流側の複数の伝熱管42
ついてみるに、そのうちの、水温センサの挿入されてい
る伝熱管と水温センサの挿入されていない伝熱管とを較
べると、前者の伝熱管は水温センサの分だけ管内流路面
積が狭められているため、前者の伝熱管内を流れる冷水
の流量が後者の伝熱管内を流れる冷水の流量よりも少な
いので、前者の伝熱管出口での冷水温度は後者の伝熱管
出口での冷水温度よりも低くなる。従って、水温センサ
を複数本の伝熱管42のうちの1本の伝熱管内部の出口近
くの水温を検知する様に配置した場合には、複数の伝熱
管42の全部についての平均冷水温度よりも低目の温度が
検出されることになり、その検出に誤差が生じることに
なる。
On the other hand, if the cold water is flowing in a normal refrigeration cycle operation state, the cold water flow rate is generally uniform in the upstream side of the plurality of heat transfer tubes 4 within 1, the water temperature of the water chamber 9 in which it joins also generally uniform is there. However, in regard to a plurality of heat transfer tubes 4 2 downstream of the water chamber 9, of which, Compared to the heat transfer tube not inserted in the heat transfer tubes and a water temperature sensor which is inserted in the water temperature sensor, the former of the heat transfer tube Since the flow area in the pipe is narrowed by the water temperature sensor, the flow rate of the cold water flowing through the former heat transfer pipe is smaller than the flow rate of the cold water flowing through the latter heat transfer pipe. The chilled water temperature becomes lower than the latter chilled water temperature at the heat transfer tube outlet. Therefore, when placed so as to detect a single temperature near the exit of the heat transfer tube portion of the water temperature sensor of the plurality of heat transfer tubes 4 2, the average chilled water temperature for a plurality of total heat transfer tubes 4 2 A lower temperature will be detected, and an error will occur in the detection.

これに対し、本実施例の如く、水室9の下流側伝熱管
42の入口近くの内部に水温センサ感温部を配置した場合
には、水温センサは、下流側伝熱管42の前記流路面積の
不平等の影響をいまだ殆んど受けていない、上流側の水
室9から来た均一な冷水温度を検出することができ、し
かも検出の応答の遅れがない。均一な冷水温度の検出の
観点で考えれば水温センサの感温部を水室9内に配置す
るのがよいが、水と冷媒との熱交換は伝熱管内で行われ
るので、その様な水温センサの配置では冷水温度検出の
応答性が悪くなり、特に、冷水の流れが停止した際の冷
水温度低下を速やかに検出できないことになる。
On the other hand, as in the present embodiment, the heat transfer tube on the downstream side of the water chamber 9 is used.
4 in the case of arranging the temperature sensor temperature sensing unit in the interior of the second inlet near the water temperature sensor is not received etc. N still殆the influence of inequalities of the flow area of the downstream side heat transfer tubes 4 2, upstream A uniform cold water temperature coming from the water chamber 9 on the side can be detected, and there is no delay in the detection response. From the viewpoint of detecting the uniform cold water temperature, it is preferable to dispose the temperature sensing part of the water temperature sensor in the water chamber 9, but since the heat exchange between water and the refrigerant is performed in the heat transfer tube, such a water temperature With the arrangement of the sensors, the responsiveness of the chilled water temperature detection deteriorates, and in particular, a drop in the chilled water temperature when the flow of the chilled water is stopped cannot be detected quickly.

更に本実施例において、水温センサの設定値を適当に
調整(例えば水温センサ感温部が流下液膜式蒸発器中の
水の経路の中央にあれば入口出口間水温度の半分だけ降
下した水温に調整)すれば、冷水流量の低下や冷水入口
温度の低下に伴う冷水出口温度低下による凍結の恐れに
対しても保護をすることが可能となる。
Further, in this embodiment, the set value of the water temperature sensor is appropriately adjusted (for example, if the temperature sensor of the water temperature sensor is located at the center of the water path in the falling film evaporator, the water temperature dropped by half the water temperature between the inlet and the outlet). ), It is possible to protect against the risk of freezing due to a decrease in the flow rate of the chilled water and a decrease in the temperature of the chilled water outlet accompanying a decrease in the temperature of the chilled water inlet.

上記の実施例では、下部水室9に設けた水温センサの
感温部を該水室9の下流側伝熱管42の入口附近内部に挿
入したが、その代りに、第1図の上部水室17に設けた水
温センサの感温部を該水室17の下流側伝熱管43の入口附
近の内部に挿入しても、上記実施例と同じ目的、効果を
達成し得る。
In the above embodiment, the insertion of the temperature sensing portion of the water temperature sensor provided in the lower water chamber 9 inside the inlet vicinity of the downstream side heat transfer tubes 4 2 of the water chamber 9, instead, the upper water Figure 1 be inserted temperature sensing portion of the water temperature sensor provided in the chamber 17 to the interior of the inlet vicinity of the downstream side heat transfer tubes 4 3 of the water chamber 17 to achieve the same purpose, effect as the above embodiment.

なお、水温センサをその感温部が水室17の上流側の複
数本の伝熱管41のうちの1本の内部で且つその出口附近
に挿入されている様に配置した場合にも、冷凍サイクル
運転中、流れている冷水の温度を遅れなく検知するとい
う目的、および、冷水の流れが停止した際の停滞した冷
水の温度低下を早期に検知するという目的は達成し得
る。しかし、この場合、前述したのと同様の理由で、複
数の上流側伝熱管41において、水温センサの挿入されて
いるものと、いないものとでは、流路面積の相違、冷水
流量の相違、ひいては該伝熱管41の出口での冷水温度の
相違が生じ、水温センサの検出は誤差を持つことにな
る。かかる誤差の殆んどない均一な冷水温度を検出する
には、先に述べた実施例の如く、上流側伝熱管が合流す
る水室の下流側の伝熱管内の入口附近に水温センサの感
温部を挿入する方がよい。
In addition, even when the water temperature sensor is disposed such that the temperature sensing part is inserted inside one of the plurality of heat transfer tubes 41 on the upstream side of the water chamber 17 and near the outlet thereof, During the cycle operation, the object of detecting the temperature of the flowing cold water without delay and the purpose of early detecting the temperature drop of the stagnant cold water when the flow of the cold water stops can be achieved. However, in this case, for the same reason as described above, a plurality of upstream side heat transfer tubes 4 1, and those that are inserted in the water temperature sensor, a shall not, the difference in flow area, the coolant flow rate difference, thus difference in chilled water temperature at the outlet of the heat transfer tubes 4 1 occurs, detection of the water temperature sensor will have an error. In order to detect a uniform chilled water temperature with almost no such error, as described in the above-described embodiment, the temperature of the water temperature sensor is detected near the inlet in the heat transfer tube downstream of the water chamber where the upstream heat transfer tube joins. It is better to insert a warm part.

要するに、冷凍サイクル運転中、流下液膜式蒸発器内
を流れる冷水温度を遅れなく検知し、また冷水の流れが
停止したときの該蒸発器内の停滞水の温度低下を速やか
に検知するためには、水温センサは上流側伝熱管内の出
口附近または下流側伝熱管内に挿入すればよい。上記検
知において、更に、均一冷水温度の検知をすることを望
む場合には、上流側伝熱管の合流する水室の下流側の伝
熱管内にてその入口附近に水温センサを挿入するのがよ
い。
In short, during the refrigeration cycle operation, to detect the temperature of the chilled water flowing in the falling film evaporator without delay, and to quickly detect the temperature drop of the stagnant water in the evaporator when the flow of the chilled water is stopped. The water temperature sensor may be inserted near the outlet in the upstream heat transfer tube or in the downstream heat transfer tube. In the above detection, if it is desired to detect the uniform chilled water temperature, it is preferable to insert a water temperature sensor near the inlet in the heat transfer tube downstream of the water chamber where the upstream heat transfer tube joins. .

伝熱管への水温センサの挿入部には伝熱管との間に適
当なスペーサを設けて、水温センサと伝熱管との接触を
防ぐ様にするのがよい。
It is preferable to provide an appropriate spacer between the water temperature sensor and the heat transfer tube at an insertion portion of the water temperature sensor into the heat transfer tube so as to prevent the water temperature sensor from contacting the heat transfer tube.

複数本の伝熱管のうちの1本だけでなく、そのうちの
若干本に水温センサを挿入し、それらの検知出力により
水温検知をする様にしてもよい。
A water temperature sensor may be inserted not only in one of the plurality of heat transfer tubes but also in some of them, and the water temperature may be detected based on the detection output thereof.

水の凍結防止の目的には、水温センサとしてガスチャ
ージ式サーモスタットを用い、最低水温を拾う様にして
もよい。
For the purpose of preventing freezing of water, a gas charge type thermostat may be used as a water temperature sensor to pick up the minimum water temperature.

なお、冷水凍結による本蒸発器の破損を防止するため
の保護手段として、蒸発器内の氷の成長による水室圧力
上昇を検知して冷凍サイクルの運転を止める手段を設け
てもよい。
As protection means for preventing damage to the evaporator due to cold water freezing, means for detecting an increase in the pressure in the water chamber due to ice growth in the evaporator and stopping the operation of the refrigeration cycle may be provided.

[発明の効果] 本発明によれば、流下液膜式蒸発器を流れる冷水の温
度を遅れなく検知することができ、また、冷水の流れが
停止した際に水温低下を早期に検出できるので該蒸発器
内の冷水の凍結防止に資することができる。
[Effects of the Invention] According to the present invention, the temperature of the chilled water flowing through the falling liquid film evaporator can be detected without delay, and when the flow of the chilled water stops, the decrease in the water temperature can be detected at an early stage. It can contribute to the prevention of freezing of cold water in the evaporator.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例になる流下液膜式蒸発器の部分
縦断面図、第2図は従来技術による流下膜式蒸発器の縦
断面図である。 2……液冷媒入口、41,42,43……伝熱管 5……冷水、6……冷水入口 7……冷水出口、8……ガス冷媒出口 9,16,17,18……水室 10……水温センサ、11……感温部
FIG. 1 is a partial longitudinal sectional view of a falling film evaporator according to an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of a falling film evaporator according to the prior art. 2 ... liquid refrigerant inlet, 4 1 , 4 2 , 4 3 ... heat transfer tube 5 ... cold water, 6 ... cold water inlet 7 ... cold water outlet, 8 ... gas refrigerant outlet 9,16,17,18 ... Water chamber 10: Water temperature sensor, 11: Temperature sensing part

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数本の上流側伝熱管内を分流した水を水
室内で合流させた後、該水室に連なる複数本の下流側伝
熱管内に分流させ、上記各伝熱管の外面に冷媒液を薄膜
状に流下させて蒸発熱伝達を行わせることにより、伝熱
管内を流れる水を冷却する様にした流下液膜式蒸発器に
おいて、前記複数本の下流側伝熱管のうちの1本もしく
は若干本の内部に、または、前記複数本の上流側伝熱管
のうちの1本もしくは若干本の出口附近の内部に、水温
センサの感温部を挿入したことを特徴とする流下液膜式
蒸発器。
1. A method according to claim 1, wherein the water divided in the plurality of upstream heat transfer tubes is merged in the water chamber, and then divided into the plurality of downstream heat transfer tubes connected to the water chamber. In a falling liquid film type evaporator configured to cool the water flowing in the heat transfer tube by causing the refrigerant liquid to flow down in a thin film shape and thereby perform evaporation heat transfer, one of the plurality of downstream heat transfer tubes is provided. Characterized in that a temperature-sensitive part of a water temperature sensor is inserted in the inside of one or a few books, or inside one or a few outlets of the plurality of upstream heat transfer tubes. Type evaporator.
【請求項2】前記複数本の下流側伝熱管のうちの1本も
しくは若干本の入口附近の内部に水温センサの感温部を
挿入した請求項1記載の流下液膜式蒸発器。
2. The falling liquid film type evaporator according to claim 1, wherein a temperature sensing part of a water temperature sensor is inserted in the vicinity of one or some of the plurality of downstream heat transfer tubes.
【請求項3】前記水室は、前記複数本の上流側伝熱管か
ら出た水をUターンさせて前記複数本の下流側伝熱管に
流入させるものである請求項1又は2記載の流下液膜式
蒸発器。
3. The flowing liquid according to claim 1, wherein the water chamber is configured to make a U-turn of the water discharged from the plurality of upstream heat transfer tubes and flow into the plurality of downstream heat transfer tubes. Membrane evaporator.
JP17787290A 1990-07-05 1990-07-05 Falling liquid film evaporator Expired - Fee Related JP2730793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17787290A JP2730793B2 (en) 1990-07-05 1990-07-05 Falling liquid film evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17787290A JP2730793B2 (en) 1990-07-05 1990-07-05 Falling liquid film evaporator

Publications (2)

Publication Number Publication Date
JPH0468298A JPH0468298A (en) 1992-03-04
JP2730793B2 true JP2730793B2 (en) 1998-03-25

Family

ID=16038536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17787290A Expired - Fee Related JP2730793B2 (en) 1990-07-05 1990-07-05 Falling liquid film evaporator

Country Status (1)

Country Link
JP (1) JP2730793B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185174A (en) * 2007-01-31 2008-08-14 Yamaha Miyuujitsuku Trading Kk Auxiliary device

Also Published As

Publication number Publication date
JPH0468298A (en) 1992-03-04

Similar Documents

Publication Publication Date Title
US5704221A (en) Refrigeration exchanger, method for control thereof and cooling installation including such exchanger
KR100352103B1 (en) Refrigerant flow control according to evaporator dryness
US4395886A (en) Refrigerant charge monitor and method for transport refrigeration system
US20020174665A1 (en) Variable evaporator control for a gas dryer
JP2730793B2 (en) Falling liquid film evaporator
US5157935A (en) Hot gas defrost system for refrigeration systems and apparatus therefor
JP3036227B2 (en) Vending machine cooling method
US11835277B2 (en) Defrost systems and methods for heat pump water heaters
JPH02238255A (en) Method and device for controlling refrigerant load through detection of refrigerant temperature
JP2717716B2 (en) refrigerator
US3675438A (en) Refrigerator with fluid amplifier means
JP3799655B2 (en) Vending machine cooling system
JP6697727B2 (en) Cooling system and refrigerant control method in cooling system
JP2880424B2 (en) Mirror circuit temperature controller for cooler for laser beam machine
JP3070723B2 (en) Refrigeration equipment
JPH05133693A (en) Water cooling device
JPH02115639A (en) Heat accumulation type heat source
JPH0571855A (en) Defroster for chilled gas circulation type display case
JPH06221690A (en) Freezer device
JPH06174344A (en) Frost formation detection method for outdoor heat exchanger for heat pump type air conditioner
JPH06213541A (en) Heating-and-cooling machine
JP2000121175A (en) Chiller
JPH0498094A (en) Ice heat accumulating device
JPS5919262Y2 (en) Chiller
JPS6152910B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20081219

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20081219

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees