JPH0468217B2 - - Google Patents

Info

Publication number
JPH0468217B2
JPH0468217B2 JP31081387A JP31081387A JPH0468217B2 JP H0468217 B2 JPH0468217 B2 JP H0468217B2 JP 31081387 A JP31081387 A JP 31081387A JP 31081387 A JP31081387 A JP 31081387A JP H0468217 B2 JPH0468217 B2 JP H0468217B2
Authority
JP
Japan
Prior art keywords
container body
thermally crystallized
parison
container
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31081387A
Other languages
Japanese (ja)
Other versions
JPH01153453A (en
Inventor
Shigezo Nohara
Sadao Hirata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP62310813A priority Critical patent/JPH01153453A/en
Publication of JPH01153453A publication Critical patent/JPH01153453A/en
Publication of JPH0468217B2 publication Critical patent/JPH0468217B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0207Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
    • B65D1/0215Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features multilayered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3008Preforms or parisons made of several components at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3016Preforms or parisons made of several components at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/302Preforms or parisons made of several components at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/08Polymers of acrylic acid esters, e.g. PMA, i.e. polymethylacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0068Permeability to liquids; Adsorption
    • B29K2995/0069Permeability to liquids; Adsorption non-permeable

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば炭酸飲料等の内圧が加わる耐
圧性の容器に関し、特に内容物の加熱殺菌時の耐
圧耐熱性を高めると共に常温において保存性を向
上させた耐圧耐熱容器及びその製造方法に関す
る。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a pressure-resistant container that is subjected to internal pressure, such as for carbonated beverages, and particularly improves pressure and heat resistance during heat sterilization of the contents, and improves storage stability at room temperature. The present invention relates to a pressure- and heat-resistant container with improved properties and a method for manufacturing the same.

(従来の技術) 従来、炭酸飲料等の内圧が加わる容器として
は、例えば第10図および第11図に示すような
ものがある。すなわち、100は容器全体を示し
ており、概略内部中空の容器本体101と容器本
体101の底部101Aに被着されるベースカツ
プ102とから成つている。容器本体101は内
圧が加わるために、耐圧性を高めるべく底部10
1Aが球殻状に丸められており、ベースカツプ1
02によつて容器100の立て置きを可能として
いる。この容器本体101は、第12図に示すよ
うな熱可塑性樹脂の単層構造より成る有底筒状の
パリソン103を予備成形しておき、このパリソ
ン103を二軸延伸ブロー成形することにより、
樹脂材料に結晶配向を生じさせ、容器本体101
の耐圧、耐熱性を確保していた。
(Prior Art) Conventionally, there are containers such as those shown in FIGS. 10 and 11, to which internal pressure is applied, such as for carbonated drinks. That is, 100 indicates the entire container, which is composed of a container body 101 having a generally hollow interior and a base cup 102 attached to a bottom portion 101A of the container body 101. Since internal pressure is applied to the container body 101, the bottom part 10 is designed to increase pressure resistance.
1A is rolled into a spherical shell shape, and the base cup 1
02 makes it possible to stand the container 100 upright. This container body 101 is made by preforming a bottomed cylindrical parison 103 made of a single layer structure of thermoplastic resin as shown in FIG. 12, and biaxially stretching blow molding this parison 103.
By causing crystal orientation in the resin material, the container body 101
It ensured pressure and heat resistance.

ところで、このような容器本体101への内容
物の充填作業は、容器本体101内に80〜95℃に
加熱された内容物を熱間充填し密封した後、窒素
等のガス充填を行う方法や容器本体101内に内
容物を充填した後口頸部101Bにキヤツピング
して密封し、その後容器本体101に熱湯を上か
ら流して内容物の加熱殺菌処理を行なう方法があ
る。後者のような場合には、炭酸飲料等の加熱殺
菌処理については法上65℃で10分以上行なうこと
が義務付けられており、容器本体101は耐熱性
と、加熱時の内圧に耐え得るように耐圧性が要求
されていた。
By the way, filling the contents into the container body 101 as described above can be carried out by hot filling the contents heated to 80 to 95°C into the container body 101, sealing it, and then filling it with a gas such as nitrogen. There is a method of filling the container body 101 with contents, capping the rear opening and neck portion 101B and sealing the container body 101, and then pouring boiling water into the container body 101 from above to heat sterilize the contents. In the latter case, heat sterilization of carbonated drinks, etc. is legally required to be carried out at 65°C for 10 minutes or more, and the container body 101 must be heat resistant and able to withstand the internal pressure during heating. Pressure resistance was required.

(発明が解決しようとする問題点) しかしながら、斯かる従来技術において、容器
本体101がポリエステルやポリプロピレン等の
熱可塑性樹脂の単層構造では、ガスバリヤ性(ガ
ス遮断性能)が低く、内容物によつては保存性が
不十分であり、またエチレン−ビニルアルコール
共重合体や特殊ポリアミド等のガスバリヤ性に優
れた樹脂のみでは、延伸ブロー成形が困難である
ため、コスト高になつてしまうという問題が新た
に発生する。上記のように、ポリエステルやポリ
プロピレン等の熱可塑性樹脂の単層構造では、充
填した内容物が果汁飲料の場合、容器本体101
内に酸素が侵入して内容物が酸化してしまい、果
汁飲料の色から変化してしまつたり、味が損なわ
れてしまう。他方、内容物が炭酸飲料の場合に
は、色の変化、味の低下に加えて炭酸ガスが次第
に排出されてしまい、風味が著しく低下する。従
つて、従来の容器では保存性が悪いという問題点
があつた。
(Problems to be Solved by the Invention) However, in such conventional technology, when the container body 101 has a single-layer structure of thermoplastic resin such as polyester or polypropylene, gas barrier properties (gas barrier performance) are low, and the container body 101 has a low gas barrier property (gas barrier performance), and may be affected by the contents. In addition, resins with excellent gas barrier properties such as ethylene-vinyl alcohol copolymers and special polyamides are difficult to stretch and blow mold, resulting in high costs. A new occurrence. As described above, in a single-layer structure made of thermoplastic resin such as polyester or polypropylene, if the filled content is a fruit juice drink, the container body 101
Oxygen enters the container and the contents oxidize, causing the fruit juice to change color and lose its taste. On the other hand, when the content is a carbonated beverage, in addition to a change in color and a decrease in taste, carbon dioxide gas is gradually discharged, resulting in a significant decrease in flavor. Therefore, conventional containers have had the problem of poor storage stability.

また、上記従来技術にあつては、容器本体10
1を二軸延伸ブロー成形することにより、樹脂材
料が延伸され、強度及び耐熱性を備えるに至る
が、容器本体101の底部101Aの中央付近
は、パリソン103を射出成形した際のばり等が
存在し、ブロー成形時に十分延伸されず、延伸に
よる結晶配向の効果が小さい。そのため強度が弱
くなりがちで落下等の衝撃によつて破損するおそ
れがある。また加熱殺菌時の熱によつて容器本体
101の底部101A中央付近が軟化してしま
い、底部101Aが部分的に突出してしまい商品
価値がなくなつてしまうという問題があつた。第
13図には樹脂のヤング率が延伸状態と未延伸状
態で温度によつて変化する状態が示されており、
未延伸部分では、65℃付近で強度が急激に低下す
ることがわかる。65℃付近は法規制の温度でもあ
り、容器本体101底部101Aの強化が要請さ
れている。
Furthermore, in the above conventional technology, the container body 10
By biaxially stretching blow molding 1, the resin material is stretched and has strength and heat resistance, but there are burrs etc. when the parison 103 was injection molded near the center of the bottom 101A of the container body 101. However, it is not sufficiently stretched during blow molding, and the effect of crystal orientation by stretching is small. Therefore, the strength tends to be weak and there is a risk of damage due to impact such as dropping. In addition, there was a problem in that the center area of the bottom 101A of the container body 101 was softened by the heat generated during heat sterilization, causing the bottom 101A to partially protrude, resulting in a loss of commercial value. FIG. 13 shows how the Young's modulus of the resin changes depending on temperature in the stretched state and unstretched state.
It can be seen that the strength of the unstretched portion decreases rapidly at around 65°C. Around 65°C is also a legally regulated temperature, and the bottom 101A of the container body 101 is required to be strengthened.

そこで第14図に示すようにパリソン103′
の底壁部103A′を予め部分的に加熱して熱結
晶化させておき、ブロー成形後の容器本体101
の底部101A中央を強化するものも提案されて
いる(特開昭60−148441号公報参照)。しかし単
にパリソン103をブロー成形すると、容器本体
101の底部101Aは、第15図に示すように
パリソン103の底壁部103A′の結晶化領域
αと延伸領域βとの境界部において肉厚が連続的
に薄くなり、境界部に十分延伸されない低延伸領
域γが存在することになる。そのため加熱殺菌時
に低延伸領域が膨らんでしまうおそれがあり、依
然として耐圧、耐熱性に限界があつた。
Therefore, as shown in FIG. 14, the parison 103'
The bottom wall portion 103A' of the container body 101 after blow molding is heated partially in advance to thermally crystallize it.
It has also been proposed to strengthen the center of the bottom 101A (see Japanese Patent Laid-Open No. 148441/1983). However, when the parison 103 is simply blow-molded, the bottom 101A of the container body 101 has a continuous wall thickness at the boundary between the crystallized region α and the stretched region β of the bottom wall 103A' of the parison 103, as shown in FIG. This results in a low stretch region γ that is not sufficiently stretched at the boundary. Therefore, there is a risk that the low-stretch region may swell during heat sterilization, and there are still limits to pressure resistance and heat resistance.

本発明は上記した従来技術の問題点を解決する
ためになされたもので、その目的とするところ
は、保存性を向上させるとともに、温度による加
熱殺菌に耐え得る耐圧耐熱容器及びその製造方法
を提供することにある。
The present invention has been made in order to solve the problems of the prior art described above, and its purpose is to provide a pressure- and heat-resistant container that can improve storage stability and withstand heat sterilization at high temperatures, and a method for manufacturing the same. It's about doing.

(問題点を解決するための手段) 上記目的を解決するために、本発明に係る耐圧
耐熱容器は、容器本体を二軸延伸ブロー成形によ
つて内部中空に構成した耐圧耐熱容器において、
前記容器本体の少なくとも胴部及び肩部を配向性
結晶性樹脂製の内、外表面層と少なくともガスバ
リヤ性樹脂を有する中間層とから成る積層体で構
成し、少なくとも前記容器本体の底部に部分的に
熱結晶化させた熱結晶化部を設けると共に、該底
部の熱結晶化部以外の領域の全てを高延伸倍率に
よつて延伸して熱結晶化部よりも薄肉の高延伸部
とし、前記容器本体底部を容器本体の外側に向か
つて凸状に膨らむ曲面構成とすると共に、前記熱
結晶化部を底部の内周面側に突出する構成とし、
前記高延伸部の熱結晶化部との結合位置を熱結晶
化部の厚さ方向の外端位置としたことを特徴とす
る。
(Means for Solving the Problems) In order to solve the above object, the pressure and heat resistant container according to the present invention is a pressure and heat resistant container in which the container body is made hollow inside by biaxial stretch blow molding.
At least the trunk and shoulder portions of the container body are constructed of a laminate consisting of inner and outer surface layers made of oriented crystalline resin and at least an intermediate layer having a gas barrier resin, and at least a portion of the bottom portion of the container body is A thermally crystallized portion is provided, and the entire region other than the thermally crystallized portion at the bottom is stretched at a high stretching ratio to form a highly stretched portion thinner than the thermally crystallized portion, and The bottom of the container body has a curved surface that swells in a convex shape toward the outside of the container body, and the thermal crystallization portion is configured to protrude toward the inner peripheral surface of the bottom,
It is characterized in that the position where the highly stretched portion is joined to the thermally crystallized portion is the outer end position of the thermally crystallized portion in the thickness direction.

また、本発明に係る耐圧耐熱容器の製造方法
は、まず配向性結晶性樹脂製の内、外表面層及び
少なくともガスバリヤ性樹脂を有する中間層とか
ら成る積層体で有底筒状のパリソンを成形し、少
なくとも該パリソンの底部を部分的に熱結晶化さ
せ、その後パリソンの熱結晶化領域以外の領域を
延伸して容器本体を成形する耐圧耐熱容器の製造
方法において、前記パリソン底部の熱結晶化領域
の近接区域については、ブロー成形圧力によつて
熱結晶化領域の縁に沿つて肉厚方向外側に向かつ
て材料を流動させて金型内周面に押しつけ、熱結
晶化領域以外の領域をすべて高延伸倍率によつて
延伸して容器本体を成形することを特徴とする。
Further, in the method for manufacturing a pressure- and heat-resistant container according to the present invention, first, a cylindrical parison with a bottom is formed from a laminate consisting of inner and outer surface layers made of oriented crystalline resin and an intermediate layer having at least a gas barrier resin. In the method for producing a pressure- and heat-resistant container, the method for producing a pressure- and heat-resistant container comprises thermally crystallizing at least a portion of the bottom of the parison, and then stretching a region other than the thermally crystallized region of the parison to form a container body. For areas adjacent to the thermally crystallized area, the blow molding pressure causes the material to flow outward in the wall thickness direction along the edge of the thermally crystallized area and is pressed against the inner circumferential surface of the mold. All are characterized in that the container body is formed by stretching at a high stretching ratio.

(作用) 上記の構成を有する本発明においては、容器本
体の少なくとも胴部及び肩部を配向性結晶性樹脂
製の内、外表面層と少なくともガスバリヤ性樹脂
を有する中間層とから成る積層体で構成したか
ら、ガスバリヤ性が向上すると共に耐層間剥離性
に優れ、容器本体内部に酸素等が侵入することな
く、かつ内部のガスが排出されることもない。ま
た、容器本体底部を外側に凸状に膨らんだ曲面構
成とし、熱結晶化部を底部の内周側に突出する構
成とし、しかも、高延伸部の熱結晶化部との結合
位置を熱結晶化部の厚さ方向の外端位置としたこ
とにより、熱結晶化部の近接区域の材料をブロー
成形圧力によつて熱結晶化部の縁に沿つてそぎ落
とすように流動させることができ、低延伸領域を
無くして熱結晶化部以外の領域をすべて高延伸倍
率でもつて延伸させることができる。このように
容器本体の底部が全て耐熱性、耐圧性に優れた熱
結晶化部と高延伸された高延伸領域としたので、
加熱殺菌時の高温雰囲気下において高い内圧が加
わつても容器本体底部の形状は保持される。
(Function) In the present invention having the above configuration, at least the body and shoulder portions of the container body are made of a laminate comprising inner and outer surface layers made of oriented crystalline resin and an intermediate layer having at least gas barrier resin. Because of this structure, gas barrier properties are improved and delamination resistance is excellent, and oxygen and the like do not enter the inside of the container body, and internal gas is not discharged. In addition, the bottom of the main body of the container has a curved surface that bulges outward, and the thermally crystallized portion is configured to protrude toward the inner peripheral side of the bottom. By setting the outer end position of the thermally crystallized portion in the thickness direction, the material in the vicinity of the thermally crystallized portion can be caused to flow so as to be scraped off along the edge of the thermally crystallized portion by blow molding pressure, By eliminating the low stretching region, all regions other than the thermally crystallized portion can be stretched at a high stretching ratio. In this way, the bottom of the container body is entirely made up of a thermally crystallized region with excellent heat resistance and pressure resistance, and a highly stretched region.
The shape of the bottom of the container body is maintained even when high internal pressure is applied in a high temperature atmosphere during heat sterilization.

(実施例) 以下に本発明を図示の実施例に基づいて説明す
る。第1図乃至第4図には本発明の耐圧耐熱容器
の一実施例を示している。第1図イにおいて、1
は容器全体を示しており、この容器1は内部中空
に構成された容器本体2と、この容器本体2の底
部2Bに被着されるベースカツプ3とから構成さ
れている。
(Example) The present invention will be explained below based on the illustrated example. FIGS. 1 to 4 show an embodiment of the pressure- and heat-resistant container of the present invention. In Figure 1 A, 1
1 shows the entire container, and this container 1 is composed of a container body 2 having a hollow interior and a base cup 3 attached to a bottom portion 2B of this container body 2.

容器本体2は第1図ロに示すように配向性結晶
性樹脂製の内、外表面層1A,1Bとガスバリヤ
性(ガス遮断性)樹脂製の中間層1Cとから成る
積層体で構成されている。上記配向性結晶性樹脂
としてはポリプロピレン樹脂、ポリエステル樹脂
(本実施例ではPET)アクリルニトル(AN)系
樹脂等から選定され、またガスバリヤ性樹脂とし
てはエチレン−ビニルアルコール共重合体
(EVOH),メタキシリデンアジパミド(MXナイ
ロン)、バリヤ性ポリエステル(Bレジン)等か
ら選定される。そして、本実施例において内、外
表面層1A,1BはPETを、中間層1Cはバリ
ヤ性ポリエステルを使用している。内、外表面層
1A,1Bは、容器本体2の全域に亘り面方向に
連続しており、中間層1Cも容器本体2の全域に
亘り面方向に連続して構成されている。
As shown in FIG. 1B, the container body 2 is composed of a laminate consisting of inner and outer surface layers 1A and 1B made of oriented crystalline resin and an intermediate layer 1C made of gas barrier resin. There is. The above-mentioned oriented crystalline resin is selected from polypropylene resin, polyester resin (in this example, PET), acrylnitrile (AN) resin, etc., and the gas barrier resin is selected from ethylene-vinyl alcohol copolymer (EVOH), methane resin, etc. Selected from xylidene adipamide (MX nylon), barrier polyester (B resin), etc. In this embodiment, the inner and outer surface layers 1A and 1B are made of PET, and the intermediate layer 1C is made of barrier polyester. The inner and outer surface layers 1A and 1B are continuous in the surface direction over the entire area of the container body 2, and the intermediate layer 1C is also configured to be continuous in the surface direction over the entire area of the container body 2.

また、容器本体2は円筒状の胴部2Aと、胴部
2A上方に連続して成形される肩部2C及び口頸
部2Dと、胴部2A下端に連続して設けられ下方
に向かつて球殻状に突出する底部2Bとから構成
されている。
The container body 2 includes a cylindrical body 2A, a shoulder 2C and a mouth and neck 2D that are continuously molded above the body 2A, and a ball that is continuously provided at the lower end of the body 2A and faces downward. The bottom part 2B protrudes like a shell.

上記容器本体2の底部2Bは、第3図に示すよ
うにその中央部が熱によつて部分的に結晶化され
て熱結晶化部4となつている。そして熱結晶化部
4以外の領域が全て高延伸倍率によつて薄肉に延
伸されて高延伸部5となつている。上記結晶化部
4は底部2Bの中心点O(容器本体2の中心軸線
Xが底部2Bと交わる点)を中心として描いた平
面形状で、肉厚t1は高延伸部5の肉厚t2に比べて
厚肉になつている。熱結晶化部4は延伸されてい
ない無配向の結晶状態で、強度が強く、安定した
状態を保持する。通常材料は約100℃〜140℃以上
で結晶化して球晶を生じ乳白色を呈する。
As shown in FIG. 3, the bottom portion 2B of the container body 2 is partially crystallized by heat to form a thermally crystallized portion 4 at its center. All regions other than the thermally crystallized portion 4 are thinly stretched at a high stretching ratio to form a highly stretched portion 5. The crystallized portion 4 has a planar shape centered on the center point O of the bottom portion 2B (the point where the central axis X of the container body 2 intersects with the bottom portion 2B), and the wall thickness t 1 is equal to the wall thickness t 2 of the highly stretched portion 5. It is thicker than the . The thermally crystallized portion 4 is in an unstretched, non-oriented crystalline state, has strong strength, and maintains a stable state. Normally, the material crystallizes at temperatures above about 100°C to 140°C, forming spherulites and exhibiting a milky white color.

また高延伸部5においては、材料の延伸作用に
よつて材料内部に結晶配向が生じ、強度を強く形
状保持性も優れている。通常70℃〜140℃、好ま
しくは90〜110℃に加熱した状態で延伸すること
により結晶配向を生じさせるようになつている。
Further, in the highly stretched portion 5, crystal orientation occurs inside the material due to the stretching action of the material, resulting in strong strength and excellent shape retention. Crystal orientation is caused by stretching the film under heating, usually at 70°C to 140°C, preferably 90 to 110°C.

本実施例にあつては熱結晶化部4の厚さt1
3.5[mm]、高延伸部5の厚さt2が0.35[mm]程度と
なつている。そして高延伸部5は胴部2Aに連続
しており、その厚みは胴部2Aより若干厚く形成
されている。
In this embodiment, the thickness t 1 of the thermally crystallized portion 4 is
3.5 [mm], and the thickness t 2 of the highly stretched portion 5 is approximately 0.35 [mm]. The highly stretched portion 5 is continuous with the body portion 2A, and is formed to be slightly thicker than the body portion 2A.

上記熱結晶化部4と高延伸部5との境界部にお
いては、高延伸部5は熱結晶化部4の側端部から
延びており、結合位置は熱結晶化部4の厚さ方向
の外端位置となつている。従つて熱結晶化部4は
容器本体2の底部2B内周面側に熱結晶化部4の
厚さ分だけ突出することになり、熱結晶化部4と
高延伸部5の境界部に段差6が形成されている。
この段差6を本実施例では極小にしてある。
At the boundary between the thermally crystallized portion 4 and the highly stretched portion 5, the highly stretched portion 5 extends from the side edge of the thermally crystallized portion 4, and the bonding position is in the thickness direction of the thermally crystallized portion 4. It is at the outer end position. Therefore, the thermally crystallized portion 4 protrudes toward the inner peripheral surface of the bottom portion 2B of the container body 2 by the thickness of the thermally crystallized portion 4, and a step is formed at the boundary between the thermally crystallized portion 4 and the highly stretched portion 5. 6 is formed.
This step 6 is minimized in this embodiment.

また、本実施例にあつては口頸部2Dも熱結晶
化されていて、強度、耐熱性を高めてある。すな
わち、口頸部2Dは厚肉の円筒状で、その下端面
7の外側縁に胴部2Aから連続して高延伸された
肩部2C上端縁が結合されている。
Furthermore, in this embodiment, the mouth and neck portion 2D is also thermally crystallized to enhance strength and heat resistance. That is, the mouth and neck part 2D has a thick cylindrical shape, and the upper edge of the shoulder part 2C, which is continuously extended from the body part 2A and has a high extension, is connected to the outer edge of the lower end surface 7 of the mouth and neck part 2D.

また、ベースカツプ3は、概略有底円筒形状
で、円周31の径が略容器本体2の胴部2Aの外
径と同一になつている。そして底壁32には周壁
31と同心状に形成され容器本体2の底部2Bに
接着固定される環状の台座部33が設けられてい
る。一方、周壁31の上端部は容器本体2の胴部
2A下縁に係止されており、周壁31上端部に
は、ベースカツプ3と容器本体底部2Bとの間に
形成される空間Sに熱湯の流通を許容する通口部
34が周方向に複数設けられている。通口部34
……は、周壁31に半径方向内方に窪ませた縦溝
35……を周方向に複数設けることによりベース
カツプ3周壁31上端に凹凸を形成し、この凹凸
によつて容器本体2との間に形成される隙間によ
つて構成されている。
Further, the base cup 3 has a generally bottomed cylindrical shape, and the diameter of the circumference 31 is approximately the same as the outer diameter of the body portion 2A of the container body 2. The bottom wall 32 is provided with an annular pedestal 33 that is formed concentrically with the peripheral wall 31 and is adhesively fixed to the bottom 2B of the container body 2. On the other hand, the upper end of the peripheral wall 31 is locked to the lower edge of the body 2A of the container body 2, and the upper end of the peripheral wall 31 is provided with hot water in a space S formed between the base cup 3 and the bottom 2B of the container body. A plurality of openings 34 are provided in the circumferential direction to allow circulation. Vent part 34
... is formed by providing a plurality of longitudinal grooves 35 ... recessed radially inward in the circumferential wall 31 in the circumferential direction to form unevenness on the upper end of the circumferential wall 31 of the base cup 3, and the unevenness creates a gap between the base cup 3 and the container body 2. It is made up of gaps formed between.

尚、本実施例では、PETからなる内外表面層
1A,1B及びバリヤ性ポリエステルからなるガ
スバリヤ層1Cで構成される積層体を容器本体2
の全域に亘り面方向に連続するようにしたが、こ
れ以外に口頸部2Dまたは底部2Bの少なくとも
一方を除いた容器本体2の胴部2A及び肩部2C
を上記積層体で構成してもよい。
In this example, the container body 2 is a laminate composed of inner and outer surface layers 1A and 1B made of PET and a gas barrier layer 1C made of barrier polyester.
The body part 2A and the shoulder part 2C of the container body 2 are made to be continuous in the surface direction over the entire area, but in addition to this, the body part 2A and shoulder part 2C of the container body 2 except at least one of the mouth and neck part 2D or the bottom part 2B.
may be composed of the above-mentioned laminate.

また、本実施例では積層体をPETからなる内、
外表面層1A,1B及びバリヤ性ポリエステルか
らなるガスバリヤ層1Cの2種3層で構成した
が、これ以外に例えば内表面層1AをPETとし、
その上にバリヤ性ポリエステル、PET又はリグ
ラインド層、バリヤ性ポリエステル及び外表面層
1BであるPETを順に積層して2種5層構造と
しても良く、また内表面層1AをPETとし、そ
の上に接着剤、エチレン−ビニルアルコール共重
合体又はメタキシリデンアジパミド、接着剤及び
外表面層であるPETを順に積層して3種5層構
造でも良い。更に、内表面層1AをPETとし、
その上にリグラインド層、接着剤、エチレン−ビ
ニルアルコール共重合体又はメタキシリデンアジ
パミド、接着剤、リグラインド層及び外表面層と
なるPETを順に積層して4種7層構造でも良く、
この場合には外表面層側のリグラインド層を除い
て4種6層構造でも良い。ここで、上記接着剤と
してはポリアミド系などの接着剤が使用される。
これらの積層体の構造においてポリアミド系の接
着剤を介在させるか否かはPETと同族系か否か
で決定される。即ち、ガスバリヤ層1Cにバリヤ
性ポリエステルを使用した場合には、同族系であ
るので、層間接着性を有し接着剤が不要となる。
また、上記リグラインド層としてはバリ等を再使
用したものが用いられる。
In addition, in this example, the laminate is made of PET.
Although it is composed of three layers of two types: the outer surface layers 1A, 1B and the gas barrier layer 1C made of barrier polyester, for example, the inner surface layer 1A may be made of PET,
On top of that, barrier polyester, PET or regrind layer, barrier polyester, and PET as the outer surface layer 1B may be laminated in order to form a 2-type, 5-layer structure, or the inner surface layer 1A is PET and An adhesive, an ethylene-vinyl alcohol copolymer or metaxylidene adipamide, an adhesive, and PET as an outer surface layer may be laminated in order to form a five-layer structure of three types. Furthermore, the inner surface layer 1A is made of PET,
On top of that, a regrind layer, an adhesive, an ethylene-vinyl alcohol copolymer or metaxylidene adipamide, an adhesive, a regrind layer, and a PET serving as an outer surface layer are laminated in order, and a 7-layer structure of 4 types may be used. ,
In this case, a four-layer, six-layer structure may be used, except for the regrind layer on the outer surface layer side. Here, as the adhesive, a polyamide adhesive or the like is used.
Whether or not a polyamide adhesive is used in the structure of these laminates is determined by whether the adhesive is homologous to PET or not. That is, when barrier polyester is used for the gas barrier layer 1C, since it is a homologous polyester, it has interlayer adhesion and no adhesive is required.
Further, as the regrind layer, a layer made of recycled burrs or the like is used.

以上のように構成される本実施例の耐圧耐熱容
器によれば、容器本体2を多層構造としたためガ
スバリヤ性が向上し、内容物を炭酸飲料とした場
合には炭酸ガスが排出されることなく風味が低下
せず、色も変化しない。また内容物を果汁飲料と
した場合にあつても、酸化することなく果汁飲料
本来の色、風味が長期にわたり維持される。
According to the pressure-resistant and heat-resistant container of this embodiment configured as described above, the gas barrier property is improved because the container body 2 has a multilayer structure, and when the content is a carbonated beverage, carbon dioxide gas is not discharged. The flavor does not deteriorate and the color does not change. Furthermore, even when the content is a fruit juice drink, the original color and flavor of the fruit juice drink are maintained for a long period of time without oxidation.

次に上記耐圧耐熱容器の製造方法について第5
図乃至第9図に基づいて説明する。
Next, we will discuss the method for manufacturing the above-mentioned pressure- and heat-resistant container.
This will be explained based on FIGS. 9 to 9.

先ず、第6図に示すように配向性結晶性樹脂製
の内、外表面層1A,1B及びガスバリヤ性樹脂
製の中間層1Cから成る積層体で延伸成形用パリ
ソン10を予備成形する。パリソン10は上記容
器本体2を二軸延伸ブロー成形するために予備的
に成形される素材であり、主として容器本体2の
胴部2Aとなるべき筒状部10Aと、容器本体2
の底部2Bとなるべき底壁部10Bと、筒状部1
0A上端に連なる口頸部2Dとからなる有底円筒
状部材により構成されている。
First, as shown in FIG. 6, a parison 10 for stretch molding is preformed with a laminate consisting of inner and outer surface layers 1A and 1B made of oriented crystalline resin and an intermediate layer 1C made of gas barrier resin. The parison 10 is a material that is preliminarily formed to biaxially stretch blow mold the container body 2, and mainly consists of a cylindrical portion 10A that will become the body 2A of the container body 2, and a
The bottom wall portion 10B that should become the bottom portion 2B of the cylindrical portion 1
It is constituted by a bottomed cylindrical member consisting of a mouth and neck part 2D connected to the upper end of 0A.

パリソン10の製造は、例えば第7図に示すよ
うに射出成形により製造される。すなわち、20
は成形型であり、型閉めした成形型20のキヤビ
テイ21内に、ゲート22を介して図示しない射
出ノズルから溶融樹脂を注入し、硬化後型開きし
て成形品10′を取り出す。
The parison 10 is manufactured, for example, by injection molding as shown in FIG. That is, 20
is a mold, in which molten resin is injected into the cavity 21 of a closed mold 20 from an injection nozzle (not shown) through a gate 22, and after hardening, the mold is opened and a molded product 10' is taken out.

次にパリソン10′の口頸部2D及び底壁部1
0B′を加熱処理して熱結晶化し、熱結晶化領域
G1,G2を形成する。口頸部2D′に設けた結晶
化領域G1は口頸部2D′全体に及び、底壁部1
0Bに設ける結晶化領域G2も底壁部10Bの略
全面にわたつて形成されている。そしてこの結晶
化領域G1,G2はそれぞれ全厚さにわたつて加
熱処理してある。
Next, the mouth and neck part 2D and the bottom wall part 1 of the parison 10'
0B′ is heat-treated and thermally crystallized to form a thermally crystallized region.
Form G1 and G2. The crystallized region G1 provided in the mouth and neck part 2D' extends over the entire mouth and neck part 2D', and the bottom wall part 1
The crystallized region G2 provided at 0B is also formed over substantially the entire surface of the bottom wall portion 10B. The entire thickness of each of the crystallized regions G1 and G2 is heat treated.

次に上記したパリソン10を用いて容器本体2
をブロー成形する成形工程について第8図イ及び
ロに基づいて説明する。図において、11はブロ
ー成形用の金型であり、この金型11は概略容器
本体2の胴部2Aを成形する11Aと、容器本体
底部2Bを成形する底型11Bと、容器の口頸部
2Dを成形するネツク型11Cから成つている。
一方12は、パリソン10をその軸線X方向に延
伸するための延伸棒であり、図示しない駆動源に
よつて金型11内に装着されたパリソン10内に
その口頸部2D側から出没自在に挿入される。そ
して、この延伸棒12とパリソン10の内面との
空間に圧縮空気等の流体が通る流体通路13が設
けられている。
Next, using the parison 10 described above, the container body 2 is
The molding process of blow molding will be explained based on FIGS. 8A and 8B. In the figure, 11 is a mold for blow molding, and this mold 11 generally includes a mold 11A for molding the body 2A of the container body 2, a bottom mold 11B for molding the bottom 2B of the container body, and a mouth and neck part of the container. It consists of a neck mold 11C for molding 2D.
On the other hand, reference numeral 12 denotes a stretching rod for stretching the parison 10 in the direction of its axis X, and it can freely move in and out of the parison 10 mounted in the mold 11 from the mouth and neck 2D side by a drive source (not shown). inserted. A fluid passage 13 through which a fluid such as compressed air passes is provided in a space between the stretching rod 12 and the inner surface of the parison 10.

上記装置においてブロー成形は次のようにして
行われる。先ず延伸温度(ポリエステルの場合、
(本実施例では内外表面層1A,1BがPET)70
〜140[℃])に加熱されたパリソン10を、第8
図イに示すように延伸棒12を延ばして軸方向に
延伸させる。この状態では主としてパリソン10
の筒状部10Aが軸方向に延伸倍率2.2以上に延
伸される。更に第8図ロに示すように延伸棒12
の周囲の流体通路13を通つて圧縮空気が高圧下
で吸込まれてパリソン10の筒状部10Aが半径
方向外方に膨らんで金型11内面に密着する。一
方、底壁部10Bもその中心点O′の近傍から薄
肉化されながら半径方向外方に拡がり、その外面
が底型11B内面に密着する。この状態ではパリ
ソン10の筒状部10Aは主として周方向に延伸
倍率3以上に延伸される。また底壁部10Bは、
その結晶化領域G1の部分は温度によつて殆ど変
化せず、結晶化領域G1に連続する非晶質の部分
が延伸される。また口頸部2Dの結晶化領域も延
伸されず、結晶化領域G1に連なる非晶質部分が
延伸される。こうしてパリソン10の結晶化領域
G1,G2以外の非晶質の部分、本実施例では主
として筒状部10Aが加熱延伸されて十分な結晶
配向が生じ、容器本体2の胴部2A及び肩部2
C、更に底部2Bの結晶化部4以外の高延伸部5
を構成する。
Blow molding is performed in the above apparatus as follows. First, the stretching temperature (in the case of polyester,
(In this example, the inner and outer surface layers 1A and 1B are PET) 70
Parison 10 heated to ~140 [℃]) was placed in the 8th
As shown in Figure A, the stretching rod 12 is extended and stretched in the axial direction. In this state, mainly parison 10
The cylindrical portion 10A is stretched in the axial direction to a stretching ratio of 2.2 or more. Furthermore, as shown in FIG.
Compressed air is sucked under high pressure through the fluid passage 13 around the parison 10, and the cylindrical portion 10A of the parison 10 expands radially outward and comes into close contact with the inner surface of the mold 11. On the other hand, the bottom wall portion 10B also expands outward in the radial direction while becoming thinner from the vicinity of its center point O', and its outer surface closely contacts the inner surface of the bottom mold 11B. In this state, the cylindrical portion 10A of the parison 10 is stretched mainly in the circumferential direction to a stretching ratio of 3 or more. Further, the bottom wall portion 10B is
The portion of the crystallized region G1 hardly changes depending on the temperature, and the amorphous portion continuous to the crystallized region G1 is stretched. Further, the crystallized region of the mouth and neck region 2D is not stretched either, but the amorphous portion connected to the crystallized region G1 is stretched. In this way, the amorphous portions other than the crystallized regions G1 and G2 of the parison 10, mainly the cylindrical portion 10A in this embodiment, are heated and stretched to produce sufficient crystal orientation, and the body portion 2A and the shoulder portion 2 of the container body 2 are heated and stretched.
C, and further the highly stretched portion 5 other than the crystallized portion 4 of the bottom portion 2B.
Configure.

第9図イ乃至ハには、ブロー成形時におけるパ
リソン底壁部10Bの延伸状態を示している。す
なわち圧縮空気のガス圧によつて結晶化領域G2
に隣接する非晶質の部分が延伸されていき、非晶
質部分が結晶化領域G2の縁に沿つて外方に流動
して結晶化領域G2の縁に段差6が生じ、非晶質
の部分は全て高延伸倍率でもつて延伸されて薄肉
となる。ここで、段差6は極小にすることが望ま
しい。而して容器本体2の底部2Bにおいて、結
晶化領域G2はブロー成形前のパリソン10の底
壁部10Bの形状のまま残存し、底部2B中央の
結晶化部4となる。そして底部2Bの結晶化部4
以外の部分は容器本体2の胴部2Aと略均一に高
延伸され高延伸部5となる。
FIGS. 9A to 9C show the stretched state of the parison bottom wall portion 10B during blow molding. That is, the crystallization region G2 is caused by the gas pressure of compressed air.
The amorphous portion adjacent to is stretched, and the amorphous portion flows outward along the edge of the crystallized region G2, creating a step 6 at the edge of the crystallized region G2. All parts are stretched at high draw ratios to become thin. Here, it is desirable that the step 6 be minimized. In the bottom part 2B of the container body 2, the crystallized region G2 remains in the shape of the bottom wall part 10B of the parison 10 before blow molding, and becomes the crystallized part 4 at the center of the bottom part 2B. And the crystallized part 4 of the bottom part 2B
The other portions are highly stretched substantially uniformly with the body 2A of the container body 2 to form a highly stretched portion 5.

一方、パリソン10の口頸部2D下端と筒状部
10Aとの境界部も、ブロー成形時のブロー圧力
によつて筒状部10Aの非晶質部分が結晶化領域
G1の縁に沿つてそぎ落されるように外方に流動
し、結晶化領域G1の縁に段差が生じて容器本体
2の口頸部2Dとなる肩部2Cは高延伸されて十
分な結晶配向が生じる。
On the other hand, at the boundary between the lower end of the mouth and neck part 2D of the parison 10 and the cylindrical part 10A, the amorphous part of the cylindrical part 10A is also scraped along the edge of the crystallized region G1 due to the blow pressure during blow molding. It flows outward as if falling, a step is created at the edge of the crystallized region G1, and the shoulder portion 2C, which becomes the mouth and neck portion 2D of the container body 2, is highly stretched and sufficient crystal orientation occurs.

容器本体2の成形が完了すると、容器本体2底
部2Bにベースカツプ3を被着し、台座部33に
おいて接着固定して容器1が完成する。
When the molding of the container body 2 is completed, the base cup 3 is attached to the bottom portion 2B of the container body 2 and fixed with adhesive on the pedestal portion 33, thereby completing the container 1.

尚、上記実施例では、パリソン10を射出成形
により製造したが、これ以外に押出成形により製
造してもよい。
In the above embodiment, the parison 10 was manufactured by injection molding, but it may also be manufactured by extrusion molding.

次にこのようにして成形された容器1に、炭酸
飲料等を充填して内容物を加熱殺菌する場合につ
いて説明する。内容物の加熱殺菌は、容器1内に
内容物を充填してキヤツピングした後、熱湯を容
器1上部から流すことにより行なう。本実施例で
は容器1の上部において75℃の熱湯を流す。熱湯
は容器本体2の胴部2A外周面を伝つて下方に流
れ、容器本体2の壁面を通じて内容物を加熱す
る。一方、胴部2A下端まで流れた熱湯はベース
カツプ3に形成した通口部34からベースカツプ
3内側に侵入し、容器本体底部2Bの球面状の外
周面を伝つて下方に流れる。この底部2Bにおい
て熱湯は65℃程度となる。一方、加熱によつて容
器本体2内部のガス圧が高まり、容器本体2は高
温、高圧下にさらされるが、容器本体2の底部2
Bは十分結晶配向された高延伸部5と加熱によつ
て結晶化された結晶化部4とからのみ構成されて
いるので、高温の熱湯を流しても軟化するおそれ
はなく、耐熱性及び耐圧性は高まつて温度による
制約は低減される。因みに、このように結晶化し
た場合の耐熱温度は80〜95[℃]、耐圧性は、8〜
10Kg/cm2程度となる。従つて、より高温での殺菌
が可能となり、使用範囲を拡大することができ
る。この際、容器本体2を上述のように積層体で
構成したためガスバリヤ性に優れ長期にわたり殺
菌状態が維持される。
Next, a case will be described in which the container 1 formed in this manner is filled with a carbonated beverage or the like and the contents are heated and sterilized. Heat sterilization of the contents is carried out by pouring boiling water from the top of the container 1 after filling the container 1 with the contents and capping the container. In this example, hot water at 75°C is poured into the upper part of the container 1. The hot water flows downward along the outer peripheral surface of the body 2A of the container body 2 and heats the contents through the wall surface of the container body 2. On the other hand, the hot water that has flowed to the lower end of the body 2A enters the inside of the base cup 3 through the opening 34 formed in the base cup 3, and flows downward along the spherical outer peripheral surface of the container body bottom 2B. The temperature of the hot water in this bottom portion 2B is approximately 65°C. On the other hand, the gas pressure inside the container body 2 increases due to heating, and the container body 2 is exposed to high temperature and high pressure.
Since B is composed only of the highly stretched part 5 with sufficient crystal orientation and the crystallized part 4 crystallized by heating, there is no risk of softening even when hot water is poured over it, and it has excellent heat resistance and pressure resistance. temperature constraints are reduced. Incidentally, when crystallized in this way, the heat resistance temperature is 80 to 95 [℃], and the pressure resistance is 8 to 95 [℃].
It will be about 10Kg/cm2. Therefore, sterilization at higher temperatures is possible, and the range of use can be expanded. At this time, since the container body 2 is constructed of a laminate as described above, it has excellent gas barrier properties and maintains a sterilized state over a long period of time.

(発明の効果) 本発明は以上の構成及び作用からなるもので、
容器本体の少なくとも胴部及び肩部を、配向性結
晶性樹脂製の内、外表面層と少なくともガスバリ
ヤ性樹脂を有する中間層とから成る積層体で構成
したから、ガスバリヤ性に優れ、果汁飲料の場合
に色、味が変化することなく、炭酸飲料の場合に
ガスロスによる風味低下、味の変化がなく、常温
において保存性を大幅に向上させることができ
る。加えて、容器本体底部を外側に凸状に膨らん
だ曲面構成とし、延伸ブロー成形時に十分延伸さ
れない容器本体中央部を熱結晶化させて熱結晶化
部とし、この熱結晶化部を底部の内周側に突出す
る構成とし、しかも、高延伸部の熱結晶化部との
結合位置を熱結晶化部の厚さ方向の外端位置とし
たので、熱結晶化部の近接区域の材料をブロー成
形圧力によつて熱結晶化部の縁に沿つてそぎ落と
すように流動させることができ、熱結晶化部以外
の領域をすべて高延伸倍率でもつて延伸させるこ
とができる。したがつて、容器本体の耐熱、耐圧
性を高めることができ、殺菌温度の高い種々の内
容物の容器として用いることが可能となつて汎用
性の高い耐圧耐熱容器を実現することができる。
そして、少なくとも肩部及び胴部は二軸配向して
いるにも拘らず、耐層間剥離性に優れている。更
に本発明の容器の製造方法によれば、ガスバリヤ
性を向上させたにも拘らず、容器の製造を極めて
簡単且つコストの低下を図ることができる。
(Effect of the invention) The present invention consists of the above structure and operation,
Since at least the trunk and shoulders of the container body are constructed of a laminate consisting of inner and outer surface layers made of oriented crystalline resin and at least an intermediate layer containing gas barrier resin, it has excellent gas barrier properties and is suitable for fruit juice drinks. In the case of carbonated drinks, there is no deterioration in flavor or change in taste due to gas loss in the case of carbonated drinks, and the shelf life at room temperature can be greatly improved. In addition, the bottom of the container body has a curved surface that bulges outward, and the central part of the container body, which is not sufficiently stretched during stretch blow molding, is thermally crystallized to form a thermally crystallized portion, and this thermally crystallized portion is formed inside the bottom. It has a structure that protrudes toward the circumferential side, and the joining position of the highly stretched part with the thermally crystallized part is at the outer end position of the thermally crystallized part in the thickness direction, so that the material in the vicinity of the thermally crystallized part is not blown away. The molding pressure allows the material to flow so as to be scraped along the edges of the thermally crystallized area, and all areas other than the thermally crystallized area can be stretched at a high draw ratio. Therefore, the heat resistance and pressure resistance of the container body can be improved, and it is possible to realize a highly versatile pressure and heat resistant container that can be used as a container for various contents that require high sterilization temperatures.
In addition, although at least the shoulder portion and the body portion are biaxially oriented, the film has excellent delamination resistance. Further, according to the container manufacturing method of the present invention, the container can be manufactured extremely easily and at a reduced cost, even though the gas barrier properties are improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イは本発明の一実施例に係る耐圧耐熱容
器の全体構造を示す一部破断拡大正面図、第1図
ロは第1図イのA部拡大断面図、第2図は第1図
の容器の本体底部を示す一部破断正面図、第3図
は第1図の容器底部の一部破断拡大正面図、第4
図は第1図の容器の口頸部の一部破断拡大正面
図、第5図及び第6図は第1図の容器本体を成形
するために予備成形されたパリソンを示してお
り、第5図は加熱結晶化処理前のパリソンの一部
を破断して示した正面図、第6図は加熱結晶化処
理後のパリソンの一部破断正面図、第7図は第5
図のパリソンを射出成形する状態を示す要部縦断
面図、第8図イ及びロは第6図のパリソンを用い
て容器本体をブロー成形する状態を示すブロー成
形型の概略縦断面図、第9図イ乃至ハはブロー成
形時のパリソン底壁部の延伸状態を示す拡大断面
図、第10図は従来の全体構成を示す一部破断断
面図、第11図は第10図の容器のベースカツプ
付近の一部破断拡大正面図、第12図は第10図
の容器本体成形用のパリソンの縦断面図、第13
図は樹脂の未延伸部と延伸部の強度の温度依存性
を示すグラフ、第14図は第12図のパリソンを
加熱結晶化処理をした例を示す縦断面図、第15
図は第14図のパリソンの延伸ブロー後の容器底
部の状態の拡大断面図である。 符号の説明、1……容器、1A……内表面層、
1B……外表面層、1C……中間層、2……容器
本体、2A……胴部、2B……底部、2C……肩
部、4……熱結晶化部、5……高延伸部、10…
…パリソン、11……金型、G1,G2……結晶
化領域。
FIG. 1A is a partially cutaway enlarged front view showing the overall structure of a pressure- and heat-resistant container according to an embodiment of the present invention, FIG. 1B is an enlarged cross-sectional view of section A in FIG. Figure 3 is a partially cutaway front view showing the bottom of the main body of the container in Figure 1; Figure 3 is a partially cutaway enlarged front view of the bottom of the container in Figure 1;
The figure is a partially cutaway enlarged front view of the mouth and neck of the container shown in FIG. 1, and FIGS. The figure is a partially cutaway front view of the parison before the heat crystallization treatment, Figure 6 is a partially cutaway front view of the parison after the heat crystallization treatment, and Figure 7 is the front view of the parison before the heat crystallization treatment.
8A and 8B are schematic vertical sectional views of a blow molding die showing a state in which a container body is blow-molded using the parison in FIG. Figures 9A to 9C are enlarged cross-sectional views showing the stretched state of the bottom wall of the parison during blow molding, Figure 10 is a partially cutaway cross-sectional view showing the conventional overall configuration, and Figure 11 is a base cup of the container shown in Figure 10. 12 is a longitudinal cross-sectional view of the parison for molding the container body in FIG. 10;
The figure is a graph showing the temperature dependence of the strength of the unstretched part and the stretched part of the resin, Fig. 14 is a longitudinal cross-sectional view showing an example of the parison of Fig. 12 subjected to heating crystallization treatment, and Fig. 15
The figure is an enlarged cross-sectional view of the bottom of the container after the parison of FIG. 14 has been stretch-blown. Explanation of symbols, 1...Container, 1A...Inner surface layer,
1B... Outer surface layer, 1C... Intermediate layer, 2... Container body, 2A... Body, 2B... Bottom, 2C... Shoulder, 4... Thermal crystallization part, 5... Highly stretched part , 10...
...Parison, 11...Mold, G1, G2...Crystallization region.

Claims (1)

【特許請求の範囲】 1 容器本体を二軸延伸ブロー成形によつて内部
中空に構成した耐圧耐熱容器において、 前記容器本体の少なくとも胴部及び肩部を、配
向性結晶性樹脂製の内、外表面層と、少なくとも
ガスバリヤ性樹脂を有する中間層とから成る積層
体で構成し、 少なくとも前記容器本体の底部に部分的に熱結
晶化させた熱結晶化部を設けると共に、該底部の
熱結晶化部以外の領域の全てを高延伸倍率によつ
て延伸して熱結晶化部よりも薄肉の高延伸部と
し、 前記容器本体底部を容器本体の外側に向かつて
凸状に膨らむ曲面構成とすると共に、前記熱結晶
化部を底部の内周面側に突出する構成とし、前記
高延伸部の熱結晶化部との結合位置を熱結晶化部
の厚さ方向の外端位置としたことを特徴とする耐
圧耐熱容器。 2 配向性結晶性樹脂製の内、外表面層及び少な
くともガスバリヤ性樹脂を有する中間層とから成
る積層体で有底筒状のパリソンを成形し、少なく
ともパリソン底部を熱結晶化させ、その後パリソ
ンの熱結晶化領域以外の領域をすべて延伸して容
器本体を成形する耐圧耐熱容器の製造方法におい
て、 前記パリソン底部の熱結晶化領域の近接区域に
ついては、ブロー成形圧力によつて熱結晶化領域
の縁に沿つて肉厚方向外側に向かつて材料を流動
させて金型内周面に押しつけ、熱結晶化領域以外
の領域をすべて高延伸倍率によつて延伸して容器
本体を成形することを特徴とする耐圧耐熱容器の
製造方法。
[Scope of Claims] 1. A pressure- and heat-resistant container having a hollow interior formed by biaxial stretch blow molding, wherein at least the body and shoulder portions of the container body are made of inner and outer material made of oriented crystalline resin. It is composed of a laminate consisting of a surface layer and an intermediate layer having at least a gas barrier resin, and at least a thermally crystallized portion partially thermally crystallized is provided at the bottom of the container body, and the thermally crystallized portion of the bottom is thermally crystallized. Stretching all regions other than the section at a high stretching ratio to form a highly stretched section that is thinner than the thermally crystallized section, and forming the bottom section of the container body into a curved surface that swells in a convex shape toward the outside of the container body. , the thermally crystallized portion is configured to protrude toward the inner circumferential surface side of the bottom, and the position where the highly stretched portion is joined to the thermally crystallized portion is the outer end position of the thermally crystallized portion in the thickness direction. A pressure- and heat-resistant container. 2. A cylindrical parison with a bottom is formed from a laminate consisting of inner and outer surface layers made of oriented crystalline resin and an intermediate layer having at least a gas barrier resin, at least the bottom of the parison is thermally crystallized, and then the parison is heated. In the method for manufacturing a pressure- and heat-resistant container in which the container body is formed by stretching all regions other than the thermally crystallized region, in the area adjacent to the thermally crystallized region at the bottom of the parison, the thermally crystallized region is stretched by blow molding pressure. The container body is formed by flowing the material outward in the wall thickness direction along the edge and pressing it against the inner peripheral surface of the mold, and stretching all areas other than the thermally crystallized area at a high stretching ratio. A method for manufacturing a pressure- and heat-resistant container.
JP62310813A 1987-12-10 1987-12-10 Pressure-and heat-resisting container and production thereof Granted JPH01153453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62310813A JPH01153453A (en) 1987-12-10 1987-12-10 Pressure-and heat-resisting container and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62310813A JPH01153453A (en) 1987-12-10 1987-12-10 Pressure-and heat-resisting container and production thereof

Publications (2)

Publication Number Publication Date
JPH01153453A JPH01153453A (en) 1989-06-15
JPH0468217B2 true JPH0468217B2 (en) 1992-10-30

Family

ID=18009724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62310813A Granted JPH01153453A (en) 1987-12-10 1987-12-10 Pressure-and heat-resisting container and production thereof

Country Status (1)

Country Link
JP (1) JPH01153453A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU674528B2 (en) * 1992-07-07 1997-01-02 Graham Packaging Pet Technologies Inc. Method of forming multi-layer preform and container with low crystallizing interior layer
JP2743799B2 (en) * 1993-11-24 1998-04-22 東洋製罐株式会社 Polyester bottle and preform used for its production
US6379631B1 (en) * 1996-06-28 2002-04-30 Johnson & Johnson Medical, Inc. Instrument sterilization container formed of a liquid crystal polymer
DE69727304T2 (en) * 1996-09-13 2004-10-21 Kureha Chemical Ind Co Ltd GAS-READY MULTILAYERED HOLLOW CONTAINER
CA2360792C (en) 1999-11-30 2009-07-21 Yoshino Kogyosho Co., Ltd. Laminated polyester resin container and method of molding such a container
JP2002248675A (en) * 2001-02-23 2002-09-03 Toyo Seikan Kaisha Ltd Multilayer preform and its manufacturing method
JP2004034340A (en) * 2002-06-28 2004-02-05 Toyo Seikan Kaisha Ltd Multilayered structure for packaging
JP2006082857A (en) * 2004-09-17 2006-03-30 Dainippon Printing Co Ltd Synthetic resin-made container
EP1982829A1 (en) * 2007-04-20 2008-10-22 Aisapack Holding SA Container for wine or a similar beverage
JP4462304B2 (en) * 2007-08-14 2010-05-12 東洋製罐株式会社 Multi-layer structure for packaging
US20090050598A1 (en) * 2007-08-20 2009-02-26 Chow-Chi Huang Supportable pressurizable container and base cup therefor
JP7447242B2 (en) * 2020-04-06 2024-03-11 日精エー・エス・ビー機械株式会社 Manufacturing method and manufacturing device for peelable containers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239443A (en) * 1985-08-14 1987-02-20 株式会社吉野工業所 Oriented molded bottle body
JPS62122935A (en) * 1985-11-25 1987-06-04 帝人株式会社 Multilayer oriented polyester bottle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239443A (en) * 1985-08-14 1987-02-20 株式会社吉野工業所 Oriented molded bottle body
JPS62122935A (en) * 1985-11-25 1987-06-04 帝人株式会社 Multilayer oriented polyester bottle

Also Published As

Publication number Publication date
JPH01153453A (en) 1989-06-15

Similar Documents

Publication Publication Date Title
US5759654A (en) Multiple layer preform
US8158052B2 (en) Polypropylene container and process for making the same
WO2001039956A1 (en) Polyester resin lamination vessel and molding method therefor
JPS6071207A (en) Multilayer preform for elongation blow molding and its manufacture
JPH0468217B2 (en)
JPS63194912A (en) Preform for biaxially orienting container and molding method thereof
JP4292918B2 (en) Preforms for plastic bottle containers
WO2001083197A1 (en) Stretch blow molded container
JP4734896B2 (en) Manufacturing method of plastic bottle container
JP2001206336A (en) Polyester resin laminated container and its holding method
JP4333280B2 (en) Plastic bottle containers
JPS62164504A (en) Manufacture of preform for oriented polyester vessel
JP4148065B2 (en) Stretch blow molding method of plastic bottle container and plastic bottle container formed by this molding method
JP3740968B2 (en) Method for producing biaxially stretched polyester container with whitening prevention at the bottom
JP3680526B2 (en) Stretched resin container and manufacturing method thereof
JP2001150524A (en) Heat-resistant polyester resin laminated container and method for molding the same
JP3740955B2 (en) Method for producing biaxially stretched polyester container with whitening prevention at the bottom
JPH0323336B2 (en)
JPH0298536A (en) Pressure tight heat resistant container and its manufacture
JPH0376651B2 (en)
JPH07149336A (en) Bottle made of polyester and preform to be used for manufacture thereof
JPH05193636A (en) Preformed molding of resin with hollow wall and method for its manufacture and container produced therefrom by biaxially stretching blow molding
JP4186431B2 (en) Stretch blow molded container
JPH0576897B2 (en)
JPS61279513A (en) Manufacture of multi-layer preform for stretch blow molding