JPH0468147B2 - - Google Patents

Info

Publication number
JPH0468147B2
JPH0468147B2 JP63011348A JP1134888A JPH0468147B2 JP H0468147 B2 JPH0468147 B2 JP H0468147B2 JP 63011348 A JP63011348 A JP 63011348A JP 1134888 A JP1134888 A JP 1134888A JP H0468147 B2 JPH0468147 B2 JP H0468147B2
Authority
JP
Japan
Prior art keywords
ink
thin plate
plate member
roller
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63011348A
Other languages
Japanese (ja)
Other versions
JPS63302049A (en
Inventor
Minoru Ueda
Yoshihiko Oosawa
Yoshinori Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP63011348A priority Critical patent/JPS63302049A/en
Publication of JPS63302049A publication Critical patent/JPS63302049A/en
Publication of JPH0468147B2 publication Critical patent/JPH0468147B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inking, Control Or Cleaning Of Printing Machines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、印刷機のインキ装置等に使用され
る塗布装置に関し、特にドクタブレード裏面から
の塗布液の堆積物の成長や落下(以下、裏だれと
略称する)を改良した塗布装置に関する。 (従来の技術とその問題点) ドクタブレードを、ゴムなどの弾性表面を有す
るインキ着けローラを直接押し当ててインキ薄膜
を形成するようにしたインキ装置として、例えば
特開昭57−178872号に開示されたインキ装置や、
実開昭56−76438号に開示されたインキ装置が知
られている。 前者(特開昭57−178872号)のインキ装置は、
第14図に示すように、インキ着けローラ1が一
層のゴムローラにより構成されるとともに、ドク
タブレード2が前記インキ着けローラ1の概略接
線方向に保持されて、その先端位置にインキかき
取り部2aが設けられている。そして、このイン
キかき取り部2aにおいて、インキ導入側前縁2
bと、インキ導出側前縁2cとが、それぞれ極め
て小さな曲率半径で曲成するように研磨されて鋭
利なエツジが仕上げられている。このインキ装置
においては、ドクタブレード2のインキかき取り
部2aをインき着けローラ1に押し付けながら、
インキ着けローラ1を同図矢符方向に回転させて
インキ膜3aを形成するわけであるが、インキ3
として高粘性インキを使用した場合には、ドクタ
ブレード2のたわみによりインキかき取り部2a
が前かがみにおじぎすること、および一層ローラ
1の変形パターンによる影響を受けて、インキか
き取り部2aの下面側でインキ溜りが発生する。
そして、このインキ溜りは、運転時間の経過とと
もに成長を続け、やがては落下して印刷物に汚れ
や、印刷濃度むらなどの欠点を引き起こすという
問題を有していた。 一方、後者(実開昭56−76438号)のインキ装
置は、第15図に示すように、インキ着けローラ
4が同じく一層のゴムローラにより構成されると
ともに、ドクタブレード5が略水平姿勢で進退自
在に保持されて、その先端部におけるインキ導出
側の面5aが傾斜仕上げされている。このインキ
装置においても、インキ3として高粘性インキを
使用した場合には、ドクタブレード5の先端部に
おけるインキ導出側の面5aが傾斜仕上げされて
いること、および一層ローラ4の変形パターンに
よる影響を受けて、傾斜面5a部分にインキ溜り
が発生し、長時間運転すると裏だれが生じるとい
う上記インキ装置の場合と同様な問題が生じる。 以上は印刷機におけるインキ装置の裏だれのつ
いて説明したが、インキ装置以外の塗布装置につ
いても同様な問題が生じる。 (発明の目的) この発明は、上記従来例の問題を解決するため
になされたもので、長時間運転した場合でも塗布
液のドクタブレードからの裏だれを防止できる塗
布装置を提供することを目的とする。 (目的を達成するための手段) この発明は、弾性表面を有する塗布ローラと、
この塗布ローラの外周面に対し塗布ローラの概略
半径方向に進退自在に配設されてローラ外周面に
形成する塗布膜の膜厚調整を行なうドクタブレー
ドとを備えた塗布装置であつて、上記目的を達成
するために、前記ドクタブレードを、先端部が前
記塗布ローラの外周面に押し当てられる薄板部材
と、この薄板部材を前記塗布ローラ外周面の接線
方向に実質的に可撓性のない状態で保持する保持
部材とにより構成し、かつ前記薄板部材の先端部
におけるインキ導出側前縁を曲成して、その曲率
半径を20μm以下に設定している。 (実施例) A インキ装置の構成 第2図はこの発明の一実施例であるインキ装置
が装着された印刷機の概略図を示す。この印刷機
は、ブラケツト胴6、版胴7および圧胴8を備
え、インキ装置9は版胴7に対し着脱自在に取付
けている。印刷作業は、版胴7に版10を巻き付
け、連続紙11をブラケツト胴6と圧胴8間に通
した後、各胴6,7,8を同図矢符方向に回転さ
せることにより、連続紙11を同図矢符方向に送
り出しながら、インキ装置9よりインキを版10
の画線部に供給し、版10に供給されたインキを
更にブラケツト胴6を経て連続紙11上に転写し
て、印刷を行なう。 第3図は上記インキ装置9の概略断面図を示
し、第4図は同装置の平面図を示す。両図に示す
ように、インキ着けローラ12と補助インキ着け
ローラ13が、左右のフレーム14,14に回転
自在に取付けられる。また、練りローラ15,1
6が左右のフレーム14,14に回転自在で、か
つローラ軸方向に揺動自在に取付けられる。これ
ら練りローラ15,16は、その揺動終端位置に
おいて、ローラ端面がインキ着けローラ12の端
面より外側に位置するように構成されている。 インキ着けローラ12の後方位置には、インキ
量調節部材17が配設される。インキ量調節部材
17は、ドクタブレード18と、このドクタブレ
ード18の両端に取付けられた左右の側板19,
19と、これら左右の側板19,19の上部位置
に取付けられた左右の支点ピン20,20を備
え、これら左右の支点ピン20,20を、左右の
フレーム14,14に設けられた左右のピン受け
21,21に嵌合させることにより、支点ピン2
0を支点として第3図の前後方向に揺動自在に保
持される。この場合、左右の側板19,19の前
端面19aは、インキ着けローラ12の外周面に
ほぼ沿うように概略円弧状に形成されて、それら
前端面19aがインキ着けローラ12の端部にお
けるローラ外周面に対向する位置に配置される。
これにより、ドクタブレード18と、左右の側板
19,19と、インキ着けローラ12とで囲まれ
るインキ溜め空間22が形成される。 インキ量調整部材17の後方位置には、ブレー
ド押圧部材23が配設される。ブレード押圧部材
23は、偏芯軸24と、この偏芯軸24に回転自
在に嵌合された左右のローラ25,25を備え、
これら左・右のローラ25,25をドクタブレー
ド18の背面に接するようにして左右のフレーム
14,14に回転自在に取付けられる。そして、
このブレード押圧部材23がパルスモータ(図示
省略)により正逆回転駆動されるとともに、その
回転角度が電子回路により制御され、かつ回転範
囲がセンサ(図示省略)により規制されるように
構成されている。ブレード押圧部材23は、その
回転によりドクタブレード18のインキ着けロー
ラ12への押込量を調整し、その結果としてイン
キ着けローラ12の外周面に形成されるインキ膜
厚を調整する作用を果たす。 つぎに、この発明のポイントとなるインキ着け
ローラ12と、ドクタブレード18の構成につい
て、第5図および第1図を用いてその詳細を説明
する。第5図はインキ薄膜形成時におけるインキ
装置9の要部断面図を示し、第1図はその拡大断
面図を示す。 まず、インキ着けローラ12は、弾性表面を有
する例えばゴムローラで構成する。このローラの
弾性部分の層構造は一層構造であてもよく、ある
いは表面の層ほど内部の層よりも硬度が高く設定
された多層構造であつてもよい。この実施例で
は、金属製丸棒のような剛性の回転軸121を芯
材として、内層122に柔かいゴム層を設け、外
層123に内層122より硬いゴム層を設けた2
層構造に仕上げられている。そして、上記回転軸
121の両端が左右のフレーム14,14にころ
がり軸受支持(図示省略)されるとともに、回転
軸121の一端に固定した駆動ギヤ(図示省略)
が版胴ギヤ(図示省略)に噛合してギヤ駆動する
ように構成されている。インキ着けローラ12の
表面は、回転振れを生じないように真円度や真直
度が高度に仕上げられており、その好ましい値と
しては、およ真円度0.02、真直度0.03である。イ
ンキ着けローラ12の表面硬度は、JISK−6301
に規定されるゴム硬度で15°〜70°に設定するのが
望ましい。硬度15°未満では印刷に適した薄いイ
ンキ膜(3〜15μm)の形成が不可能となり、一
方、硬度が70°を越えると、安定したインキ膜を
得られないばかりでなく、版面への正常なインキ
転写ができなくなるためである。この硬度のより
好ましい値は25°〜50°である。 次に、ドクタブレード18は、薄板部材181
と、この薄膜部材181をその先端部を残して上
下から挟み込むようにして保持する剛性の上部保
持部材182および剛性の下部保持部材183に
より構成され、薄板部材181の先端部をインキ
着けローラ12の外周面に対接するようにして配
置される。薄板部材181は、例えば0.1〜0.8mm
のスエーデン鋼などにより構成される。また、薄
板部材181の先端部の上部保持部材182から
の飛び出し量lおよび下部保持部材183からの
飛び出し量aは、インキ薄膜形成時、すなわち第
1図に示すようにドクタブレード18がインキ着
けローラ12に押し着けられながらインキ着けロ
ーラ12が矢符方向に回転駆動された時に、ロー
ラ12の回転に伴い薄板部材181の先端部がロ
ーラ外周面の接線方向へたわみ変形する力を受け
た場合でも、実質的にたわみ変形を生じない寸法
に設定されている。飛び出し量の好ましい寸法値
の一例としては、lが1.9mm、aが0.5mmである。 薄板部材181の先端部においては、上面18
1aと前端面181bとが交差する部分に位置す
るインキ導入側前縁181cが、寸法Rの曲率半
径を持たせて曲面仕上げされるとともに、下面1
81dと前端面181bとのなす角が実質的に90
度に形成され、この両面が交差する部分に位置す
るインキ導出側前縁181eが寸法rの曲率半径
を持たせて同じく曲面仕上げされている。所要厚
以上のインキ膜厚を得るためには、上記インキ導
入側前縁181cの曲率半径Rを30μm以上に設
定する必要がある。この曲率半径Rは、インキ着
けローラ12の弾性度、インキ着けローラ12の
ドクタブレード18に対する相対速度やインキ2
6の粘性などにより変わるものであり、上記30μ
m以上の範囲内で適当な値を選べばよい。一例と
して、上記インキ着けローラ12の表面のゴム硬
度が30°、ドクタブレード18に対する相対速度
が約36m/分、インキ26の粘度が約900ポアズ
において、曲率半径Rの好ましい値は50〜75μm
である。一方、薄板部材181からのインキの裏
だれ発生を防止するためには、インキ導出側前縁
181eの曲率半径rを20μm以下に設定する必
要がある。なお、この曲率半径rを10μm以下に
設定すると、インキ導出側前縁181eに付着し
ようとするインキの界面張力に打ち勝つはくり力
が大きくなるので好ましく、更に、曲率半径rを
5〜0.5μmに設定すると、上記の場合より更には
くり力が安定するのでより多くの種類のインキに
対してもインキ溜りの発生を防止することができ
る。 以下、本願実施例と比較例を用いて裏だれの原
理を説明するとともに、それぞれの実験結果を記
す。 B 裏だれの原理と実験結果 (1) 比較例 1 (a) 原理 まず、第6図に示すように、薄板部材18
1の先端部において、インキ導出側の面18
1fが傾斜仕上げされて、逃げ角θが90度よ
りも小さな角度(例えば45度)に設定された
ドクタブレードを用いてインキ膜26aを形
成する場合について考慮する。この場合、イ
ンキ着けローラは、第5図に示す2層構造の
インキ着けローラ12が使用されているもの
とする。 ドクタブレード薄板部材181のインキ導
出側前縁181gに近い位置P1におけるイ
ンキ26の速度分布は、第6図bに示すよう
に、インキ着けローラ12の境界部でローラ
表面速度v0にほぼ等しく、薄板部材181側
へと近づくに従つて速度はゼロに近づく。一
方、インキ膜26aの形成直後の位置P2
おけるインキ26の速度分布は、ローラ表面
速度v0に等しくなる。したがつて、薄板部材
181の境界面に沿つて流れるインキは、イ
ンキ導出側前縁181gの付近において、速
度ゼロからv0まで方向を変えつつ加速され
る。その結果、インキ26の粘弾性的性質に
よつて、インキ26を薄板部材181の表面
から引きはがそうとする力Fが発生する。こ
の力Fがインキ26と薄板部材181表面と
の界面張力よりも大きければ、インキ26は
薄板部材181の境界面ではくりする訳であ
る。しかし、第6図に示すように薄板部材1
81の先端部における逃げ角θが小さく設定
されている場合には、インキ導出側前縁18
1gの近傍におけるインキの速度変化が緩か
なため、力Fがインキのはくりが生ずるに必
要な大きさになる位置は、図の右下方向に移
る。もつとも、インキ26は気泡等を含み完
全に一様ではないので、このはくり点に達す
るまでにインキ中で破断することもある。こ
のようにして、薄板部材181のインキ導出
側前縁181g近傍に残つたインキ26は、
薄板部材181のテーパ面181fに沿つた
速度成分Vを持つているので、徐々に押し出
されて第6図bに示すようなインキ溜りSが
生じる。このインキ溜りSは、運転時間の経
過と共に成長していき、遂にインキ溜りSの
自重および動いているインキ膜26aとイン
キ溜りSとの境界部が及ぼす摩擦力とが、イ
ンキ26と薄板部材181の粘着力あるいは
インキ26の破断応力よりも大きくなつて、
薄板部材181から落下する。 以上のことから、インキ導出側の面181
fと、塗付ローラ外周面の接線との形成する
逃げ角θは、80〜100度が好ましく、85〜95
度がより好ましく、実質的には90度であるの
が最も好ましい。ここで上記逃げ角θを上記
範囲外とした場合は、製作上薄板部材181
の板厚dと、曲率半径rとが幅方向に安定し
た薄板部材が得られないので、印刷濃度むら
のない安定したインキの薄膜が得られない。 (b) 比較実験例 1 インキ着けローラ12として、まず剛性の
芯材121(第5図)に直径20mmの金属製丸
棒を用い、次に内層122としてゴム硬度
20°のソフトクツシヨンゴム層を設け、その
外径を50mmにした後、さらにその上に外層1
23としてゴム硬度30°のゴム層を5mm厚さ
で巻き付けて形成される外径60mm、長さ418
mmの2層ゴムローラを使用した。このローラ
表面は、十分滑らかに仕上げられており、ま
た真円度0.02、基準軸芯に対する振れも0.02
の高精度に仕上げられている。 一方、ドクタブレードは、第6図において
薄板部材181をスエーデン鋼により構成
し、上面181aとインキ導出側前縁181
gとの距離tを0.15mm、上面181aと下面
181dとの距離、すなわち板厚dを0.8mm
に設定する。また、薄板部材181の先端部
の上部保持部材182から飛び出し量lを
1.9mm、下部保持部材183からの飛び出し
量aを0.5mm(非可撓性支持)に設定し、逃
げ角θを45度に設定する。さらに、薄板部材
181のインキ導入側前縁181cの曲率半
径Rを50μmとし、インキ導出側前縁181
gの曲率半径rを10μmとする。 上記インキ着けローラとドクタブレードを
備えたインキ装置を用いて、第2図に示すオ
フセツト印刷機(VS−1000:東レエンジニ
アリング(株)製)で印刷実験を行なつた。使用
したインキ26は、水なし平版用の標準的な
インキ(粘度500〜3000ポアズ)で、色は藍
色を使用した。印刷速度は4500I.P.Hでその
時のインキ着けローラ12の回転数は192R.
P.Mであつた。 上記条件で印刷を行なつたところ、連続
2000〜4000枚の印刷でインキ溜りSが発生し
て落下した。 (2) 比較例 2 (a) 原理 第7図に示すように、薄板部材181の先
端部において、インキ導入側前縁とインキ導
出側前縁をそれぞれ曲成して、その曲率半径
Rおよびrを20μmより大きな値、例えば
40μmのように大きく設定する。この場合
も、上記比較列1と同様、インキ着けローラ
12として2層ローラを使用する。 インキ導出側前縁の曲率半径rが、上記の
ように20μmより大きな寸法に仕上げられて
いると、インキ膜形成時におけるインキ着け
ローラ12の変形は、薄板部材181の表面
に沿つて第7図に示すようなカーブで回復す
る。薄板部材181の先端P1部でのインキ
26の流れの速度分布は、上記比較例1の場
合と同様、ローラ境界面がローラ周速にほぼ
等しくv0であり、薄板部材181に近づくに
従つて小さくなり、境界面での速度voはゼロ
に近づく。一方インキ導出側前縁を通過した
直後の、インキ膜26aを形成し終えたP2
点での速度分布は、全体にローラ表面速度v0
に等しくなる。したがつてこの場合も、薄板
部材181の境界面に沿つて流れるインキ
は、P1点の付近において速度がゼロからv0
で方向を変えつつ加速され、インキ26を薄
板部材181の表面から引きはがそうとする
力Fが発生する。しかしながら、薄板部材1
81のインキ導出側前縁の曲率半径rを大き
く設定していると、P1点近傍における速度
変化が緩やかとなり、力Fがインキのはくり
が生ずるに必要な大きさになる位置は、上記
比較例1の場合と同様、図の右下方向に移
る。その結果、上記比較例1の場合と同様、
薄板部材181上に残つたインキが薄板部材
181の表面に沿つた速度成分Vにより徐々
に押し出されてインキ溜りSが発生し、長時
間運転するうちにインキ溜りSが成長して落
下することとなる。 (b) 比較実施例 2 薄板部材181をスエーデン鋼で構成し
て、そのインキ導入側前縁およびインキ導出
側前縁の曲率半径Rおよびrをそれぞれ40μ
m、逃げ角θを90°に設定し、かつ板厚dを
0.15mmに設定する。その他の条件は、上記比
較実施例1の場合と全て同一に設定してイン
キ膜26aを形成したところ、印刷枚数が連
続2000枚に達するまでにインキ溜りSが発生
して落下した。 (3) 比較例 3 (a) 原理 第8図に示すように、ドクタブレード薄板
部材181のインキ導出側前縁181eの曲
率半径rを20μm以下、例えば10μmに設定
し、かつ薄板部材181の先端部における飛
び出し量lおよびaを、インキ着けローラ1
2の回転に伴い薄板部材181の先端部がロ
ーラ外周面の接線方向へ可撓性を持ち得る程
度の大きさに寸法設定した場合について考察
する。この場合も、インキ着けローラ12は
2層ローラを使用する。 いま、第8図b,cにおいて、 l:上部保持部材182から薄板部材181
の先端までの距離 a:下部保持部材183から薄板部材181
の先端までの距離 b:l−a E:薄板部材181のヤング率 I:薄板部材181の慣性モーメント W:薄板部材181の先端部にかかる力 と定義した場合、薄板部材181の先端部に
おける最大たわみyは次式で表わされる。 y=a2(4l−b)/12EI・W ここで、具体例として、次の2つの例のた
わみを比較すると、 例 1 l=1.9、a=0.5の場合、 y1=0.13(W/EI) 例 2 l=1.9、a=1.5の場合 y2=1.35(W/EI) つまり、aの値が1.5mmの場合は、0.5mmの
場合に比べて、たわみ量yが10.5倍(y2/y1
=10.5)にもなる。このことは、下部保持部
材183による薄板部材181の支持が、薄
板部材181の先端部より近い部分を支持し
なければ、可撓性支持になつてしまうことを
意味する。 なお、この比較例3の場合におけるたわみ
量yの計算値は、約15μmであつた。従つ
て、薄板部材181の支持方法を非可撓性と
するには、たわみ量yを15μm未満とするこ
とが好ましい。 この比較例3では上記[例2]の場合のよ
うに、薄板部材181の先端部にたわみを生
じる場合について考察する。このようなたわ
みが生じた場合のインキ着けローラ12の変
形およびインキ流れのモデルは第8図aに示
すようになり、ローラ表面と薄板部材181
の先端面181bとの間で逆くさびができ
る。この条件下では、インキ膜形成直前の
P1点におけるインキの速度分布はローラ表
面境界位置がv0で最も大きく、薄板部材先端
部の境界面でvoはほぼゼロとなる。このと
き、逆くさび状のインキ流れにより位置P1
に達するまでに速度分布(v0からvo)は徐々
に変化する。その結果、たわみのない場合に
比べて、インキ中の引張り力Fは早くから発
生する。この力Fはインキ26を薄板部材1
81の前端面181bから一気に引きはがす
ほど強くはないが、インキ中の弱い部分での
破断を引き起す原因になる。このようにして
インキ中に起つた不規則な破断の結果、薄板
部材181側にとり残されたインキは薄板部
材181の表面に沿う速度成分Vと薄板部材
下面181dへのぬれによつて徐々に堆積す
る。こうして、、長時間運転するうちに、イ
ンキ溜りSが成長して下方へ落下する。 このように、薄板部材181の支持方法を
可撓性支持方法とすると、薄板部材181の
前端面181bがインキ着けローラ12の外
周面の接線に対して、比較実験例1の逃げ角
θに相当する傾斜面が形成されるので、比較
実験例1と同様の問題点が発生する。 同様の現象は、薄板部材181を斜め下方
に向けた姿勢で取付けた場合にも生じる。 (b) 比較実験例 3 第8図において、薄板部材181の先端部
におけるインキ導出側前縁181eの曲率半
径rを10μm、インキ導入側前縁181cの
曲率半径Rを50μmに設定するとともに、薄
板部材181の先端部の飛び出し量lを1.9
mm、aを1.5mmに設定した。その他の条件は、
上記比較実験例1の場合と全て等しく設定し
た。このような条件でインキ膜26aを形成
したところ、薄板部材181の先端部にロー
ラ外周面の接線方向へたわみが生じてインキ
導出側前縁181eでインキ溜りSが発生
し、連続運転するうちにインキ溜りSが成長
して4000〜5000枚の連続印刷で落下した。な
お、インキ溜りSが落下する前に印刷機を一
旦停止し、新しい用紙を通して印刷を再開し
たところ、上記インキ溜りSのほとんどがイ
ンキ着けローラ12の表面に持ち去られ、こ
れによりインキ着けローラ12表面のインキ
膜の一様性が損われて印刷物にの濃度むらが
生じた。 (4) 本願例 1 (a) 原理 第9図に示すように、ドクタブレード薄板
部材181のインキ導出側前縁181eの曲
率半径rを20μm以下、例えば10μm以下に
設定し、かつ薄板部材181の先端部におけ
る飛び出し量lおよびaを、インキ着けロー
ラ12の回転に伴い薄板部材先端部がローラ
外周面の接線方向へ実質的に可撓性を持たな
い程度の大きさに寸法設定した場合について
考察する。飛び出し量lおよびaの具体的数
値は、例えば上記[例1]のように、l=
1.9mm、a=0.5mmが挙げられる。この場合
も、インキ着けローラ12は2層ローラを使
用する。 上記のような条件下では、インキ導出側前
縁181e直前のP1点における速度分布は
ローラ境界面で最も速くv0であり、薄板部材
181の境界面181bで最も遅くほぼゼロ
になる(vo≒0)。また、インキ膜形成直後
のP2点に於けるインキの速度はローラ表面
速度v0に等しくなる。したがつて、P1近傍の
速度vo≒0のインキ流れは、ローラ表面およ
び薄板部材前端面181bに平行な流れか
ら、ローラ12側へつまりFの方向へ速度を
急速に増してローラ表面速度v0となる。すな
わち、P1点における薄板部材境界面近くの
インキは速度v0まで方向を変えつつ加速され
る。これにより、インキの粘弾性的性質によ
つて、インキを薄板部材表面から引きはがそ
うとする力Fが発生する。この力Fがインキ
と薄板部材表面との間の界面張力よりも大き
ければインキはブレード境界面ではくりする
訳である。しかしながら、薄板部材181
が、r≦20μmで、かつ下方へのたわみがな
い場合には、P1近傍での上記のような速度
変化が一瞬のうちに急激に起る。従つて力F
も急速に大きくなるので、力Fが薄板部材表
面に於ける界面張力に打ち勝ち、インキ導出
側前縁181eで安定したはく離が起る。そ
れ故、インキ中での不規則な破断はほとんど
起らず、薄板部材181側にとり残されるイ
ンキがない。すなわちインキ溜りがほとんど
生じない。なお、インキ着けローラとして、
外層123が内層122よりも硬度の大きな
2層構造のインキ着けローラ12を使用した
場合には、ローラ表面に対する薄板部材先端
面181bの逃げ角を小さくするようなゴム
ローラの盛り上り変形が軽減されるので、上
記はく離が一層安定して起るようになり、イ
ンキ溜りがさらに起りにくくなる。 (b‐1) 本願実施例 1 第9図において、薄板部材181のイン
キ導出側前縁181eの曲率半径γを15μ
mに設定し、かつ薄板部材181の先端部
における飛び出し量aを0.5mmに設定した。
使用したインキは水ないし平版用の標準的
なインキ(粘度500〜3000ポアズ)で、色
は藍色の他、草色と茶色を使用した。その
他の条件は、第8図に示される上記比較実
験例3の場合と全て等しく設定した。この
ような条件でインキ膜26aを形成したと
ころ、薄板部材181はローラ外周面の接
線方向に対し実質的に剛性を示し、薄板部
材181の下面へのインキ溜りは極力抑え
られ、連続2000枚の印刷で直径1〜2mm程
度に棒状インキがインキ導出側前縁181
eに付着した。その後4000枚程度の印刷で
も藍色のインキ溜りの成長は少なく、落下
の恐れは全く無かつた。また、インキの中
でも極めてインキ溜りが成長し易い草色と
茶色のインキについても、4000枚でインキ
溜りの成長が認められる場合もあつたが、
落下するまでには至らず実用上差し支えな
いものであつた。 (b‐2) 本願実験例 2 第9図において、薄板部材181のイン
キ導出側前縁81eの曲率半径γを10μm
に設定し、その他は前記本願実験例1と全
て等しく設定した。 このような条件でインキ膜26aを形成
したところ、各色のインキとも連続2000枚
で直径1mm以内の細い棒状インキがインキ
導出側前縁181eに付着するものの、藍
色のインキはその後印刷枚数を重ねても成
長はほとんど認められず、連続6000〜8000
枚でも落下するおそれは全くなかつた。草
色と茶色については連続6000〜8000枚で直
径2mm程度まで成長するものの、落下する
までには至らず実用上差し支えないもので
あつた。 (b‐3) 本願実験例 3 第9図において、薄板部材181のイン
キ導出側前縁181eの曲率半径γを6μ
mに設定し、その他は前記本願実験例1と
全て等しく設定した。このような条件でイ
ンキ膜26aを形成したところ、薄板部材
181の下面へのインキ溜りは前記本願実
験例2の場合より減少傾向を示した。具体
的には連続2000枚の印刷で直1mm以内の細
い棒状インキがインキ導出側前縁181e
に部分的に付着するものの、藍色と草色の
インキについてはその後6000〜8000枚印刷
してもインキ溜りの成長は認められなかつ
た。また茶色については、6000〜8000枚で
直径2mm程度まで徐々に成長する場合が認
められたが、落下する恐れは全く無く、実
用上差し支えないものであつた。 (b‐4) 本願実験例 4 第9図において、薄板部材181のイン
キ導出側前縁81eの曲率半径γを4μm
に設定し、その他は前記本願実験例1と全
て等しく設定した。このような条件でイン
キ膜26aを形成したところ、薄板部材1
81の下面へのインキ溜りは、前記本願実
験例3の場合より、さらに減少した。つま
り、連続2000枚の印刷で直1mm以内の細い
棒状インキがインキ導出側前縁181eに
部分的に付着するものの、各色のインキと
もその後6000〜8000枚印刷してもインキ溜
りの成長は全く認められなかつた。 (b‐5) 本願実験例 5 第9図において、薄板部材181のイン
キ導出側前縁81eの曲率半径γを1μm
に設定し、その他は前記本願実験例1と全
て等しく設定した。このような条件でイン
キ膜26aを形成したところ、薄板部材1
81の下面へのインキ溜りは、前記本願実
験例4の場合と同じ結果が得られた。つま
り連続2000枚の印刷で直1mm以内の棒状イ
ンキがインキ導出側前縁181eに部分的
に付着するものの、各色のインキともその
後6000〜8000枚印刷してもインキ溜りの成
長な全く認められなかつた。 さらに薄板部材181のインキ導出側前
縁181eの曲率半径γを0.2μmに設定す
べく試作したが、全長にわたる曲率半径γ
の安定性が得られず実験を断念した。 (c) 薄板部材181の板厚上限決定要素 ここでは、薄板部材181の板厚dの上限
について考察する。第10図aに示すよう
に、薄板部材181の板厚をd、先端部にお
けるフラツト部の高さをHと定義する。い
ま、薄板部材181のインキ導入側前縁の曲
率半径Rが一定値に設定されているものとす
ると、薄板部材181の板厚dを大きく設定
した場合には、薄板部材181の先端部にお
けるフラツト部の高さHが大きくなり、第1
0図bに示すようにフラツト部Hに対応する
圧力「大」の領域が広くなる。これにより薄
板部材181のローラ12に及ぼす力が大き
くなつて、ローラ12の変形が大きくなり、
インキ膜26aの厚みが大きくなる。ところ
で、インキ膜26aとして適正な膜厚(3〜
15μm)を得るためには、薄板部材181の
インキ導入側前縁181eの曲率半径Rを小
さくするか、若しくは薄板部材181のロー
ラ12への押し込み量を大きくする必要があ
る。しかしながら、曲率半径Rを30μm以下
に設定した場合には、インキ導入側前縁によ
つてローラ表面が傷つけられるという問題が
生じる。また、薄板部材181を、0.6mm以
上押し込むと、摩擦や発熱でゴムローラの耐
久性を損ねるという問題が生じる。これらの
ことから、適正な板厚dと曲率半径Rが定ま
り、これらの具体的な数値は、d=0.1〜0.8
mm、R≧0.03mmである。 (d) 薄板部材181の板厚下限決定要素 次に、薄板部材181の板厚dの下限につ
いて考察する。第11図aに示すように、薄
板部材181の板厚dを小さく設定すると、
第11図bに示すように薄板部材181の先
端部における高圧力部の範囲が少なくなり、
ローラ12に及ぼす圧力が小さくなつてロー
ラ変形も小さくなり、その結果インキ膜26
aの厚みが薄くなる。このような状況におい
て適正なインキ膜厚(3〜15μm)を得るた
めには、曲率半径Rを大きくするか、薄板部
材181のローラ12への押込み量を小さく
する必要がある。しかしながら前者の場合、
曲率半径Rは板厚dより大きく設定できず、
しかもここではこの板厚dを小さく設定しよ
うとしてるために、曲率半径Rを大きく設定
することには限界がある。一方、後者の場
合、ローラ軸方向に沿つて均一な膜厚を得る
には所定量(例えば0.2mm以上)の押込み量
を要し、押込み量が少なすぎると、薄板部材
181のローラ軸方向に沿つた先端形状やロ
ーラ表面形状が影響して、ローラ軸方向に沿
つて実質的に均一なインキ膜を形成できなく
なる。また、薄板部材181の板厚dを小さ
くすると、刃先の剛性が低下するという問題
も生じる。以上のことから、適正な板厚dと
曲率半径Rが定まり、これらの具体的な数値
は d=0.1〜0.8mm、R≦0.1mmである。 (5) 本願例 2 (a) 原理 第9図に示す2層ゴムローラ12に代え
て、第12図に示すように1層ゴムローラ2
7を使用した場合について考察する。この場
合、ドクタブレードは、第8図に示す本願例
1のドクタブレードと同一のものを使用す
る。 一層ゴムローラ27を使用した場合は、薄
板部材181先端部と押圧に対し、ゴムロー
ラの変形が局部に集中し、インキ導入側前縁
181c近傍でコブ状の盛り上り変形が発生
する。同様にインキ導出側前縁181e近傍
(圧力開放域)においても図のような盛り上
り変形が見られる。したがつて、薄板部材1
81の下面181dの前縁近傍とゴムローラ
27の表面との相対的角度、即ち第6図でい
う逃げ角は、盛り上り変形のない2層ローラ
12の場合(第9図参照)と比べて小さくな
る。その結果、第6図を用いて説明したのと
同様の理由によつてはくり点が図の右の方に
移り、薄板部材下面181dの前縁近傍にぬ
れ面を生じる。実際にはこのはくり点に達す
るまでにインキの不均質などによつてインキ
中で破断が起りインキ溜りが生ずる。このよ
うにして薄板部材181上に残つたインキ2
6は薄板部材181に沿つた速度成分Vをも
つているので徐々に押し出されてインキ溜り
Sが成長する。もつとも、ここで使用される
ドクタブレードは、第9図に示す本願実施例
1のドクタブレードと同一のものであり、す
なわち薄板部材181の先端部が実質的に可
撓性のない状態に保持されて、かつインキ導
出側前縁181eの曲率半径rが20μm以下
に設定されているため、インキ溜りSの成長
速度は上記各比較例1、2、3に比べてかな
り低く抑えられる。 (b) 本願実験例 6 第9図に示す2層ゴムローラ12に代え
て、第12図に示すように1層ゴムローラ2
7を使用し、その他の条件は第9図を用いて
説明した上記本願実験例2の場合と全く同じ
に設定する。このような条件でインキ薄膜を
形成すると、連続2000枚の印刷で直径1mm程
度の僅かな線状のインキ棒が付着し、その後
成長を続けてインキ滴となる。そして、連続
6000〜8000枚で落下する程度に成長する。 以上の比較実験例1〜3および本願実施例
1〜6の実験結果を整理すると、下表のよう
になる。なお、下表で用いた実験条件の各記
号の意味は次の通りである。 M;薄板部材181の支持方法を表わし、
「非」は非可撓性支持方法、「可」は可撓性
支持方法を示す。 θ;薄板部材181の前端面181bと、イ
ンキ導出側の面181fあるいは下面18
1dとのなす角度(度) R;薄板部材181のインキ導入側前縁の曲
率半径(μm) r;薄板部材181のインキ導出側前縁の曲
率半径(μm) N;インキ着けローラのゴム被覆層の数
(層) また、結果の判定記号の判断基準は次の通
りである。 X;印刷開始後30分以内にインキ溜りが落下
する。 △;同60分以内にインキ溜りが落下する場合
がある。 ○;同1〜2時間以内にインキ溜りの成長が
少し認められるが、落下には至らない。 ◎;同2時間以上経過してもインキ溜りが成
長しない。 なお、比較例と本願例とで用いたインキ装
置の30分間の印刷時間に対応する印刷枚数は
約2300枚である。
(Industrial Application Field) The present invention relates to a coating device used in an inking device of a printing press, etc., and particularly to prevent the growth and fall of coating liquid deposits from the back side of a doctor blade (hereinafter abbreviated as back dripping). This invention relates to an improved coating device. (Prior art and its problems) An inking device in which a doctor blade is directly pressed against an inking roller having an elastic surface such as rubber to form a thin ink film is disclosed in, for example, Japanese Patent Laid-Open No. 178872/1983. ink equipment,
An inking device disclosed in Utility Model Application Publication No. 56-76438 is known. The inking device of the former (Japanese Patent Application Laid-open No. 57-178872) is
As shown in FIG. 14, the ink applicator roller 1 is composed of a single layer of rubber roller, and the doctor blade 2 is held approximately in the tangential direction of the ink applicator roller 1, and an ink scraping portion 2a is provided at the tip of the doctor blade 2. It is provided. In this ink scraping portion 2a, the leading edge 2 on the ink introduction side
b and the leading edge 2c on the ink outlet side are each polished to have a sharp edge so as to be curved with an extremely small radius of curvature. In this inking device, while pressing the ink scraping portion 2a of the doctor blade 2 against the inking roller 1,
The ink forming roller 1 is rotated in the direction of the arrow in the figure to form the ink film 3a.
When a high viscosity ink is used, the ink scraping portion 2a is damaged due to the deflection of the doctor blade 2.
As a result of the bending of the roller 1 and the deformation pattern of the roller 1, ink pools occur on the lower surface side of the ink scraping portion 2a.
This ink pool continues to grow as the operating time passes, and eventually falls, causing problems such as stains on printed matter and uneven print density. On the other hand, in the inking device of the latter (Utility Model Application Publication No. 56-76438), as shown in FIG. The ink outlet side surface 5a at the tip end thereof is finished with an inclined surface. In this inking device as well, when a high viscosity ink is used as the ink 3, the ink outlet side surface 5a at the tip of the doctor blade 5 is finished with an incline, and the influence of the deformation pattern of the roller 4 is further reduced. As a result, ink pools occur on the inclined surface 5a, and the same problem as in the above-mentioned inking device occurs in that ink stagnation occurs when the ink is operated for a long time. Although the above explanation has been about the sagging of the inking device in a printing press, the same problem also occurs in coating devices other than the inking device. (Object of the Invention) The present invention was made in order to solve the above-mentioned problems of the conventional example, and its purpose is to provide a coating device that can prevent the coating liquid from dripping from the doctor blade even when operated for a long time. shall be. (Means for achieving the object) The present invention includes an application roller having an elastic surface;
A coating device is provided with a doctor blade which is arranged to be movable forward and backward in the approximate radial direction of the coating roller with respect to the outer circumferential surface of the coating roller and adjusts the thickness of the coating film formed on the outer circumferential surface of the roller. In order to achieve this, the doctor blade includes a thin plate member whose tip end is pressed against the outer circumferential surface of the coating roller, and this thin plate member is in a state where the thin plate member is substantially inflexible in the tangential direction of the outer circumferential surface of the coating roller. The ink outlet side front edge at the tip of the thin plate member is curved, and the radius of curvature is set to 20 μm or less. (Embodiment) A. Configuration of inking device FIG. 2 shows a schematic diagram of a printing press equipped with an inking device which is an embodiment of the present invention. This printing press includes a bracket cylinder 6, a plate cylinder 7, and an impression cylinder 8, and an inking device 9 is detachably attached to the plate cylinder 7. The printing operation is carried out by wrapping the plate 10 around the plate cylinder 7, passing the continuous paper 11 between the bracket cylinder 6 and the impression cylinder 8, and then rotating each cylinder 6, 7, 8 in the direction of the arrow in the figure. While feeding the paper 11 in the direction of the arrow in the figure, ink is applied to the plate 10 from the inking device 9.
The ink supplied to the printing plate 10 is further transferred onto the continuous paper 11 via the bracket cylinder 6 to perform printing. FIG. 3 shows a schematic sectional view of the inking device 9, and FIG. 4 shows a plan view of the same device. As shown in both figures, an ink applicator roller 12 and an auxiliary ink applicator roller 13 are rotatably attached to left and right frames 14, 14. In addition, kneading rollers 15,1
6 is attached to the left and right frames 14, 14 so as to be rotatable and swingable in the axial direction of the roller. These kneading rollers 15 and 16 are configured such that their end surfaces are located outside of the end surface of the inking roller 12 at their swinging end positions. An ink amount adjusting member 17 is disposed at a rear position of the ink forming roller 12. The ink amount adjusting member 17 includes a doctor blade 18, left and right side plates 19 attached to both ends of the doctor blade 18,
19, and left and right fulcrum pins 20, 20 attached to the upper positions of these left and right side plates 19, 19. By fitting into the receivers 21, 21, the fulcrum pin 2
It is held so as to be swingable in the front-rear direction in FIG. 3 with 0 as a fulcrum. In this case, the front end surfaces 19a of the left and right side plates 19, 19 are formed in a generally arcuate shape so as to substantially follow the outer circumferential surface of the ink form roller 12, and the front end surfaces 19a are formed on the outer circumference of the ink form roller 12 at the ends of the ink form roller 12. placed in a position facing the surface.
As a result, an ink reservoir space 22 surrounded by the doctor blade 18, the left and right side plates 19, 19, and the ink form roller 12 is formed. A blade pressing member 23 is disposed at a rear position of the ink amount adjusting member 17. The blade pressing member 23 includes an eccentric shaft 24 and left and right rollers 25, 25 rotatably fitted to the eccentric shaft 24,
These left and right rollers 25, 25 are rotatably attached to the left and right frames 14, 14 so as to be in contact with the back surface of the doctor blade 18. and,
This blade pressing member 23 is driven to rotate in forward and reverse directions by a pulse motor (not shown), its rotation angle is controlled by an electronic circuit, and its rotation range is regulated by a sensor (not shown). . The blade pressing member 23 functions to adjust the amount of pushing of the doctor blade 18 onto the ink applicator roller 12 by its rotation, and as a result, adjust the thickness of the ink film formed on the outer peripheral surface of the ink applicator roller 12. Next, the details of the configurations of the ink forming roller 12 and the doctor blade 18, which are key points of the present invention, will be explained using FIG. 5 and FIG. 1. FIG. 5 shows a sectional view of a main part of the inking device 9 during formation of a thin ink film, and FIG. 1 shows an enlarged sectional view thereof. First, the ink forming roller 12 is composed of, for example, a rubber roller having an elastic surface. The layer structure of the elastic portion of this roller may be a single layer structure, or may be a multilayer structure in which the surface layer has a higher hardness than the inner layer. In this embodiment, a rigid rotating shaft 121 such as a metal round bar is used as a core material, an inner layer 122 is provided with a soft rubber layer, and an outer layer 123 is provided with a rubber layer harder than the inner layer 122.
It has a layered structure. Both ends of the rotating shaft 121 are supported by rolling bearings (not shown) on the left and right frames 14, 14, and a drive gear (not shown) fixed to one end of the rotating shaft 121.
is configured to mesh with a plate cylinder gear (not shown) to drive the gear. The surface of the ink forming roller 12 is highly finished in roundness and straightness to prevent rotational run-out, and preferred values are approximately 0.02 roundness and 0.03 straightness. The surface hardness of the ink form roller 12 is JISK-6301.
It is desirable to set the rubber hardness specified by 15° to 70°. If the hardness is less than 15°, it will be impossible to form a thin ink film (3 to 15 μm) suitable for printing, while if the hardness exceeds 70°, not only will it be impossible to obtain a stable ink film, but the plate surface will not be able to form properly. This is because accurate ink transfer becomes impossible. A more preferred value of this hardness is 25° to 50°. Next, the doctor blade 18 rotates the thin plate member 181
The thin film member 181 is composed of a rigid upper holding member 182 and a rigid lower holding member 183 that sandwich and hold the thin film member 181 from above and below, leaving the tip of the thin film member 181. It is arranged so as to face the outer peripheral surface. The thin plate member 181 has a thickness of, for example, 0.1 to 0.8 mm.
Constructed from Swedish steel and other materials. Further, the protruding amount l of the tip of the thin plate member 181 from the upper holding member 182 and the protruding amount a from the lower holding member 183 are determined when the doctor blade 18 is moved to the ink forming roller when forming the ink thin film, as shown in FIG. Even if the tip of the thin plate member 181 is subjected to a force that bends and deforms in the tangential direction of the outer peripheral surface of the roller as the roller 12 rotates when the ink form roller 12 is rotated in the direction of the arrow while being pressed against the roller 12. , the dimensions are set so that substantially no flexural deformation occurs. As an example of preferable dimensional values for the amount of protrusion, l is 1.9 mm and a is 0.5 mm. At the tip of the thin plate member 181, the upper surface 18
The ink introduction side front edge 181c located at the intersection between 1a and the front end surface 181b is finished with a curved surface having a radius of curvature of dimension R, and the lower surface 1
The angle between 81d and front end surface 181b is substantially 90
The leading edge 181e on the ink outlet side, which is formed at the same time and located at the portion where these two surfaces intersect, is similarly finished with a curved surface having a radius of curvature of dimension r. In order to obtain an ink film thickness greater than the required thickness, it is necessary to set the radius of curvature R of the ink introduction side leading edge 181c to 30 μm or more. This radius of curvature R is determined by the elasticity of the ink forming roller 12, the relative speed of the ink forming roller 12 with respect to the doctor blade 18, and the ink forming roller 12.
It varies depending on the viscosity of 6, etc., and the above 30μ
An appropriate value may be selected within the range of m or more. As an example, when the rubber hardness of the surface of the ink forming roller 12 is 30 degrees, the relative speed to the doctor blade 18 is about 36 m/min, and the viscosity of the ink 26 is about 900 poise, the preferable value of the radius of curvature R is 50 to 75 μm.
It is. On the other hand, in order to prevent ink from running down from the thin plate member 181, it is necessary to set the radius of curvature r of the ink outlet side leading edge 181e to 20 μm or less. Note that it is preferable to set the radius of curvature r to 10 μm or less because this increases the peeling force that overcomes the interfacial tension of the ink that tries to adhere to the leading edge 181e on the ink outlet side. If this setting is made, the peeling force becomes more stable than in the case described above, so that it is possible to prevent ink pooling from occurring even when using more types of ink. Hereinafter, the principle of sag will be explained using Examples and Comparative Examples of the present application, and the experimental results of each will be described. B Principle of underside droop and experimental results (1) Comparative example 1 (a) Principle First, as shown in Fig. 6, the thin plate member 18
1, the ink outlet side surface 18
A case will be considered in which the ink film 26a is formed using a doctor blade in which 1f is finished at an angle and the clearance angle θ is set to be smaller than 90 degrees (for example, 45 degrees). In this case, it is assumed that the ink forming roller 12 having a two-layer structure shown in FIG. 5 is used. The velocity distribution of the ink 26 at a position P 1 near the leading edge 181g of the ink outlet side of the doctor blade thin plate member 181 is approximately equal to the roller surface velocity v 0 at the boundary of the ink form roller 12, as shown in FIG. 6b. , the speed approaches zero as it approaches the thin plate member 181 side. On the other hand, the velocity distribution of the ink 26 at the position P2 immediately after the formation of the ink film 26a is equal to the roller surface velocity v0 . Therefore, the ink flowing along the boundary surface of the thin plate member 181 is accelerated while changing direction from velocity zero to v 0 near the ink outlet side leading edge 181g. As a result, due to the viscoelastic properties of the ink 26, a force F is generated that tends to peel the ink 26 from the surface of the thin plate member 181. If this force F is larger than the interfacial tension between the ink 26 and the surface of the thin plate member 181, the ink 26 will peel off at the interface of the thin plate member 181. However, as shown in FIG.
When the clearance angle θ at the tip of 81 is set small, the leading edge 18 on the ink outlet side
Since the ink velocity changes slowly in the vicinity of 1 g, the position where the force F becomes large enough to cause ink peeling shifts to the lower right of the figure. However, since the ink 26 contains bubbles and the like and is not completely uniform, the ink may break in the ink before reaching this peeling point. In this way, the ink 26 remaining near the front edge 181g of the thin plate member 181 on the ink outlet side is
Since the ink has a velocity component V along the tapered surface 181f of the thin plate member 181, it is gradually pushed out to form an ink pool S as shown in FIG. 6b. This ink puddle S grows as the operating time passes, and finally the weight of the ink puddle S and the frictional force exerted by the boundary between the moving ink film 26a and the ink puddle S are applied to the ink 26 and the thin plate member 181. is larger than the adhesive force of the ink 26 or the breaking stress of the ink 26,
It falls from the thin plate member 181. From the above, the surface 181 on the ink derivation side
The clearance angle θ formed by f and the tangent to the outer peripheral surface of the coating roller is preferably 80 to 100 degrees, and 85 to 95 degrees.
More preferably, the angle is substantially 90 degrees, most preferably substantially 90 degrees. Here, if the relief angle θ is outside the above range, the thin plate member 181
Since a thin plate member having a stable plate thickness d and a radius of curvature r in the width direction cannot be obtained, a stable ink thin film without uneven printing density cannot be obtained. (b) Comparative Experimental Example 1 As the ink form roller 12, a metal round rod with a diameter of 20 mm was used as the rigid core material 121 (Fig. 5), and then a rubber hardness material was used as the inner layer 122.
After providing a 20° soft cushion rubber layer and increasing its outer diameter to 50 mm, an outer layer 1 is placed on top of it.
23 is formed by wrapping a rubber layer with a rubber hardness of 30° to a thickness of 5 mm, with an outer diameter of 60 mm and a length of 418 mm.
A two-layer rubber roller of mm was used. The surface of this roller has a sufficiently smooth finish, the roundness is 0.02, and the runout relative to the reference axis is 0.02.
Finished with high precision. On the other hand, the doctor blade has a thin plate member 181 made of Swedish steel as shown in FIG.
The distance t to g is 0.15 mm, and the distance between the upper surface 181a and the lower surface 181d, that is, the plate thickness d, is 0.8 mm.
Set to . In addition, the amount l of the tip of the thin plate member 181 protruding from the upper holding member 182 is determined.
The protrusion amount a from the lower holding member 183 is set to 0.5 mm (non-flexible support), and the clearance angle θ is set to 45 degrees. Further, the radius of curvature R of the ink introduction side leading edge 181c of the thin plate member 181 is set to 50 μm, and the ink leading side leading edge 181
Let the radius of curvature r of g be 10 μm. A printing experiment was carried out using an offset printing machine (VS-1000, manufactured by Toray Engineering Co., Ltd.) shown in FIG. 2 using the inking device equipped with the above-mentioned inking roller and doctor blade. The ink 26 used was a standard ink for waterless planography (viscosity 500 to 3000 poise), and the color was indigo blue. The printing speed was 4500I.PH and the number of revolutions of the ink forming roller 12 at that time was 192R.
It was PM. When printing under the above conditions, continuous
Ink pool S occurred and fell after printing 2000 to 4000 sheets. (2) Comparative Example 2 (a) Principle As shown in FIG. 7, at the tip of the thin plate member 181, the leading edge on the ink introduction side and the leading edge on the ink leading side are respectively curved, and their curvature radii R and r to a value larger than 20μm, e.g.
Set it as large as 40μm. In this case as well, a two-layer roller is used as the ink forming roller 12, as in Comparison Row 1 above. If the radius of curvature r of the leading edge on the ink outlet side is finished to be larger than 20 μm as described above, the deformation of the ink form roller 12 during the formation of the ink film will occur along the surface of the thin plate member 181 as shown in FIG. Recovery follows a curve as shown in . The velocity distribution of the ink 26 flow at the tip P1 of the thin plate member 181 is similar to the case of Comparative Example 1 above, where the roller boundary surface is v 0 approximately equal to the roller circumferential speed, and as it approaches the thin plate member 181, The velocity vo at the boundary surface approaches zero. On the other hand, immediately after passing the leading edge on the ink outlet side, P 2 has finished forming the ink film 26a.
The velocity distribution at a point is the overall roller surface velocity v 0
is equal to Therefore, in this case as well, the ink flowing along the boundary surface of the thin plate member 181 is accelerated near the P1 point while changing direction from zero to v0 , and the ink 26 is pulled from the surface of the thin plate member 181. A force F is generated to try to peel it off. However, the thin plate member 1
If the radius of curvature r of the leading edge of the ink outlet side of No. 81 is set large, the speed change near point P1 will be gradual, and the position where the force F becomes large enough to cause ink peeling will be as described above. As in the case of Comparative Example 1, the flow moves toward the lower right of the figure. As a result, as in the case of Comparative Example 1 above,
The ink remaining on the thin plate member 181 is gradually pushed out by the velocity component V along the surface of the thin plate member 181, creating an ink puddle S, and the ink puddle S grows and falls during long-term operation. Become. (b) Comparative Example 2 The thin plate member 181 is made of Swedish steel, and the radii of curvature R and r of the leading edge on the ink introduction side and the leading edge on the ink outlet side are respectively 40μ.
m, clearance angle θ is set to 90°, and plate thickness d is
Set to 0.15mm. When the ink film 26a was formed with all other conditions set the same as in Comparative Example 1, an ink pool S was generated and dropped by the time the number of consecutive prints reached 2000 sheets. (3) Comparative Example 3 (a) Principle As shown in FIG. 8, the radius of curvature r of the leading edge 181e on the ink outlet side of the thin plate member 181 of the doctor blade is set to 20 μm or less, for example, 10 μm, and the tip of the thin plate member 181 The amount of protrusion l and a at the ink forming roller 1
A case will be considered in which the dimensions are set to such a size that the tip end of the thin plate member 181 can have flexibility in the tangential direction of the outer circumferential surface of the roller as the roller 2 rotates. In this case as well, a two-layer roller is used as the ink forming roller 12. Now, in FIGS. 8b and 8c, l: From the upper holding member 182 to the thin plate member 181
Distance from the lower holding member 183 to the tip of the thin plate member 181
Distance to the tip b: l-a E: Young's modulus of the thin plate member 181 I: Moment of inertia W of the thin plate member 181: When defined as the force applied to the tip of the thin plate member 181, the maximum force at the tip of the thin plate member 181 The deflection y is expressed by the following formula. y=a 2 (4l-b)/12EI・W Here, as a specific example, if we compare the deflections of the following two examples, Example 1 When l=1.9 and a=0.5, y 1 =0.13(W/ EI) Example 2 When l = 1.9, a = 1.5 y 2 = 1.35 (W/EI) In other words, when the value of a is 1.5 mm, the amount of deflection y is 10.5 times (y 2 /y 1
= 10.5). This means that the support of the thin plate member 181 by the lower holding member 183 becomes a flexible support unless a portion closer to the tip of the thin plate member 181 is supported. Note that the calculated value of the deflection amount y in the case of Comparative Example 3 was approximately 15 μm. Therefore, in order to support the thin plate member 181 inflexibly, it is preferable that the amount of deflection y be less than 15 μm. In Comparative Example 3, we will consider a case where the tip of the thin plate member 181 is bent, as in the case of [Example 2] above. A model of the deformation of the ink forming roller 12 and the ink flow when such a deflection occurs is shown in FIG. 8a, and the roller surface and the thin plate member 181
An inverted wedge is formed between the tip surface 181b and the tip surface 181b. Under these conditions, just before the ink film is formed,
The ink velocity distribution at one point P is greatest at v 0 at the roller surface boundary position, and v o becomes almost zero at the boundary surface at the tip of the thin plate member. At this time, the reverse wedge-shaped ink flow causes the position P 1
The velocity distribution (from v 0 to v o ) changes gradually until reaching . As a result, the tensile force F in the ink is generated earlier than in the case where there is no deflection. This force F causes the ink 26 to
Although it is not strong enough to peel it off at once from the front end surface 181b of the ink, it may cause breakage at a weak portion in the ink. As a result of the irregular breaks that occur in the ink in this way, the ink left behind on the thin plate member 181 side gradually accumulates due to the velocity component V along the surface of the thin plate member 181 and the wetting of the lower surface 181d of the thin plate member. do. In this way, during long-term operation, the ink pool S grows and falls downward. In this way, when the thin plate member 181 is supported by a flexible support method, the front end surface 181b of the thin plate member 181 corresponds to the relief angle θ of Comparative Experiment Example 1 with respect to the tangent to the outer peripheral surface of the ink form roller 12. Since an inclined surface is formed, the same problem as in Comparative Experiment Example 1 occurs. A similar phenomenon also occurs when the thin plate member 181 is attached with the thin plate member 181 facing diagonally downward. (b) Comparative Experimental Example 3 In FIG. 8, the radius of curvature r of the leading edge 181e on the ink outlet side at the tip of the thin plate member 181 is set to 10 μm, the radius of curvature R of the leading edge 181c on the ink introducing side is set to 50 μm, and the thin plate The protruding amount l of the tip of member 181 is 1.9
mm and a were set to 1.5 mm. Other conditions are
All settings were made the same as in Comparative Experiment Example 1 above. When the ink film 26a was formed under these conditions, the tip of the thin plate member 181 was bent in the tangential direction of the outer peripheral surface of the roller, and an ink pool S was generated at the leading edge 181e on the ink outlet side. The ink puddle S grew and fell after 4000 to 5000 sheets were printed continuously. Note that when the printing machine is temporarily stopped before the ink puddle S falls and printing is restarted using new paper, most of the ink puddle S is carried away to the surface of the ink form roller 12, and as a result, the surface of the ink form roller 12 is removed. The uniformity of the ink film was impaired, resulting in uneven density on printed matter. (4) Example 1 (a) Principle As shown in FIG. 9, the radius of curvature r of the ink outlet side leading edge 181e of the thin plate member 181 of the doctor blade is set to 20 μm or less, for example, 10 μm or less, and the thin plate member 181 is Consider the case where the protrusion amounts l and a at the tip are set to such a size that the tip of the thin plate member does not substantially have flexibility in the tangential direction of the roller outer peripheral surface as the ink form roller 12 rotates. do. The specific numerical values of the protrusion amounts l and a are, for example, as in the above [Example 1], l=
Examples include 1.9 mm and a=0.5 mm. In this case as well, a two-layer roller is used as the ink forming roller 12. Under the above conditions, the velocity distribution at point P immediately before the leading edge 181e on the ink outlet side is fastest at the roller boundary surface v 0 and slowest at the boundary surface 181b of the thin plate member 181 and becomes almost zero (v o ≒ 0). Further, the ink speed at point P2 immediately after the ink film is formed is equal to the roller surface speed v0 . Therefore, the ink flow with a velocity v o ≒ 0 near P 1 rapidly increases its velocity from a flow parallel to the roller surface and the front end surface 181b of the thin plate member toward the roller 12 side, that is, in the direction of F, and increases the roller surface velocity. v becomes 0 . That is, the ink near the boundary surface of the thin plate member at point P1 is accelerated while changing direction to the speed v0 . As a result, due to the viscoelastic properties of the ink, a force F is generated that tends to peel off the ink from the surface of the thin plate member. If this force F is larger than the interfacial tension between the ink and the surface of the thin plate member, the ink will peel off at the blade interface. However, the thin plate member 181
However, when r≦20 μm and there is no downward deflection, the above-mentioned speed change near P 1 occurs rapidly and instantaneously. Therefore the force F
Since the force F increases rapidly, the force F overcomes the interfacial tension on the surface of the thin plate member, and stable peeling occurs at the leading edge 181e on the ink outlet side. Therefore, irregular breaks in the ink hardly occur, and no ink is left behind on the thin plate member 181 side. In other words, almost no ink pools occur. In addition, as an ink application roller,
When an inking roller 12 having a two-layer structure in which the outer layer 123 is harder than the inner layer 122 is used, the swelling deformation of the rubber roller that reduces the relief angle of the thin plate member tip surface 181b with respect to the roller surface is reduced. Therefore, the above-mentioned peeling occurs more stably, and ink pooling becomes less likely to occur. (b-1) Embodiment 1 of the present application In FIG. 9, the radius of curvature γ of the leading edge 181e on the ink outlet side of the thin plate member 181 is set to 15μ.
m, and the amount of protrusion a at the tip of the thin plate member 181 was set to 0.5 mm.
The inks used were water or standard lithographic inks (viscosity 500 to 3000 poise), and the colors used were indigo, grass green, and brown. All other conditions were set to be the same as in Comparative Experiment Example 3 shown in FIG. When the ink film 26a was formed under these conditions, the thin plate member 181 exhibited substantial rigidity in the tangential direction of the outer peripheral surface of the roller, and the accumulation of ink on the lower surface of the thin plate member 181 was suppressed as much as possible. During printing, a rod-shaped ink with a diameter of about 1 to 2 mm is formed on the front edge 181 of the ink outlet side.
It was attached to e. After printing about 4,000 sheets, the indigo ink puddles did not grow much and there was no fear of it falling off. Furthermore, for grass-colored and brown inks, which are extremely prone to ink puddles, there were cases where ink puddles were observed to grow after 4,000 sheets.
It did not fall, and there was no problem in practical use. (b-2) Experimental example 2 of the present invention In FIG. 9, the radius of curvature γ of the ink outlet side leading edge 81e of the thin plate member 181 is set to
All other settings were the same as in Experimental Example 1 of the present invention. When the ink film 26a was formed under these conditions, a thin rod-shaped ink with a diameter of 1 mm or less adhered to the leading edge 181e on the ink outlet side after 2000 sheets were printed continuously for each color ink, but the indigo ink did not adhere to the leading edge 181e on the ink outlet side after 2000 sheets were printed continuously. However, there was almost no growth observed, and the number was 6000 to 8000 in a row.
There was no danger that even a single sheet would fall. As for the grass-colored and brown leaves, 6,000 to 8,000 pieces were grown in a row to a diameter of about 2 mm, but they did not fall to the point of falling and were not a problem for practical use. (b-3) Experimental example 3 of the present invention In FIG. 9, the radius of curvature γ of the leading edge 181e on the ink outlet side of the thin plate member 181 is
m, and all other settings were the same as in Experimental Example 1 of the present invention. When the ink film 26a was formed under these conditions, the amount of ink pooling on the lower surface of the thin plate member 181 showed a tendency to decrease compared to the case of Experimental Example 2 of the present application. Specifically, when printing 2,000 sheets continuously, a thin bar of ink within 1 mm in diameter is printed on the front edge 181e of the ink outlet side.
However, no ink puddle growth was observed for the indigo blue and grass blue inks even after printing 6,000 to 8,000 sheets. As for the brown color, it was observed that it gradually grew to a diameter of about 2 mm after 6000 to 8000 sheets, but there was no fear of it falling and there was no problem in practical use. (b-4) Experimental example 4 of the present invention In FIG.
All other settings were the same as in Experimental Example 1 of the present invention. When the ink film 26a was formed under these conditions, the thin plate member 1
The amount of ink pooling on the lower surface of No. 81 was further reduced compared to the case of Experimental Example 3 of the present application. In other words, after continuous printing of 2000 sheets, thin ink sticks of less than 1 mm in diameter partially adhere to the leading edge 181e on the ink outlet side, but no ink pools are observed to grow even after 6000 to 8000 sheets of ink of each color are printed. I couldn't help it. (b-5) Experimental example 5 of the present invention In FIG. 9, the radius of curvature γ of the leading edge 81e on the ink outlet side of the thin plate member 181 is
All other settings were the same as in Experimental Example 1 of the present invention. When the ink film 26a was formed under these conditions, the thin plate member 1
Regarding the ink pooling on the lower surface of No. 81, the same results as in Experimental Example 4 of the present invention were obtained. In other words, after continuous printing of 2000 sheets, a stick of ink within a diameter of 1 mm partially adheres to the leading edge 181e on the ink outlet side, but even after printing 6000 to 8000 sheets of ink of each color, no ink pool growth was observed. Ta. Furthermore, although a prototype was made to set the radius of curvature γ of the leading edge 181e on the ink outlet side of the thin plate member 181 to 0.2 μm, the radius of curvature γ over the entire length was
The experiment was abandoned because stability could not be obtained. (c) Factors determining the upper limit of the thickness of the thin plate member 181 Here, the upper limit of the thickness d of the thin plate member 181 will be considered. As shown in FIG. 10a, the thickness of the thin plate member 181 is defined as d, and the height of the flat portion at the tip is defined as H. Now, assuming that the radius of curvature R of the leading edge of the thin plate member 181 on the ink introduction side is set to a constant value, if the plate thickness d of the thin plate member 181 is set large, the flatness at the tip of the thin plate member 181 will increase. The height H of the part becomes larger and the first
As shown in Figure 0b, the area of "high" pressure corresponding to the flat portion H becomes wider. As a result, the force exerted by the thin plate member 181 on the roller 12 increases, and the deformation of the roller 12 increases.
The thickness of the ink film 26a increases. By the way, the appropriate film thickness (3~
15 μm), it is necessary to reduce the radius of curvature R of the ink introduction side front edge 181e of the thin plate member 181, or to increase the amount by which the thin plate member 181 is pushed into the roller 12. However, when the radius of curvature R is set to 30 μm or less, a problem arises in that the roller surface is damaged by the leading edge on the ink introduction side. Further, if the thin plate member 181 is pushed in by 0.6 mm or more, there will be a problem that the durability of the rubber roller will be impaired due to friction and heat generation. From these, the appropriate plate thickness d and radius of curvature R are determined, and these specific values are d = 0.1 to 0.8
mm, R≧0.03 mm. (d) Factors determining the lower limit of the thickness of the thin plate member 181 Next, the lower limit of the thickness d of the thin plate member 181 will be considered. As shown in FIG. 11a, when the thickness d of the thin plate member 181 is set small,
As shown in FIG. 11b, the range of the high pressure part at the tip of the thin plate member 181 is reduced,
As the pressure exerted on the roller 12 is reduced, the roller deformation is also reduced, resulting in an ink film 26
The thickness of a becomes thinner. In order to obtain an appropriate ink film thickness (3 to 15 μm) under such circumstances, it is necessary to increase the radius of curvature R or to decrease the amount by which the thin plate member 181 is pushed into the roller 12. However, in the former case,
The radius of curvature R cannot be set larger than the plate thickness d,
Moreover, since the plate thickness d is set to be small here, there is a limit to setting the radius of curvature R to be large. On the other hand, in the latter case, a predetermined pushing amount (for example, 0.2 mm or more) is required to obtain a uniform film thickness along the roller axial direction, and if the pushing amount is too small, the thin plate member 181 will be pushed in the roller axial direction. Due to the influence of the shape of the tip along the roller and the shape of the roller surface, it becomes impossible to form a substantially uniform ink film along the roller axis direction. Further, if the thickness d of the thin plate member 181 is made smaller, a problem arises in that the rigidity of the cutting edge is reduced. From the above, the appropriate plate thickness d and radius of curvature R are determined, and their specific values are d=0.1 to 0.8 mm and R≦0.1 mm. (5) Example 2 (a) Principle Instead of the two-layer rubber roller 12 shown in FIG. 9, a single-layer rubber roller 2 as shown in FIG.
Let us consider the case where 7 is used. In this case, the same doctor blade as the doctor blade of Example 1 of the present application shown in FIG. 8 is used. When the rubber roller 27 is used, the deformation of the rubber roller is concentrated locally in response to the pressure applied to the tip of the thin plate member 181, and a bump-like bulge deformation occurs near the ink introduction side leading edge 181c. Similarly, bulging deformation as shown in the figure is also seen near the leading edge 181e on the ink outlet side (pressure release area). Therefore, the thin plate member 1
The relative angle between the vicinity of the front edge of the lower surface 181d of the rubber roller 27 and the surface of the rubber roller 27, that is, the clearance angle in FIG. Become. As a result, for the same reason as explained using FIG. 6, the peeling point shifts to the right in the figure, creating a wetted surface near the front edge of the lower surface 181d of the thin plate member. In reality, by the time this peeling point is reached, fractures occur in the ink due to non-uniformity of the ink, and ink pools occur. Ink 2 remaining on the thin plate member 181 in this way
Since ink 6 has a velocity component V along the thin plate member 181, it is gradually pushed out and an ink pool S grows. However, the doctor blade used here is the same as the doctor blade of Embodiment 1 of the present application shown in FIG. In addition, since the radius of curvature r of the leading edge 181e on the ink outlet side is set to 20 μm or less, the growth rate of the ink pool S can be suppressed considerably lower than in Comparative Examples 1, 2, and 3. (b) Experimental Example 6 In place of the two-layer rubber roller 12 shown in FIG. 9, a single-layer rubber roller 2 as shown in FIG.
7, and the other conditions were set exactly the same as in the case of Experimental Example 2 of the present invention described using FIG. If a thin ink film is formed under these conditions, a small linear ink rod with a diameter of about 1 mm will adhere after 2,000 continuous prints, and then continue to grow to become ink droplets. And continuous
It grows to the point where it falls after 6,000 to 8,000 pieces. The experimental results of Comparative Experimental Examples 1 to 3 and Examples 1 to 6 of the present application are summarized as shown in the table below. In addition, the meaning of each symbol of the experimental conditions used in the table below is as follows. M; represents the method of supporting the thin plate member 181;
"Non" indicates a non-flexible support method, and "Possible" indicates a flexible support method. θ: Front end surface 181b of thin plate member 181 and ink outlet side surface 181f or lower surface 18
Angle (degrees) formed with 1d R: Radius of curvature of the leading edge of the ink introduction side of the thin plate member 181 (μm) r: Radius of curvature of the leading edge of the ink outlet side of the thin plate member 181 (μm) N: Rubber coating of the ink form roller Number of layers (layers) In addition, the criteria for determining the results are as follows. X: The ink pool falls within 30 minutes after printing starts. △: The ink puddle may fall within 60 minutes. ○: A little growth of the ink pool is observed within 1 to 2 hours, but it does not lead to falling. ◎: The ink pool does not grow even after 2 hours or more. Note that the number of sheets printed corresponding to the 30 minute printing time of the inking device used in the comparative example and the example of the present application is approximately 2300 sheets.

【表】 上記の表から明らかな通り、比較例と本願
実験例とを対比すると、薄板部材181の支
持方法は非可撓性支持方法、逃げ角θは90°、
曲率半径rは20μm以下、インキ着けローラ
12のゴム被覆層数は1〜2層にすると、裏
ダレを防止する上で良い結果を得られること
が判る。特に、薄板部材181の曲率半径r
を10μm以下に設定すると、裏ダレの防止効
果がより高くなり、1〜2時間の連続運転が
可能となる。更に、曲率半径rを5〜0.5μm
にすると多くの種類のインキに対しても裏ダ
レが長時間発生しない安定した印刷が達成で
きる。 (6) 参考実験例 第9図において、ドクタブレード薄板部材1
81のインキ導入側前縁181eの曲率半径R
を20μm、30μm、50μm、75μm、100μmとし
た各種ドクタブレードを作成し、その他の条件
は第9図を用いて説明した本願実験例1と全く
等しく設定して印刷を行なつた。 上記条件で印刷した印刷物のベタ部分の濃度
をブルーのフイルターを用いた反射濃度計(グ
レタグ濃度計)で測定した濃度指標を第13図
に示す。第13図において横軸の指標となるド
クタブレードの押し込み量△P(mm)は、第1
図に示す通り、インキ着けローラ12表面の変
形前の位置12aを基準として薄板部材181
先端が前記インキ着けローラ12の概略半径方
向へ移動した距離(言い換えれば押し込まれた
距離)を表わす。この押し込み量△pの値は、
インキ着けローラ12の寸法や物性、インキ2
6などの使用条件により適当に選定すれば良い
が、本実験例においては、0.2〜0.5mmとした。
押し込み量△pが0.2mm未満では、インキ装置
を構成する各部品の精度や組立精度のばらつき
の影響を受けてインキ膜厚が不安定となり易
く、一方押し込み量△pが0.5mmを越えると、
インキ着けローラ12の駆動エネルギーが過大
となるばかりでなく、インキ着けローラ12の
加熱の原因となる等の不都合を生じるからであ
る。 第13図から明らかなようにそれぞれの曲率
半径Rに対する押し込み時の濃度は、Rの値が
大きい程濃く、Rの値が小さい程淡くなること
がわかる。本実験に於いて、被印刷材として上
質紙を用いた印刷物の上でのベタ濃度が、標準
的な濃度指標1.0〜1.4を示す範囲と、前記押し
込み量△pが0.2〜0.5mmの範囲とで特定される
領域のほぼ全域を実現可能な曲線を示す曲線半
径Rは、50μmと75μmであつた。曲率半径R
が30μmの場合は印刷濃度が全域的に淡くなつ
て高い濃度が得られにくく、反対に曲率半径R
が100μmの場合は印刷濃度が全域的に濃くな
つて低い濃度が得られにくい。もつとも、これ
らの傾向を容認する印刷においては、曲率半径
Rが30μmあるいは100μmの場合でも十分使用
できるものである。一方、曲率半径Rが20μm
では、印刷濃度が全域とも淡く、その上に印刷
幅方向に濃度むらが起こり、使用に耐えないも
のであつた。 以上はオフセツト印刷機におけるインキ装置に
ついて説明したが、この発明は、凸版印刷、平板
印刷などの一般の印刷機におけるインキ装置にも
広く適用できる他、印刷インキ状の粘性流体を弾
性ローラ上に薄膜状に形成するいわゆる塗布装置
にも広く応用できるものである。 (発明の効果) 以上のように、この発明の塗布装置は、塗布ロ
ーラを弾性ローラにより形成するとともに、ドク
タブレードの薄板部材を塗布ローラ外周面の接線
方向に対し実質的に可撓性のない状態で支持し、
かつ薄板部材の先端部におけるインキ導出側前縁
を曲成してその曲率半径を20μm以下に設定した
ため、長時間運転した場合でも塗布液のドクタブ
レードからの裏だれを防止できるという効果が得
られる。
[Table] As is clear from the above table, when comparing the comparative example and the experimental example of the present application, the supporting method of the thin plate member 181 is the non-flexible supporting method, the relief angle θ is 90°,
It can be seen that when the radius of curvature r is 20 μm or less and the number of rubber coating layers of the ink forming roller 12 is 1 to 2, good results can be obtained in preventing back sag. In particular, the radius of curvature r of the thin plate member 181
When it is set to 10 μm or less, the effect of preventing back sagging becomes higher, and continuous operation for 1 to 2 hours becomes possible. Furthermore, the radius of curvature r is set to 5 to 0.5 μm.
By doing so, stable printing can be achieved with many types of ink without sagging on the back side for a long time. (6) Reference experiment example In Fig. 9, doctor blade thin plate member 1
The radius of curvature R of the ink introduction side leading edge 181e of 81
Various doctor blades with diameters of 20 .mu.m, 30 .mu.m, 50 .mu.m, 75 .mu.m, and 100 .mu.m were prepared, and printing was carried out under the same conditions as in Experimental Example 1 of the present application explained using FIG. FIG. 13 shows a density index obtained by measuring the density of a solid portion of a printed matter printed under the above conditions using a reflection densitometer (Gretag densitometer) using a blue filter. In Fig. 13, the pushing amount △P (mm) of the doctor blade, which is the index on the horizontal axis, is the first
As shown in the figure, the thin plate member 181 is
It represents the distance that the tip has moved in the approximate radial direction of the ink forming roller 12 (in other words, the distance that it has been pushed). The value of this pushing amount △p is
Dimensions and physical properties of ink form roller 12, ink 2
Although it may be selected appropriately depending on the usage conditions such as No. 6, in this experimental example, it was set to 0.2 to 0.5 mm.
When the pushing amount △p is less than 0.2 mm, the ink film thickness tends to become unstable due to the influence of variations in the accuracy and assembly precision of each component that makes up the inking device, while on the other hand, when the pushing amount △p exceeds 0.5 mm,
This is because not only the driving energy of the ink forming roller 12 becomes excessive, but also causing problems such as heating of the ink forming roller 12. As is clear from FIG. 13, the density at the time of pressing for each radius of curvature R is found to be darker as the value of R is larger, and lighter as the value of R is smaller. In this experiment, the solid density on printed matter using high-quality paper as the printing material was in the range showing the standard density index of 1.0 to 1.4, and in the range where the pushing amount △p was 0.2 to 0.5 mm. The radius R of the curve that can realize almost the entire region specified by is 50 μm and 75 μm. radius of curvature R
When the radius of curvature R
When the printing density is 100 μm, the printing density becomes dark over the entire area, making it difficult to obtain a low density. However, in printing that accepts these tendencies, a radius of curvature R of 30 μm or 100 μm can be used satisfactorily. On the other hand, the radius of curvature R is 20 μm
In this case, the printing density was low over the entire area, and density unevenness occurred in the printing width direction, making it unusable. Although the inking device for an offset printing press has been described above, this invention can also be widely applied to inking devices for general printing presses such as letterpress printing and planographic printing. It can also be widely applied to so-called coating devices that form shapes. (Effects of the Invention) As described above, in the coating device of the present invention, the coating roller is formed of an elastic roller, and the thin plate member of the doctor blade is substantially inflexible in the tangential direction of the outer peripheral surface of the coating roller. support in the state,
In addition, since the leading edge of the ink outlet side at the tip of the thin plate member is curved and the radius of curvature is set to 20 μm or less, it is possible to prevent the coating liquid from dripping from the doctor blade even during long-term operation. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例であるインキ装置
の要部拡大断面図、第2図は上記インキ装置が装
着されたオフセツト印刷機の概略断面図、第3図
はインキ装置の概略断面図、第4図はインキ装置
の平面図、第5図はインキ装置におけるインキ膜
形成時の要部断面図、第6図は比較例1の説明
図、第7図は比較例2の説明図、第8図は比較例
3の説明図、第9図は本願例1の説明図、第10
図はドクタブレード薄板部材の板厚を大きく設定
した場合の説明図、第11図はドクタブレード薄
板部材の板厚を小さく設定した場合の説明図、第
12図は本願例2の説明図、第13図はドクタブ
レード押し込み量とグレタグ反射濃度計指標との
関係を示す特性図、第14図は従来例の断面図、
第15図は他の従来例の断面図である。 12……インキ着けローラ、18……ドクタブ
レード、26……インキ、26a……インキ膜、
122……内層、123……外層、181……薄
板部材、181e……インキ導出側前縁、182
……上部保持部材、183……下部保持部材、r
……曲率半径。
Fig. 1 is an enlarged sectional view of the main parts of an inking device which is an embodiment of the present invention, Fig. 2 is a schematic sectional view of an offset printing press equipped with the above inking device, and Fig. 3 is a schematic sectional view of the inking device. , FIG. 4 is a plan view of the inking device, FIG. 5 is a sectional view of main parts of the inking device during ink film formation, FIG. 6 is an explanatory diagram of Comparative Example 1, and FIG. 7 is an explanatory diagram of Comparative Example 2. Fig. 8 is an explanatory diagram of Comparative Example 3, Fig. 9 is an explanatory diagram of Example 1 of the present application, and Fig. 10 is an explanatory diagram of Comparative Example 3.
11 is an explanatory diagram when the thickness of the doctor blade thin plate member is set to be small. FIG. 12 is an explanatory diagram of Example 2 of the present application. Fig. 13 is a characteristic diagram showing the relationship between the amount of depression of the doctor blade and the Gretag reflection densitometer index, Fig. 14 is a cross-sectional view of the conventional example,
FIG. 15 is a sectional view of another conventional example. 12... Ink application roller, 18... Doctor blade, 26... Ink, 26a... Ink film,
122...Inner layer, 123...Outer layer, 181...Thin plate member, 181e...Ink outlet side leading edge, 182
...Upper holding member, 183...Lower holding member, r
……curvature radius.

Claims (1)

【特許請求の範囲】 1 弾性表面を有する塗布ローラと、この塗布ロ
ーラの外周面に対し塗布ローラの概略半径方向に
進退自在に配設されてローラ外周面に形成する塗
布膜の膜厚調整を行なうドクタブレードとを備え
た塗布装置において、 前記ドクタブレードを、先端部が前記塗布ロー
ラの外周面に押し当てられる薄板部材と、この薄
板部材を前記塗布ローラ外周面の接線方向に実質
的に可撓性のない状態で保持する保持部材とによ
り構成し、かつ前記薄板部材の先端部におけるイ
ンキ導出側前縁を曲成して、その曲率半径を20μ
m以下に設定したことを特徴とする塗布装置。 2 前記塗布ローラが、表面の層ほど内部の層よ
りも硬度が高く設定された多層構造に仕上げられ
ていることを特徴とする請求項1記載の塗布装
置。 3 前記塗布ローラがインキ着けローラであるこ
とを特徴とする請求項1または2記載の塗布装
置。
[Claims] 1. A coating roller having an elastic surface, and a coating roller disposed so as to be able to move forward and backward in the approximate radial direction of the coating roller with respect to the outer circumferential surface of the coating roller to adjust the thickness of a coating film formed on the outer circumferential surface of the roller. In the coating device, the doctor blade is configured to include a thin plate member whose tip is pressed against the outer circumferential surface of the coating roller, and a thin plate member that is substantially movable in a tangential direction to the outer circumferential surface of the coating roller. and a holding member that holds the thin plate member in a non-flexible state, and the front edge on the ink outlet side at the tip of the thin plate member is curved to have a radius of curvature of 20μ.
A coating device characterized in that the coating temperature is set to less than m. 2. The coating device according to claim 1, wherein the coating roller has a multilayer structure in which the surface layer has a higher hardness than the inner layer. 3. The coating device according to claim 1 or 2, wherein the coating roller is an ink forming roller.
JP63011348A 1987-01-22 1988-01-21 Coating device Granted JPS63302049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63011348A JPS63302049A (en) 1987-01-22 1988-01-21 Coating device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1280887 1987-01-22
JP62-12808 1987-01-22
JP63011348A JPS63302049A (en) 1987-01-22 1988-01-21 Coating device

Publications (2)

Publication Number Publication Date
JPS63302049A JPS63302049A (en) 1988-12-08
JPH0468147B2 true JPH0468147B2 (en) 1992-10-30

Family

ID=26346760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63011348A Granted JPS63302049A (en) 1987-01-22 1988-01-21 Coating device

Country Status (1)

Country Link
JP (1) JPS63302049A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69835266T2 (en) * 1997-03-24 2007-07-26 Toray Industries, Inc. COATING DEVICE, PRINTING DEVICE, IMAGE GENERATING DEVICE, PRINTING SYSTEM AND PRINTING METHOD
JP4521213B2 (en) * 2004-03-30 2010-08-11 ニチハ株式会社 Building board and manufacturing method thereof

Also Published As

Publication number Publication date
JPS63302049A (en) 1988-12-08

Similar Documents

Publication Publication Date Title
JP5540143B2 (en) Ink supply system for intaglio printing press
US3433155A (en) Mechanism for applying a coating to a plate
JP2931719B2 (en) Printing roller and manufacturing method thereof
US5842416A (en) Inking unit for a printing machine
JP4402229B2 (en) Ink machine
JPS59500808A (en) Inking method and device for printing machines
JPH0468147B2 (en)
US4590857A (en) Ink metering apparatus
JPS622991B2 (en)
US4538518A (en) Ink metering apparatus
JP4932999B2 (en) Inking device of printing machine
JP3086622B2 (en) Thin film printing equipment
JP4016491B2 (en) Squeegee and squeegee mechanism and screen printing method using the same
US4287828A (en) Ink metering apparatus
JPS5865663A (en) Ink weigher with weighing member of obtuse angle
JP2873925B2 (en) Ink supply device with dehydration function
JP3985331B2 (en) Coating device and printing device
JP2001191484A (en) Squeegee device, screen printing process, rotary screen printing process and stencil printing process
JP3390934B2 (en) Printing unit
JP3228804U (en) Ink supply device
JPH0353891Y2 (en)
JP3393880B2 (en) Rotary printing press
JPH0671998A (en) Rotary mimeographic printer
JPH0468146B2 (en)
KR0152459B1 (en) Printing roller and method of manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071030

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081030

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081030

Year of fee payment: 16