JPH046809A - Fe group soft magnetic thin film and magnetic head using it - Google Patents

Fe group soft magnetic thin film and magnetic head using it

Info

Publication number
JPH046809A
JPH046809A JP10831490A JP10831490A JPH046809A JP H046809 A JPH046809 A JP H046809A JP 10831490 A JP10831490 A JP 10831490A JP 10831490 A JP10831490 A JP 10831490A JP H046809 A JPH046809 A JP H046809A
Authority
JP
Japan
Prior art keywords
magnetic
film
composition
thin film
expressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10831490A
Other languages
Japanese (ja)
Inventor
Shigekazu Suwabe
諏訪部 繁和
Fujio Tokida
常田 富士夫
Shunichi Nishiyama
俊一 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP10831490A priority Critical patent/JPH046809A/en
Publication of JPH046809A publication Critical patent/JPH046809A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a magnetic film with high saturation magnetic flux density, high permeability, low magnetostriction constant, and a heat-resistance temperature exceeding 700 deg.C by achieving an Fe group soft magnetic thin film which is expressed by a composition expression of FexAyNz (A is at least one out of Hf, Zr, Ta, Nb, and Ti) and whose composition range is within a specific one. CONSTITUTION:The title item is expressed by a composition expression of FexAyNz (each composition is expressed by atom.% for x-z, A is at least one element out of Hf, Zr, Ta, Nb, and Ti, and N indicates nitrogen) and the composition range is 5<=y<=15, 3<=z<=20, and x+y+z=10. For example, in the above magnetic film, the structure consists of a crystal grain whose average grain diameter is equal to or less than 500Angstrom , a normal RF magnetron sputter device is used for forming the magnetic film, and a compound target where a pellet of A (Hf, Zr, Ta, Nb, and Ti: purity 99.9%) is placed on a target of Fe (purity 99.99%) is sputtered by using a mixed gas of Ar and H2. The amount of A and N is varied by changing the number of A pellets and the partial pressure of the N2 gas.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気ディスク装置、VTRなどに用いる磁気ヘ
ッドのコア材料にかかわり、特に高飽和磁束密度、高透
磁率、低磁歪定数、耐熱性、耐食性を有する磁性膜とそ
れを用いた磁気ヘッドに関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to core materials of magnetic heads used in magnetic disk drives, VTRs, etc., and particularly has high saturation magnetic flux density, high magnetic permeability, low magnetostriction constant, heat resistance, The present invention relates to a magnetic film having corrosion resistance and a magnetic head using the same.

〔従来の技術〕[Conventional technology]

近年、磁気記録技術の進歩は著しく、家庭用VTRの分
野では小型、軽量化のために、また磁気ディスク装置の
分野では大容量化のために、記録密度の高密度化が進め
られている。
In recent years, magnetic recording technology has made remarkable progress, and recording densities are being increased in the field of home VTRs to make them smaller and lighter, and in the field of magnetic disk drives to increase their capacity.

特に、磁気ディスク装置を考えてみた場合、記録の高密
度化を実現するためには、磁気ヘッドは高周波領域で使
用されるため、コアのインダクタンス低減が必要であり
、また、狭トラツク化が必要である。しかしながら、従
来の第1θ図に示すようなモノリシック型の磁気ヘッド
では、インダクタンスの低減が困難であり、10μ謡前
後の狭トラック化も加工性を考えると非常に難しい。
In particular, when considering magnetic disk devices, in order to achieve high recording density, the magnetic head is used in a high frequency range, so it is necessary to reduce the inductance of the core, and it is also necessary to narrow the track. It is. However, in the conventional monolithic magnetic head as shown in FIG. 1.theta., it is difficult to reduce the inductance, and it is also very difficult to narrow the track to around 10 .mu.m from the viewpoint of processability.

これらの欠点を補うものとして、磁気コアとセラミック
スのスライダーを組み合わせて構成されるコンポジット
型のヘッドが開発されてきた。さらに、現在では、高保
磁力の媒体に記録可能な強い記録磁界を発生させるため
に、コアのギャップ近傍に高飽和磁束密度を有する磁性
膜を付着させたメタル−イン−ギャップ型のコンポジッ
トヘッドも実用化されている。第6図は、メタルインギ
ャンブ型コンポジットヘッドの磁気コアの一例を示す外
観斜視図であり、第7図はその記録媒体対向面を示す拡
大平面図である。磁気コア半体1゜2はガラスAにより
ボンディングされ磁気回路を構成する。この磁気コアを
第8図に示すようなCaTi0iのスライダーにガラス
Bで固定し、磁気ヘッドを構成する。
To compensate for these shortcomings, composite heads have been developed that are constructed by combining a magnetic core and a ceramic slider. Furthermore, in order to generate a strong recording magnetic field capable of recording on high coercivity media, metal-in-gap composite heads are now in practical use, in which a magnetic film with a high saturation magnetic flux density is attached near the core gap. has been made into FIG. 6 is an external perspective view showing an example of a magnetic core of a metal-in-gamble type composite head, and FIG. 7 is an enlarged plan view showing its surface facing a recording medium. The magnetic core halves 1.2 are bonded with glass A to form a magnetic circuit. This magnetic core is fixed to a CaTi0i slider with glass B as shown in FIG. 8 to form a magnetic head.

磁気ヘッドの信頼性において、ガラスの耐食性、耐水性
は極めて重要な点であるが、高い信頼性を維持するため
には、できるだけ高融点のガラスを使用する必要がある
。ボンディング温度としては少なくとも550℃程度が
必要である。
Corrosion resistance and water resistance of glass are extremely important in the reliability of a magnetic head, but in order to maintain high reliability, it is necessary to use glass with as high a melting point as possible. The bonding temperature needs to be at least about 550°C.

コンポジット型のヘッドを作製する場合、磁気コアのガ
ラスボンディング(1)と、スライダーにそのコアを固
定するガラスボンディング(If)の2回のガラスボン
ディング工程を必要とする。
When manufacturing a composite head, two glass bonding steps are required: glass bonding of the magnetic core (1) and glass bonding (If) of fixing the core to the slider.

ボンディング(n)の工程で磁気コアのガラス(A)の
軟化やそれに伴うゆるみによる磁気コアの位置のずれ等
を防止するためには、ボンディング(I)とボンディン
グ(II)の温度差は、少なくとも100℃程度必要と
なってくる。例えば特願昭63−12343号したがっ
て、ガラスボンディング工程(1)は、ガラスBの信頼
性を確保するため約700℃程度で行う必要が出てくる
。このような関点から、コンポジット型ヘッド用の磁性
膜には、700℃程度の耐熱性が要求される。
In order to prevent the glass (A) of the magnetic core from softening or loosening due to the softening of the glass (A) of the magnetic core in the bonding (n) process, the temperature difference between bonding (I) and bonding (II) must be at least as low as possible. A temperature of about 100°C is required. For example, Japanese Patent Application No. 63-12343. Therefore, in order to ensure the reliability of glass B, the glass bonding step (1) needs to be carried out at about 700°C. From these points of view, magnetic films for composite heads are required to have heat resistance of about 700°C.

従来、このような耐熱性を有する材料としてはFe−^
1−3i系合金(センダスト)′fit膜が、磁気ヘッ
ドに適用されている。(特開昭60−74110号等参
照)。
Conventionally, the material with such heat resistance is Fe-^
A 1-3i alloy (Sendust) fit film is applied to a magnetic head. (Refer to JP-A No. 60-74110, etc.).

しかしながら、記録媒体保磁力の向上に伴い、より高い
飽和磁束密度を有する磁気へ、ド用磁性膜が必要となっ
てきた。
However, with the improvement of the coercive force of recording media, magnetic films for magnets with higher saturation magnetic flux density have become necessary.

近年、Fe−Ga−5i膜(特開昭61−234509
.特開昭62−104108他)Fe−C系多層膜(特
開昭6365604、特開昭63−80509) Co
系およびFe系組成変調窒化膜(特開昭62−2106
07.特開昭63−57758.特開昭63−2547
08) Co −M −C膜(ただし、M=Ta。
In recent years, Fe-Ga-5i film (JP-A-61-234509
.. JP 62-104108, etc.) Fe-C multilayer film (JP 6365604, JP 63-80509) Co
and Fe-based composition-modulated nitride films (Japanese Patent Application Laid-Open No. 62-2106
07. Japanese Patent Publication No. 63-57758. Japanese Patent Publication No. 63-2547
08) Co-M-C film (M=Ta.

Ti+ Zr+ Hf+ NJ Mo) (1日本金属
学会春季大会1989年一般講演概要J  (128)
、r日本金属学会秋季大会1989年一般講演概要J(
252)。
Ti + Zr + Hf + NJ Mo) (1 Japan Institute of Metals Spring Conference 1989 General Lecture Summary J (128)
, r Japan Institute of Metals Autumn Meeting 1989 General Lecture Summary J (
252).

(253) 、Fe−M−C膜(ただし、M=Ti、 
Zr0f、 V、 Nb、 Ta)  (r信学技報J
MR−89−12゜P 9 (1989)、第13回日
本応用磁気学会学術講演概要集(1989)、P484
.485)等、高飽和磁束密度を有し、かつ耐熱性にす
ぐれる磁性膜の探索がすすめられている。
(253), Fe-MC film (where M=Ti,
Zr0f, V, Nb, Ta) (rIEICE Technical Report J
MR-89-12゜P 9 (1989), 13th Japanese Society of Applied Magnetics Academic Lecture Abstracts (1989), P484
.. The search for magnetic films with high saturation magnetic flux density and excellent heat resistance, such as 485), is underway.

特に、Fe−M−C膜は、飽和磁束密度が最高1.7T
と大きく耐熱温度が600℃程度と高く有望である。こ
の材料は、α−FeとMの炭化物の微結晶U織を有し、
微結晶化により異方性分散が小さくなるため、軟磁性が
得られる。また、Mの炭化物がα−Feの結晶粒の成長
を抑制するため耐熱温度も高い。以上の事は信学技報M
R−89−12に記載されている。
In particular, the Fe-M-C film has a maximum saturation magnetic flux density of 1.7T.
It has a high heat resistance temperature of about 600°C and is promising. This material has a microcrystalline U weave of α-Fe and M carbides,
Microcrystallization reduces anisotropic dispersion, resulting in soft magnetism. Furthermore, since the carbide of M suppresses the growth of α-Fe crystal grains, the heat resistance temperature is also high. The above is from IEICE Technical Report M.
It is described in R-89-12.

この材料では、450〜500℃の熱処理によって微結
晶が生成されることによって軟磁性が得られる。
In this material, soft magnetism is obtained by generating microcrystals through heat treatment at 450 to 500°C.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このFe −M −C(M =Hf、 
Zr。
However, this Fe −M −C (M = Hf,
Zr.

Ta・・・)膜において、良好な軟磁性が得られる組成
範囲での耐熱温度は、「信学技報JMR−8912、P
 9 (1989)及び第13回日本応用磁気学会学術
講演概要集(1989)P、  484. 485によ
れば、高くても600〜650℃であり、コンポジット
型のヘッドへの応用を考えると約50℃程度の耐熱性の
向上が必要である。
The heat resistance temperature in the composition range in which good soft magnetism can be obtained for the Ta...) film is given in IEICE Technical Report JMR-8912, P.
9 (1989) and 13th Japanese Society of Applied Magnetics Academic Lecture Abstracts (1989) P, 484. According to No. 485, the temperature is 600 to 650° C. at most, and when considering application to a composite head, it is necessary to improve the heat resistance by about 50° C.

本発明の目的は、上述した従来技術の欠点を解消し、高
飽和磁束密度、高透磁率、低磁歪定数をもち、700℃
以上の耐熱温度を有する磁性膜及びそれを用いた磁気ヘ
ッドを捷供することである。
The object of the present invention is to eliminate the drawbacks of the prior art described above, to have high saturation magnetic flux density, high magnetic permeability, and low magnetostriction constant, and to
The object of the present invention is to provide a magnetic film having the above-mentioned heat resistance temperature and a magnetic head using the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、Few Ay N11  (ただし、x、y
、zは各々組成比を原子%として表し、Aは、Hf  
ZrTa、 Nb、 Tiよりなる群から選択された少
なくとも一種の元素、NはN(窒素)を表わす)なる組
成式で表わされ、その組成範囲が、 5≦y≦15 3≦2≦20 x+y+z=io。
The present invention is directed to Few Ay N11 (where x, y
, z each represents the composition ratio as atomic %, and A is Hf
At least one element selected from the group consisting of ZrTa, Nb, and Ti, N represents N (nitrogen)), and the composition range is 5≦y≦15 3≦2≦20 x+y+z =io.

であることを特徴とするFe基基磁磁性51Mある。There is a Fe-based magnetic 51M characterized by the following.

〔作 用〕[For production]

A (Hf、 Zr、 Ta、 Nb、 Ti)の窒化
物の生成エネルギーは非常に低いため、成膜後の状態で
すでにbcc構造のFe (以後α−Feと記す)とA
の窒化物の微結晶からなる組織が形成されている。α−
Feの結晶粒が微結晶化されるため異方性分散が小さく
なり、高透磁率、低保磁力の良好な軟磁気特性が得られ
る。また、前述したFe−M−C膜と異なり、成膜後の
状態ですでに均一な微結晶構造が生成されているので、
成膜したままの状態でも軟磁性が得られる。
Since the formation energy of nitrides of A (Hf, Zr, Ta, Nb, Ti) is very low, Fe (hereinafter referred to as α-Fe) with a bcc structure and A are already formed in the state after film formation.
A structure consisting of nitride microcrystals is formed. α−
Since the Fe crystal grains are microcrystallized, anisotropic dispersion is reduced, and good soft magnetic properties such as high magnetic permeability and low coercive force are obtained. Also, unlike the Fe-MC film described above, a uniform microcrystalline structure is already generated after the film is formed.
Soft magnetism can be obtained even in the as-deposited state.

さらに、Aの窒化物は生成エネルギーが低く非常に安定
であるため成膜後の状態ですでに十分生成されており、
熱処理によるNの移動は、Cの場合にくらべてかなり少
ない。このため、熱処理によるα−Feの結晶粒の成長
はAの窒化物により抑制され、磁気ヘッドのガラス溶着
時に加わるような熱処理を施しても軟磁気特性は劣化し
ない。
Furthermore, the nitride of A has low generation energy and is very stable, so it is already sufficiently generated after the film is formed.
The movement of N due to heat treatment is considerably smaller than that in the case of C. Therefore, the growth of α-Fe crystal grains due to heat treatment is suppressed by the nitride of A, and the soft magnetic properties do not deteriorate even if heat treatment is applied during glass welding of a magnetic head.

耐熱温度は、Aの窒化物の量と関係し、適量より少ない
と耐熱温度が低い、また、Mの窒化物が多すぎると、P
eの粒界に析出し、Feの微結晶間の静磁結合がなくな
るため異方性分散が増大し、軟磁性が劣化してしまう。
The heat resistance temperature is related to the amount of A nitride; if the amount is less than the appropriate amount, the heat resistance temperature will be low, and if there is too much M nitride, the temperature resistance will be low.
It precipitates at grain boundaries of Fe, and magnetostatic coupling between Fe microcrystals disappears, resulting in an increase in anisotropic dispersion and deterioration of soft magnetism.

したがって、700℃以上の高い温度での熱処理後にお
いても良好な軟磁性を得るためには、本発明の範囲のA
とNの量が望ましい。中でも、AとしてHfを用いた場
合が、最も耐熱性が高く、かつ高Bsで良好な軟磁性が
得られる。
Therefore, in order to obtain good soft magnetism even after heat treatment at a high temperature of 700°C or higher, it is necessary to
and N amounts are desirable. Among them, when Hf is used as A, the heat resistance is the highest, and good soft magnetism can be obtained with high Bs.

〔実施例〕〔Example〕

(実施例1) 本発明の磁性膜の形成には通常のRFマグネトロンスパ
、り装置を用いた。Fe (純度99.99%)のター
ゲット上に、A (Hf、 Zr、 Ta、 Nb、 
Ti、純度99.9%)のベレットを配置した複合ター
ゲットをAr (純度99.999%)とN2(純度9
9.99%)の混合ガスを用いてスパッタを行った。A
、Nの量は、Aペレットの数及びN2ガスの分圧を変え
ることにより変化させた。
(Example 1) A normal RF magnetron spacing device was used to form the magnetic film of the present invention. A (Hf, Zr, Ta, Nb,
A composite target with a pellet of Ti (purity 99.9%) was placed between Ar (purity 99.999%) and N2 (purity 9
Sputtering was performed using a mixed gas of 9.99%). A
, the amount of N was varied by changing the number of A pellets and the partial pressure of N2 gas.

スパッタ条件は、以下の通りとした。The sputtering conditions were as follows.

排気到達真空度 I X 10−”Torr以下投入電
力    4.5W/csi ガス圧(全圧)  4 X 10−”Torr基板  
    結晶化ガラス 基板温度    加熱なし 膜厚      2土0.2μ請 以上の条件で作製した磁性膜の組成は、EPMAによっ
て分析した。膜の飽和磁束密度及び保磁力はVSM(印
加磁場500e)、透磁率はベクトルイピーダンスメー
タ、磁歪定数は光でこ法により測定した。
Exhaust vacuum level I
The composition of the magnetic film produced under the conditions of crystallized glass substrate temperature and film thickness without heating of 0.2 micrometers or more was analyzed by EPMA. The saturation magnetic flux density and coercive force of the film were measured using VSM (applied magnetic field 500 e), magnetic permeability was measured using a vector impedance meter, and magnetostriction constant was measured using an optical beam method.

また、この磁性膜の耐熱性はN2雰囲気中で所定の温度
に加熱後、室温で透磁率を測定し、i3磁率が1000
以下となる温度の高低によって判定した。
The heat resistance of this magnetic film was determined by heating it to a predetermined temperature in an N2 atmosphere and then measuring its magnetic permeability at room temperature.
Judgment was made based on the temperature below.

第1図に、Fe−Hf−N膜に700℃の熱処理を施し
た場合の透磁率(5MII2)と膜組成の関係を示す。
FIG. 1 shows the relationship between magnetic permeability (5MII2) and film composition when a Fe-Hf-N film is subjected to heat treatment at 700°C.

第1図より明らかなように、原子比でHf5〜15%、
N3〜20%及び残部Feなる組成で、μS□z > 
1000の特性が得られる。
As is clear from Figure 1, Hf5-15% in atomic ratio,
With a composition of N3 to 20% and the balance Fe, μS□z >
1000 characteristics are obtained.

第2図に、Fe、s、oHfx、hNIs、a (at
%)なる組成の膜の透磁率μ5MM2及び保磁力Hcと
熱処理温度の関係を示す0図より明らかなように、成膜
後の状態(as−depo)ですでにu 5xNz=1
600. Hc= 0.80eの良好な軟磁性を示す。
Figure 2 shows Fe, s, oHfx, hNIs, a (at
%), which shows the relationship between the magnetic permeability μ5MM2 and coercive force Hc and the heat treatment temperature, it is clear that in the state after film formation (as-depo), u5xNz=1
600. Shows good soft magnetism with Hc=0.80e.

さらに熱処理を施した場合、500℃〜700℃の範囲
において、μ5M8!>2000. Hc< 10eの
特性を示し、耐熱温度は、700℃を越えている。
When further heat-treated, μ5M8! >2000. It exhibits a characteristic of Hc<10e, and has a heat resistance temperature of over 700°C.

第3図には、このFe−Hf−N膜の飽和磁束密度Bs
と熱処理温度の関係を示す、500℃以上の熱処理温度
では、Bs=1.4Tのほぼ一定の値を示している。
Figure 3 shows the saturation magnetic flux density Bs of this Fe-Hf-N film.
At a heat treatment temperature of 500° C. or higher, Bs shows a nearly constant value of 1.4T.

第1表には、Fe−A−N膜のAとして、Hfの他にZ
r、 Ta、 Nb、 Tiを用いた場合の、種々の組
成の膜の最適熱処理条件での磁気特性を示す。また耐熱
性としては、μSM)12が1000以下となる温度を
示した。なお、すべての温度範囲でμ、−2が1000
以上にならないものについてはX印で示した。
Table 1 shows that in addition to Hf, Z is used as A in the Fe-A-N film.
The magnetic properties of films of various compositions using R, Ta, Nb, and Ti under the optimum heat treatment conditions are shown. Moreover, as for heat resistance, the temperature at which μSM)12 was 1000 or less was shown. In addition, μ, -2 is 1000 in all temperature ranges.
Items that do not meet the above requirements are marked with an X.

AがZr、 Ta、 Nb、 Tiの場合も原子比でA
が5〜15%、N3〜20%及び残部Feなる組成で、
Bs1、3〜1.7 T、  μsxgz>1000.
 Hc≦10e、λ=−1〜3X10−’の特性を示し
、耐熱温度も700℃以上であった。
When A is Zr, Ta, Nb, Ti, the atomic ratio is A
with a composition of 5 to 15%, N3 to 20%, and the balance Fe,
Bs1, 3-1.7 T, μsxgz>1000.
It exhibited the characteristics of Hc≦10e, λ=-1 to 3X10-', and the heat resistance temperature was also 700°C or higher.

第4図に、Feti、oHf++、iN+s、4膜の熱
処理によるX線回折パターンの変化を示す。as −d
epo状態より、すでに、bcc構造のFe (α−F
e)の(110) 。
FIG. 4 shows changes in the X-ray diffraction patterns due to heat treatment of Feti, oHf++, iN+s, and 4 films. as-d
From the epo state, Fe (α-F
e) (110).

(200)面とのHfNの(111)、  (200)
(111) of HfN with (200) plane, (200)
.

(311)面の回折ピークが見られた。α−Feの(1
10)ピークの半値幅より5cherrerの式を用い
て結晶粒径を求めてみると、約60人であった。
A diffraction peak of the (311) plane was observed. α-Fe(1
10) The crystal grain size was determined from the half-width of the peak using the 5cherrer formula, and it was found to be about 60 people.

一方、700℃熱処理後においてもα−FeとHf−N
のピークが見られ、α−Feの結晶粒径は約90人であ
った。このように、as −depo状態から700℃
の熱処理後までα−Feの結晶粒は60〜90人と小さ
いため、広い熱処理温度範囲で良好な軟磁性が得られる
ものと考えられる。しかし熱処理温度をさらに高くして
500人を越える結晶粒になると磁気特性は著しく劣化
する。
On the other hand, even after heat treatment at 700°C, α-Fe and Hf-N
A peak was observed, and the α-Fe crystal grain size was approximately 90 mm. In this way, from the as-depo state to 700℃
Since the α-Fe crystal grains are as small as 60 to 90 grains until after the heat treatment, it is thought that good soft magnetism can be obtained over a wide heat treatment temperature range. However, when the heat treatment temperature is raised further to reach a crystal grain size exceeding 500, the magnetic properties deteriorate significantly.

第5図に、種々の組成のFe−If−N膜の700℃熱
処理後のX線回折パターンを示す。第4図に示した本発
明の組成範囲に対し、If、 N量が過剰な場合、Hf
Nは十分に生成されており、Feの粒成長は抑制されて
いるのがわかる。しかしながら、良好な軟磁性が得られ
ない原因としては、HfNがFeの粒界に析出し、Fe
微結晶間の静磁結合が弱まり、異方性分散が増大するた
めと推察される。
FIG. 5 shows X-ray diffraction patterns of Fe-If-N films of various compositions after heat treatment at 700°C. If the amount of If and N is excessive with respect to the composition range of the present invention shown in FIG.
It can be seen that sufficient N is generated and Fe grain growth is suppressed. However, the reason why good soft magnetism cannot be obtained is that HfN precipitates at the grain boundaries of Fe.
This is presumed to be because the magnetostatic coupling between the microcrystals weakens and anisotropic dispersion increases.

一方、Hf、 Nが少ない場合、α−Feの鋭いピーク
が見られ、Feが粒成長しているのがわかる。Feの結
晶磁気異方性が大きいため、この粒成長によって軟磁性
は急激に劣化しているものと考えられる。
On the other hand, when Hf and N are small, a sharp peak of α-Fe is observed, indicating grain growth of Fe. Since Fe has a large magnetocrystalline anisotropy, it is thought that the soft magnetism deteriorates rapidly due to this grain growth.

以上述べたように、Hf、 N量には最適量が存在し、
Hf5〜15%、N3〜20%及び残部Fe組成におい
て、耐熱性700℃以上で、μ5M+42 > 100
0の良好な特性が得られる。このときの結晶組織は、F
eとHfNの微結晶より構成されている。
As mentioned above, there is an optimal amount of Hf and N,
In Hf5-15%, N3-20% and balance Fe composition, heat resistance 700℃ or more, μ5M+42 > 100
Good characteristics of 0 can be obtained. The crystal structure at this time is F
It is composed of microcrystals of e and HfN.

(実施例2) 次に本発明によるFe−Hf−N膜を磁気へ・ノドに応
用した例を示す。
(Example 2) Next, an example will be shown in which the Fe-Hf-N film according to the present invention is applied to magnetism/node.

第6図は本発明の磁性膜を適用した磁気ヘッドコアの一
例を示す外観斜視図であり、第7図はその記録媒体対向
面を示す拡大平面図である。この磁気ヘッドコアを第8
図に示すようなCaTiOxのスライダーにガラスで固
定し、ジンバルに取り付はハードディスクドライブ用の
磁気ヘッドとして評価した。
FIG. 6 is an external perspective view showing an example of a magnetic head core to which the magnetic film of the present invention is applied, and FIG. 7 is an enlarged plan view showing the surface facing the recording medium. This magnetic head core is
It was fixed with glass to a CaTiOx slider as shown in the figure, and attached to a gimbal for evaluation as a magnetic head for a hard disk drive.

第9図は、本発明による磁性膜を用いた磁気ヘッド、F
e−A7!−5i膜を用いた磁気ヘッドを用いて測定し
た媒体保磁力と限界記録密度、Dso (KFCl)の
関係を示す。Bsが1.4Tと大きいFe −11fN
膜を用いた場合、媒体保磁力が15000e以上と大き
くなっても磁気コア先端が飽和せずに強い記録磁界が発
生できるため十分に記録が可能であり、媒体保磁力の増
加とともにり、。も増加する。一方、Fe−Al−3i
膜を用いた場合は、媒体保磁力が15000e以上とな
るとり、。が減少してしまう。
FIG. 9 shows a magnetic head using a magnetic film according to the present invention, F
e-A7! The relationship between the medium coercive force and the critical recording density, Dso (KFCl), measured using a magnetic head using a -5i film is shown. Fe -11fN with a large Bs of 1.4T
When a film is used, sufficient recording is possible because a strong recording magnetic field can be generated without saturating the tip of the magnetic core even when the medium coercive force increases to 15,000 e or more, and as the medium coercive force increases. will also increase. On the other hand, Fe-Al-3i
If a film is used, the medium coercive force will be 15,000e or more. will decrease.

したがって、本発明のFe−If−N系磁性膜を用いた
磁気ヘッドを用いることにより、20000eの保磁力
をもつ媒体にも十分に書き込みが可能であることが確か
められた。また、保磁力10000eの媒体を用い、再
生出力を比較したところ、Fe−Hf−N膜とFe−A
l−5i膜を用いた場合で差は見られなかった。
Therefore, it was confirmed that by using the magnetic head using the Fe-If-N based magnetic film of the present invention, it is possible to write sufficiently even on a medium having a coercive force of 20,000e. In addition, when we compared the reproduction output using a medium with a coercive force of 10,000e, we found that Fe-Hf-N film and Fe-A
No difference was observed when the l-5i film was used.

〔発明の効果] 以上説明したごとく、本発明による   を主成分とす
るFe−A−N (A=Hf、 Zr、 Ta、 Nb
、 Ti)膜は、高飽和磁束密度(1,3〜1.T)、
高透磁率(1000以上)、低保磁力(10e以下)、
低磁歪定数(−1X10−b〜3X10−”)高耐熱性
(700℃以上)という磁気ヘッド材料に必要な特性を
兼ね備えている。
[Effect of the invention] As explained above, according to the present invention, Fe-A-N (A=Hf, Zr, Ta, Nb
, Ti) film has a high saturation magnetic flux density (1.3~1.T),
High magnetic permeability (1000 or more), low coercive force (10e or less),
It has the characteristics necessary for a magnetic head material, such as a low magnetostriction constant (-1X10-b to 3X10-'') and high heat resistance (700°C or higher).

したがって、この磁性膜を磁気ヘッド磁極として用いた
場合、0.2μ難程度の薄膜にしても磁気飽和を起こす
ことなく、磁極の先端に強い磁界を発生させることがで
き、超高密度磁気記録を達成することができる。
Therefore, when this magnetic film is used as a magnetic head magnetic pole, a strong magnetic field can be generated at the tip of the magnetic pole without causing magnetic saturation even if the film is about 0.2μ thin, allowing ultra-high-density magnetic recording. can be achieved.

また、本発明の磁性膜は、通常のRFマグネトロンスパ
ッタ法で成膜可能であるため、製造方法が簡単であり製
造コストも安く、かつ高い信転性も確保できる利点があ
る。
Further, since the magnetic film of the present invention can be formed by a normal RF magnetron sputtering method, the manufacturing method is simple, the manufacturing cost is low, and high reliability can be ensured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のFe−Hf−N膜の組成と透磁率の
関係を700℃熱処理後の場合について示す特性図、第
2図はFe−Hf−N#の熱処理温度と透磁率及び保磁
力の関係を示す特性図、第3図はFe−Hf−N膜の熱
処理温度と飽和磁束密度の関係を示す特性図、第4図は
最適組成のFe−Hf−N膜の熱処理によるX線回折パ
ターンの変化を示す図、第5図は種々の組成のFe−H
f−N膜の700℃熱処理後のX線回折パターンを示す
図、第6図は本発明による磁性膜を適用した磁気ヘッド
(メタル・イン−ギャップ型コンポジットヘッド)のコ
アの一例を示す外観斜視図、第7図はその磁気記録媒体
対向面を示す拡大平面図、第8図は磁気コアを埋め込ん
だ磁気ヘッドの外観斜視図、第9図はFe−Hf−N膜
を用いた磁気ヘッドを用いて測定した媒体保磁力と限界
記録密度の関係を示す特性図、第10図は、従来のモノ
リシックヘッドの外観斜視図である。 l:磁気コア半体、2:M1気コア半体、3:M1性膜
、4:磁気ギャップ、5ニガラスA、6:磁気コア、7
:スライダー、8ニガラスB19:磁気コア、10:磁
気ギャップ、11ニスライダー:コイル。 立金属株式会社 第6 図 ム 第 図 第 図 媒体保磁力Hc(Oe) 第 図
Figure 1 is a characteristic diagram showing the relationship between the composition and magnetic permeability of the Fe-Hf-N film of the present invention after heat treatment at 700°C, and Figure 2 shows the relationship between the heat treatment temperature and magnetic permeability of Fe-Hf-N#. Figure 3 is a characteristic diagram showing the relationship between coercive force and saturation magnetic flux density. Figure 4 is a characteristic diagram showing the relationship between heat treatment temperature and saturation magnetic flux density for Fe-Hf-N films. Figure 5 shows changes in line diffraction patterns for Fe-H with various compositions.
A diagram showing the X-ray diffraction pattern of the f-N film after heat treatment at 700°C, and FIG. 6 is a perspective view showing an example of the core of a magnetic head (metal-in-gap type composite head) to which the magnetic film of the present invention is applied. 7 is an enlarged plan view showing the surface facing the magnetic recording medium, FIG. 8 is an external perspective view of a magnetic head with an embedded magnetic core, and FIG. 9 is a magnetic head using an Fe-Hf-N film. FIG. 10 is a characteristic diagram showing the relationship between medium coercive force and critical recording density measured using the conventional monolithic head, and is a perspective view of the appearance of a conventional monolithic head. 1: Magnetic core half, 2: M1 core half, 3: M1 film, 4: Magnetic gap, 5 Ni glass A, 6: Magnetic core, 7
:Slider, 8 Nigarasu B19: Magnetic core, 10: Magnetic gap, 11 Nislider: Coil. Ritsumeikan Co., Ltd. Fig. 6 Media coercive force Hc (Oe) Fig.

Claims (3)

【特許請求の範囲】[Claims] (1)Fe_xA_yN_z(ただし、x,y,zは各
々組成比を原子%として表し、Aは、Hf,Zr,Ta
,Nb,Tiよりなる群から選択された少なくとも一種
の元素、Nは窒素を表わす)なる組成式で表わされ、そ
の組成範囲が、 5≦y≦15 3≦z≦20 x+y+z=100 であることを特徴とするFe基軟磁性薄膜。
(1) Fe_xA_yN_z (x, y, z each represent the composition ratio as atomic %, A is Hf, Zr, Ta
, Nb, and Ti, and N represents nitrogen), and the composition range is 5≦y≦15 3≦z≦20 x+y+z=100 An Fe-based soft magnetic thin film characterized by the following.
(2)特許請求の範囲第1項に記載のFe基軟磁性薄膜
において該磁性膜の組織が平均粒径500Å以下の結晶
粒よりなることを特徴とするFe基軟磁性薄膜。
(2) The Fe-based soft magnetic thin film according to claim 1, wherein the structure of the magnetic film is composed of crystal grains having an average grain size of 500 Å or less.
(3)特許請求の範囲第1項及び第2項記載のFe基軟
磁性薄膜を用いたことを特徴とする磁気ヘッド。
(3) A magnetic head characterized by using the Fe-based soft magnetic thin film according to claims 1 and 2.
JP10831490A 1990-04-24 1990-04-24 Fe group soft magnetic thin film and magnetic head using it Pending JPH046809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10831490A JPH046809A (en) 1990-04-24 1990-04-24 Fe group soft magnetic thin film and magnetic head using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10831490A JPH046809A (en) 1990-04-24 1990-04-24 Fe group soft magnetic thin film and magnetic head using it

Publications (1)

Publication Number Publication Date
JPH046809A true JPH046809A (en) 1992-01-10

Family

ID=14481571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10831490A Pending JPH046809A (en) 1990-04-24 1990-04-24 Fe group soft magnetic thin film and magnetic head using it

Country Status (1)

Country Link
JP (1) JPH046809A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668414A (en) * 1992-08-20 1994-03-11 Nec Kansai Ltd Mig type magnetic head and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668414A (en) * 1992-08-20 1994-03-11 Nec Kansai Ltd Mig type magnetic head and its production

Similar Documents

Publication Publication Date Title
US4918555A (en) Magnetic head containing an Fe-base soft magnetic alloy layer
US5439754A (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
KR20000022864A (en) Magnetic film and method for producing the same
JPH07116563B2 (en) Fe-based soft magnetic alloy
US5173823A (en) Magnetic head for magnetic recording apparatus using a soft magnetic alloy film consisting primarily of iron
JPH046809A (en) Fe group soft magnetic thin film and magnetic head using it
JPS60132305A (en) Iron-nitrogen laminated magnetic film and magnetic head using the same
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JPH02208811A (en) Magnetic head and its production
JP3232592B2 (en) Magnetic head
JP2523854B2 (en) Magnetic head
JP3439519B2 (en) Soft magnetic alloy and magnetic head using the same
JPH04252008A (en) Co-based magnetically soft thin film and magnetic head using the same
JP2001015339A (en) Soft magnetic laminate film and thin-film magnetic head
JP3279591B2 (en) Ferromagnetic thin film and manufacturing method thereof
JPH03132004A (en) Fe-ta-c magnetic film and magnetic head
JP2979557B2 (en) Soft magnetic film
KR0136419B1 (en) Soft magnetic alloy thin film substrate
JPH04164302A (en) Co-based soft magnetic thin film and magnetic head using the same
JP2798315B2 (en) Composite magnetic head
JPH04305807A (en) Co-based soft magnetic thin film and magnetic head formed by using this film
JP2842918B2 (en) Magnetic thin film, thin film magnetic head, and magnetic storage device
JPH01205504A (en) Magnetic head
JPH0513223A (en) Magnetic head
JPH0555036A (en) Soft magnetic thin film and its manufacture, soft magnetic multilayer film and its manufacture as well as magnetic head