JPH0468038B2 - - Google Patents
Info
- Publication number
- JPH0468038B2 JPH0468038B2 JP24229785A JP24229785A JPH0468038B2 JP H0468038 B2 JPH0468038 B2 JP H0468038B2 JP 24229785 A JP24229785 A JP 24229785A JP 24229785 A JP24229785 A JP 24229785A JP H0468038 B2 JPH0468038 B2 JP H0468038B2
- Authority
- JP
- Japan
- Prior art keywords
- wastewater
- reactor
- bod
- microorganisms
- carrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002351 wastewater Substances 0.000 claims description 40
- 244000005700 microbiome Species 0.000 claims description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 229910052906 cristobalite Inorganic materials 0.000 claims description 7
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 3
- 239000011707 mineral Substances 0.000 claims description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 12
- 239000010802 sludge Substances 0.000 description 7
- 238000000855 fermentation Methods 0.000 description 5
- 230000004151 fermentation Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000004065 wastewater treatment Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000000813 microbial effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 235000013372 meat Nutrition 0.000 description 2
- 230000000696 methanogenic effect Effects 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- 229910052902 vermiculite Inorganic materials 0.000 description 2
- 239000010455 vermiculite Substances 0.000 description 2
- 235000019354 vermiculite Nutrition 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Treatment Of Biological Wastes In General (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
この発明は、BOD10000mg/以下の有機物を
含む廃水を嫌気性処理すなわちメタン発酵処理に
付す方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for subjecting wastewater containing organic matter with a BOD of 10,000 mg or less to anaerobic treatment, that is, methane fermentation treatment.
この明細書全体を通して、「中濃度有機廃水」
なる用語は、上記のようにBOD10000mg/以下
の有機物を含む廃水を意味し、また「バイオリア
クター」なる用語は、生物機能を利用して物質を
変換させるリアクターを意味し、さらに「表面
積」は単位重量あたりの値を意味する。 Throughout this specification, "medium concentration organic wastewater"
As mentioned above, the term ``bioreactor'' refers to wastewater containing organic matter with a BOD of 10,000 mg or less, and the term ``bioreactor'' refers to a reactor that converts substances using biological functions, and ``surface area'' is a unit of Means value per weight.
従来技術およびその問題点
従来、10000mg/以下の中濃度有機廃水は、
希釈水によつてBOD1000mg/程度まで希釈さ
れた後、活性汚泥法によつて好気的に処理されて
いた。しかし活性汚泥法は大量の希釈水と多大な
曝気動力さらには処理装置の広大な設置面積を必
要とした。そこで活性汚泥法に代わるものとし
て、希釈水および曝気動力を必要とせずしかも処
理装置の設置面積も小さくてすむ嫌気性処理法を
用いることが考えられた。しかし従来のメタン発
酵では廃水を機械攪拌ないしガス攪拌下に処理し
ていたため、メタン生成菌の増殖速度が遅く、そ
のため微生物濃度を高く維持するには廃水の槽内
滞留時間を長時間とらなければならなかつた。Conventional technology and its problems Conventionally, medium concentration organic wastewater of 10,000mg/or less
After being diluted to approximately 1000mg/BOD with dilution water, it was treated aerobically using the activated sludge method. However, the activated sludge method requires a large amount of dilution water, a large amount of aeration power, and a vast installation area for the treatment equipment. Therefore, as an alternative to the activated sludge method, it was considered to use an anaerobic treatment method that does not require dilution water or aeration power and also requires a small installation area of the treatment equipment. However, in conventional methane fermentation, wastewater is treated with mechanical or gas agitation, which slows down the growth rate of methane-producing bacteria.Therefore, in order to maintain a high microbial concentration, wastewater must remain in the tank for a long time. It didn't happen.
この発明は、上記のような実情から、嫌気性処
理法の上記利点を生かし、さらに微生物濃度を高
めてメタン発酵を高速度化し、中濃度有機廃水を
効率よく処理することのできる廃水処理方法を提
供することを目的とする。 In view of the above-mentioned circumstances, this invention aims to develop a wastewater treatment method that takes advantage of the above-mentioned advantages of anaerobic treatment, increases the concentration of microorganisms, speeds up methane fermentation, and efficiently treats medium-concentration organic wastewater. The purpose is to provide.
問題点の解決手段
この発明による中濃度有機廃水の処理方法は、
表面積10m2/g以上の不溶性担体をリアクターに
装入し、リアクター内で微生物を担体に自然付着
させて微生物濃度を高く維持し、こうして形成さ
れたバイオリアクターを用いてBOD10000mg/
以下の廃水を嫌気性処理することを特徴とするも
のである。Means for solving the problem The method for treating medium-concentration organic wastewater according to the present invention is as follows:
An insoluble carrier with a surface area of 10 m 2 /g or more is charged into a reactor, and microorganisms are naturally attached to the carrier in the reactor to maintain a high microbial concentration. Using the thus formed bioreactor, a BOD of 10000 mg/
It is characterized by anaerobically treating the following wastewater.
不溶性担体は、天然鉱物クリストバライトより
なる。クリストバライトはシリカ系の多孔質天然
鉱物であつて、大きな表面積(45〜85m2/g)を
有する。そのためクリストバライト担体は高い微
生物付着効果を有し、この発明の不溶性担体とし
て用いられる。 The insoluble carrier consists of the natural mineral cristobalite. Cristobalite is a silica-based porous natural mineral and has a large surface area (45 to 85 m 2 /g). Therefore, the cristobalite carrier has a high microbial adhesion effect and is used as an insoluble carrier in the present invention.
不溶性担体の表面積が10m2/g以上に限定され
る理由は、10m2/g未満では担体への微生物の不
着効果が十分に発揮されず、所望の固定化微生物
が得られないからである。なお、不溶性担体の表
面積は、BET吸着表面測定装置を用いて測定し
た値である。 The reason why the surface area of the insoluble carrier is limited to 10 m 2 /g or more is that if it is less than 10 m 2 /g, the effect of preventing microorganisms from adhering to the carrier will not be sufficiently exhibited, and the desired immobilized microorganisms will not be obtained. Note that the surface area of the insoluble carrier is a value measured using a BET adsorption surface measuring device.
不溶性担体の粒径は特に限定されないが、通常
0.1〜20mmである。 The particle size of the insoluble carrier is not particularly limited, but usually
It is 0.1~20mm.
不溶性担体はリアクター内で流動床、移動床、
もしくは膨脹床として保持されても、または固定
床として保持されてもよい。 The insoluble carrier is placed in a reactor in a fluidized bed, moving bed,
Alternatively, it may be maintained as an expanded bed or as a fixed bed.
発明の作用効果
この発明の廃水処理方法によれば、固定化微生
物用の不溶性担体として、表面積10m2/gのクリ
ストバライトよりなる担体を用いているので、微
生物を担体に十分に付着させることができ、かつ
付着微生物が担体から遊離するのを防ぐことがで
きる。そのためリアクター内の微生物濃度を高め
て、メタン発酵を高速度化し、中濃度有機廃水を
効率よく処理することができる。Effects of the Invention According to the wastewater treatment method of the present invention, since a carrier made of cristobalite with a surface area of 10 m 2 /g is used as an insoluble carrier for immobilized microorganisms, microorganisms can be sufficiently attached to the carrier. , and can prevent attached microorganisms from being released from the carrier. Therefore, it is possible to increase the concentration of microorganisms in the reactor, speed up methane fermentation, and efficiently treat medium-concentration organic wastewater.
実施例
つぎにこの発明の実施例と比較例について説明
する。Examples Next, examples and comparative examples of the present invention will be described.
実施例 1
(流動床)
始めに廃水処理装置の構造について説明する。
この実施例で用いる廃水処理装置は、第1図に示
すように、実容積700mlのガラス製塔型リアクタ
ー1を主体とし、冷却用ジヤケツト2を外装し、
温度制御表示装置3およびPH制御表示装置4を備
えている。またリアクター1の頂部には微生物の
流出を防止するための微生物沈降部5が設けられ
ている。そして処理すべき中濃度有機廃水は冷却
槽6内の廃水貯槽7からポンプ8によつてリアク
ター1の底部に供給されて内部を上行し、頂部か
ら出てポンプ9によつてリアクター外を底部に戻
される。こうして廃水は循環され、処理廃水は頂
部から流出するようになつている。またメタン発
酵により発生したガスの含量は湿式ガスメータ1
0で測定される。Example 1 (Fluidized bed) First, the structure of a wastewater treatment device will be explained.
As shown in FIG. 1, the wastewater treatment equipment used in this example is mainly composed of a glass tower reactor 1 with an actual volume of 700 ml, and is equipped with a cooling jacket 2.
It is equipped with a temperature control display device 3 and a PH control display device 4. Further, a microorganism sedimentation section 5 is provided at the top of the reactor 1 to prevent microorganisms from flowing out. The medium-concentration organic wastewater to be treated is supplied from the wastewater storage tank 7 in the cooling tank 6 to the bottom of the reactor 1 by the pump 8, ascends inside the reactor, exits from the top, and is pumped from the outside of the reactor to the bottom by the pump 9. be returned. In this way, wastewater is circulated and treated wastewater flows out from the top. In addition, the content of gas generated by methane fermentation is measured using a wet gas meter 1.
Measured at 0.
上記構成のリアクター1にまず種汚泥としての
消化汚泥と、粒径0.3〜1.0mm、表面積47m2/gの
クリストバライト粒状物11とを、後者が20重量
%になるようにそれぞれ装入し、一晩液循環を行
なつた。こうしてリアクター1内に担体の流動床
を形成するとともに、この担体にメタン生成菌を
付着させて固定化微生物を形成し、バイオリアク
ターを構成した。 First, digested sludge as seed sludge and cristobalite granules 11 having a particle size of 0.3 to 1.0 mm and a surface area of 47 m 2 /g were charged into the reactor 1 having the above configuration so that the latter amounted to 20% by weight. Late liquid circulation was performed. In this way, a fluidized bed of carriers was formed in reactor 1, and methanogenic bacteria were attached to this carrier to form immobilized microorganisms, thereby constructing a bioreactor.
ついで処理すべき中濃度有機廃水として、ペプ
トンと肉エキスを主成分とするBOD約3000mg/
の合成廃水を、BOD容積負荷2g//日に
なるようにリアクター1に供給し、微生物の馴養
を開始した。ついで上記合成廃水の供給量を段階
的に上げていき(すなわち同廃水のリアクター内
滞留時間を徐々に短縮していき)、BOD容積負荷
の上昇に伴うBOD除去率の変化について検討を
行なつた。 Then, as medium-concentration organic wastewater to be treated, approximately 3000 mg of BOD, which mainly consists of peptone and meat extract, is used.
Synthetic wastewater was supplied to reactor 1 at a BOD volumetric load of 2 g/day to start acclimatization of microorganisms. Next, we gradually increased the amount of synthetic wastewater supplied (that is, gradually shortened the residence time of the wastewater in the reactor), and examined changes in the BOD removal rate as the BOD volumetric load increased. .
その結果、上記合成廃水の供給量をBOD容積
負荷14g//日という高い値まで上げても、合
成廃水のBOD(3000mg/)は240mg/まで除
去された(BOD除去率約90%)。 As a result, even if the feed rate of the synthetic wastewater was increased to a high BOD volumetric load of 14 g/day, the BOD (3000 mg/day) of the synthetic wastewater was removed to 240 mg/day (BOD removal rate of approximately 90%).
実施例 2
(固定床)
この実施例で用いる廃水処理装置は、第2図に
示すように、実容積1のアクリル樹脂製塔型リ
アクター21を主体とし、冷却用ジヤケツト22
を外装している。そして処理すべき中濃度有機廃
水はやはり冷却槽26内の廃水貯槽27からポン
プ28によつてリアクター21の底部に供給され
て内部を上行し、頂部から出てポンプ29によつ
てリアクター外を底部に戻される。こうして廃水
は循環され、処理廃水は頂部から流出するように
なつている。Example 2 (Fixed bed) As shown in FIG. 2, the wastewater treatment equipment used in this example mainly consists of an acrylic resin tower reactor 21 with an actual volume of 1, and a cooling jacket 22.
is exteriorized. The medium-concentration organic wastewater to be treated is also supplied from the wastewater storage tank 27 in the cooling tank 26 to the bottom of the reactor 21 by the pump 28, ascends inside the reactor 21, exits from the top, and is pumped outside the reactor by the pump 29 to the bottom. will be returned to. In this way, wastewater is circulated and treated wastewater flows out from the top.
上記構成のリアクター21にまず種汚泥として
の消化汚泥と、粒径7〜10mm、表面積60m2/gの
クリストバライト粒状物31とを、後者が70容量
%になるようにそれぞれ装入し、一晩液循環を行
なつた。こうしてリアクター21内に担体の固定
床を形成するとともに、この担体にメタン生成菌
を付着させて固定化微生物を形成し、バイオリア
クターを構成した。 First, digested sludge as seed sludge and cristobalite granules 31 having a particle size of 7 to 10 mm and a surface area of 60 m 2 /g were charged into the reactor 21 having the above configuration so that the latter amounted to 70% by volume, and the mixture was left overnight. Liquid circulation was performed. In this way, a fixed bed of carriers was formed in the reactor 21, and methanogenic bacteria were attached to this carrier to form immobilized microorganisms, thereby constructing a bioreactor.
ついで処理すべき中濃度有機廃水として、実施
例1で用いたものと同じBOD約3000mg/の合
成廃水を、BOD容積負荷2g//日になるよ
うにリアクター21に供給し、微生物の馴養を開
始した。ついで上記合成廃水の供給量を段階的に
上げていき(すなわち同廃水のリアクター内滞留
時間を徐々に短縮していき)、BOD容積負荷の上
昇に伴うBOD除去率の変化について検討を行な
つた。 Next, as medium-concentration organic wastewater to be treated, synthetic wastewater with a BOD of about 3000 mg/day, the same as that used in Example 1, was supplied to the reactor 21 at a BOD volumetric load of 2 g/day, and the acclimatization of microorganisms was started. did. Next, we gradually increased the amount of synthetic wastewater supplied (that is, gradually shortened the residence time of the wastewater in the reactor), and examined changes in the BOD removal rate as the BOD volumetric load increased. .
その結果、上記合成廃水の供給量をBOD容積
負荷14g//日という高い値まで上げても、合
成廃水のBOD(3000mg/)は320mg/まで除
去された(BOD除去率約90%)。 As a result, even if the feed rate of the synthetic wastewater was increased to a high BOD volumetric load of 14 g/day, the BOD (3000 mg/day) of the synthetic wastewater was removed to 320 mg/day (BOD removal rate of approximately 90%).
実施例 3
(流動床)
中濃度有機廃水として、ペプトンと肉エキスを
主成分とするBOD9000mg/の合成廃水を用い
る点を除いて、実施例1と同様の槽を繰返し、
BOD容積負荷の上昇に伴うBOD除去率の変化に
ついて検討を行なつた。Example 3 (Fluidized bed) The same tank as in Example 1 was repeated, except that synthetic wastewater with a BOD of 9000mg/based on peptone and meat extract was used as the medium concentration organic wastewater.
We investigated the change in BOD removal rate as the BOD volume load increases.
その結果、上記合成廃水の供給量をBOD容積
負荷15g//日という高い値まで上げても、合
成廃水のBOD(9000mg/)は750mg/まで除
去された(BOD除去率約92%)。 As a result, even if the feed rate of the synthetic wastewater was increased to a high BOD volumetric load of 15 g/day, the BOD (9000 mg/day) of the synthetic wastewater was removed to 750 mg/day (BOD removal rate of approximately 92%).
比較例 1
不溶性担体として、粒径0.3〜1.0mm、表面積7.5
m2/gのひる石を用いる点を除いて、実施例1と
同様の操作を繰返し、BOD容積負荷の上昇に伴
うBOD除去率の変化について検討を行なつた。Comparative Example 1 As an insoluble carrier, particle size 0.3 to 1.0 mm, surface area 7.5
The same operation as in Example 1 was repeated except that vermiculite of m 2 /g was used, and changes in the BOD removal rate as the BOD volume load increased were examined.
その結果、合成廃水の供給量をBOD容積負荷
10g//日まで上げたところ、合成廃水の
BOD(3000mg/)は1400mg/までしか除去さ
れなかつた(BOD除去率約53%)。また操作中に
微生物がひる石から遊離し、フロツクを形成し
た。 As a result, the BOD volumetric load increases the synthetic wastewater supply
When increasing the amount to 10g/day, synthetic wastewater
BOD (3000mg/) was removed only up to 1400mg/(BOD removal rate approximately 53%). Also, during the operation, microorganisms were released from vermiculite and formed flocs.
比較例 2
不溶性担体として、粒径0.3〜0.5mm、表面積9.5
m2/gのラジオライトを用いる点を除いて、実施
例1と同様の操作を繰返し、BOD容積負荷の上
昇に伴うBOD除去率の変化について検討を行な
つた。Comparative Example 2 As an insoluble carrier, particle size 0.3 to 0.5 mm, surface area 9.5
The same operation as in Example 1 was repeated except that radiolite of m 2 /g was used, and changes in the BOD removal rate as the BOD volume load increased were examined.
その結果、合成廃水の供給量をBOD容積負荷
9g//日まで上げたところ、合成廃水の
BOD(3000mg/)は700mg/までしか除去さ
れなかつた(BOD除去率約77%)。 As a result, when the amount of synthetic wastewater supplied was increased to a BOD volumetric load of 9 g/day, the synthetic wastewater
BOD (3000mg/) was removed only up to 700mg/(BOD removal rate approximately 77%).
第1図および第2図はいずれもこの発明の実施
例を示すフローシートである。
1,21……リアクター。
Both FIG. 1 and FIG. 2 are flow sheets showing an embodiment of the present invention. 1,21...Reactor.
Claims (1)
イトよりなる不溶性担体をリアクターに装入し、
リアクター内で微生物を担体に自然付着させて微
生物濃度を高く維持し、こうして形成されたバイ
オリアクターを用いてBOD10000mg/以下の廃
水を嫌気性処理することを特徴とする中濃度有機
廃水の処理方法。 2 リアクター内で不溶性担体を流動床、移動床
または膨脹床として保持することを特徴とする特
許請求の範囲第1項記載の方法。 3 リアクター内で不溶性担体を固定床として保
持することを特徴とする特許請求の範囲第1項記
載の方法。[Claims] 1. An insoluble carrier made of the natural mineral cristobalite with a surface area of 10 m 2 /g or more is charged into a reactor,
A method for treating medium-concentration organic wastewater, characterized by maintaining a high concentration of microorganisms by naturally adhering microorganisms to a carrier in a reactor, and anaerobically treating wastewater with a BOD of 10,000 mg/or less using the bioreactor thus formed. 2. The method according to claim 1, characterized in that the insoluble carrier is maintained in the reactor as a fluidized bed, moving bed or expanded bed. 3. The method according to claim 1, characterized in that the insoluble carrier is maintained as a fixed bed in the reactor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60242297A JPS62102894A (en) | 1985-10-28 | 1985-10-28 | Treatment of medium-concentrated organic waste water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60242297A JPS62102894A (en) | 1985-10-28 | 1985-10-28 | Treatment of medium-concentrated organic waste water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62102894A JPS62102894A (en) | 1987-05-13 |
JPH0468038B2 true JPH0468038B2 (en) | 1992-10-30 |
Family
ID=17087138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60242297A Granted JPS62102894A (en) | 1985-10-28 | 1985-10-28 | Treatment of medium-concentrated organic waste water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62102894A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03101897A (en) * | 1989-09-16 | 1991-04-26 | Toshiba Corp | Formation of methane bacteria granule |
JPH0647108B2 (en) * | 1990-08-30 | 1994-06-22 | アサヒビール株式会社 | How to treat beer effluent |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54146459A (en) * | 1978-05-09 | 1979-11-15 | Kiyuushiyuu Kankiyou Kanri Kiy | Method of purifying secondary treatment water |
JPS55162395A (en) * | 1979-06-01 | 1980-12-17 | Corning Glass Works | Method of disposing organic waste |
JPS567694A (en) * | 1979-06-27 | 1981-01-26 | Hoechst Ag | Method of biologically purifying waste water |
JPS6274497A (en) * | 1985-09-25 | 1987-04-06 | マルチエロ・フアイエタ | Method and plant for purifying treatment of outflow water |
-
1985
- 1985-10-28 JP JP60242297A patent/JPS62102894A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54146459A (en) * | 1978-05-09 | 1979-11-15 | Kiyuushiyuu Kankiyou Kanri Kiy | Method of purifying secondary treatment water |
JPS55162395A (en) * | 1979-06-01 | 1980-12-17 | Corning Glass Works | Method of disposing organic waste |
JPS567694A (en) * | 1979-06-27 | 1981-01-26 | Hoechst Ag | Method of biologically purifying waste water |
JPS6274497A (en) * | 1985-09-25 | 1987-04-06 | マルチエロ・フアイエタ | Method and plant for purifying treatment of outflow water |
Also Published As
Publication number | Publication date |
---|---|
JPS62102894A (en) | 1987-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107162184B (en) | UBF reactor and system for coupling denitrification by utilizing anaerobic ammonia oxidation-sulfur autotrophic denitrification and denitrification method | |
Cao et al. | Characterization of nitrifying and denitrifying bacteria coimmobilized in PVA and kinetics model of biological nitrogen removal by coimmobilized cells | |
KR100636340B1 (en) | Sequential batch reactor with anoxic process of biofilm for sewerage and its sewerage methods | |
CA2093765A1 (en) | Process for the biological treatment of wastewater | |
JP2652841B2 (en) | Operating method of wastewater treatment equipment | |
Waqas et al. | Effect of organic and nitrogen loading rate in a rotating biological contactor for wastewater treatment | |
CN214880538U (en) | Device for rapidly culturing aerobic granular sludge and treating low-carbon-ratio urban sewage | |
CN107337275B (en) | Aerobic granular sludge with high denitrification capacity at low temperature, culture method and culture device | |
Hamdi | Biofilm thickness effect on the diffusion limitation in the bioprocess reaction: Biofloc critical diameter significance | |
JPH0468038B2 (en) | ||
JPS59142897A (en) | Nitrification and denitrification process | |
Matsumura et al. | Development of bioreactors for denitrification with immobilized cells | |
JPH0218915B2 (en) | ||
CN106587508A (en) | System and method for municipal sewage treatment | |
JPH04126594A (en) | Treatment of waste water | |
Kida et al. | Comparison of performance among four different processes for the anaerobic treatment of wastewater with a low concentration of organic matter | |
Kida et al. | Evaluation of the anaerobic treatment of sewage below 20 C by novel processes | |
JP3708994B2 (en) | Biological treatment method of oil-containing wastewater | |
JPS6121789A (en) | Fluidized bed type anaerobic treatment of organic waste water | |
HARUN et al. | Performance of aerobic granular sludge in treating soy sauce wastewater at different hydraulic retention time | |
CN210367150U (en) | A continuous processing apparatus that is used for rural distributed beasts and birds to breed waste water | |
CN109867357B (en) | Sewage treatment system and sludge reduction method thereof | |
KR100466934B1 (en) | Equipment and Method of Nitrogen Removal Using Reactor Packed with Granular Sulfur | |
Borja et al. | Influence of clay immobilization supports on the kinetic constants of anaerobic digestion of dairy industry wastewater | |
JPH0796119B2 (en) | Wastewater treatment method |