JPH0468035B2 - - Google Patents

Info

Publication number
JPH0468035B2
JPH0468035B2 JP32027987A JP32027987A JPH0468035B2 JP H0468035 B2 JPH0468035 B2 JP H0468035B2 JP 32027987 A JP32027987 A JP 32027987A JP 32027987 A JP32027987 A JP 32027987A JP H0468035 B2 JPH0468035 B2 JP H0468035B2
Authority
JP
Japan
Prior art keywords
polymer
heavy metal
molecular weight
mol
scavenger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP32027987A
Other languages
Japanese (ja)
Other versions
JPH01164492A (en
Inventor
Isao Hashida
Masato Nishimura
Yoichiro Ezaki
Naoki Niwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP32027987A priority Critical patent/JPH01164492A/en
Publication of JPH01164492A publication Critical patent/JPH01164492A/en
Publication of JPH0468035B2 publication Critical patent/JPH0468035B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、新規な高分子系重金属捕捉剤に関す
る。 従来の技術及びその問題点 従来、メツキ廃水、ゴミ焼却場洗煙廃水等に含
有される有害重金属の除去方法としては、(1)中和
凝集沈澱法、(2)硫化ソーダ法、(3)キレート樹脂法
等が知られている。これらの内、中和凝集沈澱法
はランニングコスト、維持管理面で好適である
が、水銀の除去には適していない。また、硫化ソ
ーダ法は、有害ガスである硫化水素の発生による
二次公害が問題となる。また、キレート樹脂法は
廃水に併存する有機物をも吸着するため重金属の
捕捉効率が低下したり、更には再生に高濃度の鉱
酸を多量に必要とするので処理コストが高く、再
生廃液による二次汚染のおそれもありかつ再生が
困難であるという不利がある。これに対して、近
年、上記処理法の欠点を解消しうる方法として高
分子系重金属捕捉剤法が注目されつつある。該方
法は水溶性の高分子系重金属捕捉剤が中和、キレ
ート化、吸着反応などにより重金属を捕捉し、不
溶性となつて系外に析出除去できることを特徴と
し、重金属除去性能、コスト、維持管理面のいず
れの点でもほぼ満足しうると考えられている。と
ころで、高分子系重金属捕捉剤法に使用される該
捕捉剤としてはポリエチレンイミンのジチオカル
バミン酸ナトリウム、セルロースキサントゲン酸
ナトリウム、ポリグルタミン酸ナトリウム等が知
られているが、いずれも捕捉能や沈降分離性が充
分ではないという問題点がある。 問題点を解決するための手段 本発明は、従来の高分子系重金属捕捉剤の欠点
を解消せんとするものである。即ち、高分子系重
金属捕捉剤としての要求性能である重金属捕捉
能、沈降分離性等に優れ、コスト的にも満足しう
る高分子系重金属捕捉剤を提供せんとするもので
ある。 本発明者らは、上記目的を達成すべく紙力増強
剤や、高分子凝集剤として公知であるポリアクリ
ルアミドのホフマン転位物に着目して分子設計に
つき鋭意検討を行つた。その結果、該転位物の如
き1級アミノ基を有する重合体に二硫化炭素を反
応させて重金属とキレートを形成し捕捉作用を示
すジチオカルバミン酸基を導入することにより初
めて前記問題点を悉く解決しうる高分子系重金属
捕捉剤を収得しうることを見出し、本発明を完成
するに至つた。 即ち本発明は、式 で表わされる構成単位を重合体の構成成分として
5〜100モル%含有する高分子重合体と二硫化炭
素とを反応させて得られる該重合体のジチオカル
バミン酸アルカリ金属塩を有効成分とすることを
特徴とする高分子系重金属捕捉剤に係る。 本発明において出発物質となる高分子重合体と
しては、式[]の構成単位を重合体の構成成分
として5〜100モル%含有するものであることが
必須とされる。即ち、該構成単位の含有量が5モ
ル%未満の場合には重金属捕捉能が不充分となる
ため好ましくない。該構成単位の含有量は、重金
属捕捉能の観点から好ましくは40〜100モル%で
あり、特に好ましくは60〜100モル%である。該
高分子重合体の分子量は、特に制限はされない
が、通常はその重量平均分子量が1000〜
10000000、好ましくは5000〜4000000のものとさ
れる。該分子量が1000未満の場合は沈降分離性が
小さくなるため、また10000000を越える場合には
該捕捉剤の水溶液粘度が過大となり取扱作業性が
低下するためいずれも好ましくない。 式[]の構成単位を重合体の構成成分として
含有する高分子重合体の製造方法としては、ポリ
アクリルアミドやアクリルアミドとα,β−不飽
和単量体との共重合体(以下、これらをアクリル
アミド系重合体という)を原料とし、これをホフ
マン転位反応させる方法を好ましく採用できる。
また、その他の方法として、N−ビニルフタルイ
ミド、N−ビニルホルムアミド又はN−ビニルア
セトアミドを重合させた後、該重合物を加水分解
する方法等により製造してもよい。 上記のアクリルアミド系重合体の製造において
アクリルアミドと共重合されうるα,β−不飽和
単量体としては、メタクリルアミド、アクリル酸
の低級アルキルエステル、アクリル酸、メタクリ
ル酸等の種々の単量体を例示しうる。該単量体の
使用量は、得られる高分子重合体中の式[]の
構成単位の含有量により決定され、通常は95モル
%以下、好ましくは60モル%以下、特に好ましく
は40モル%以下とするのがよい。 上記方法で得られた式[]の構成単位を所定
量含有する高分子重合体は、次いでアルカリの存
在下に二硫化炭素と反応させて該重合体のジチオ
カルバミン酸アルカリ金属塩とすることにより本
発明の高分子系重金属捕捉剤となすことができ
る。ここで、アルカリ金属としては、ナトリウ
ム、カリウム、リチウム等を挙げることができ
る。この反応に際し、高分子重合体としては該重
合体製造の反応生成物等をそのままで、または単
離生成して使用しうることはもとよりである。
尚、ホフマン転位反応生成物を用いる場合にはホ
フマン転位反応の際に反応試薬として用いた未反
応の次亜ハロゲン酸塩を分解せしめるため過酸化
水素を使用することもできる。 ジチオカルバミン酸基を導入する該反応は以下
の反応式で表わすことができる。 (式中、Rは式[]の構成単位を含有する高分
子重合体の主鎖を、Mはアルカリ金属の1価カチ
オンを示す) 該反応において使用されるアルカリとしては、
ナトリウム、カリウム、リチウム等のアルカリ金
属の水酸化物が好適である。また、高分子重合体
中の1級アミノ基に対する二硫化炭素の使用モル
比は、本来は化学量論量とすればよいが、通常
0.05〜10モル程度、好ましくは0.5〜2モルの範
囲内で使用することができる。0.05モルに満たな
い場合はカルバミン酸基の生成量が過小となり得
られる高分子系重金属捕捉剤の性能(特に重金属
捕捉能及び沈降分離性)が不十分となるため、ま
た10モルを越えて用いても過剰に使用する意義が
なく却つて不経済となるためいずれの場合も好ま
しくない。 上記反応は通常、室温で進行するが、反応を短
時間で完結させるためには約40℃程度で加熱還流
させるのがよい。反応時間は特に制限はされず、
通常は1〜24時間程度、好ましくは2〜8時間の
範囲から適宜決定することができる。該反応条件
を採用することにより、側鎖1級アミノ基の合計
量に対して1〜90モル%程度、通常は5〜40モル
%のジチオカルバミン酸基を容易に導入すること
ができる。 本発明の高分子系重金属捕捉剤は、前記方法で
得られる特定高分子重合体のジチオカルバミン酸
アリカリ金属塩を有効成分とするものであり、通
常はこれ単独で優れた諸性能を発揮しうる。しか
しながら、硫化ナトリウム、多硫化ナトリウム、
水硫化ナトリウム等の硫化物の併用を妨げるもの
ではない。また、捕捉対象となる金属イオンの濃
度が極めて稀薄な場合等には、必要に応じて公知
の高分子凝集剤、例えばカルボン酸系のアニオン
高分子凝集剤、アクリルアミド系のノニオン高分
子凝集剤、ポリアミン系のカチオン高分子凝集剤
を併用し、沈降分離性を更に高め得ることはもと
よりである。 本発明の高分子系重金属捕捉剤は、通常5重量
%以下程度の水溶液の状態で使用され、その使用
量は、処理廃水に存在する重金属量に伴つて変動
するが、通常は重量換算で重金属含有量の0.1〜
20倍量程度、好ましくは0.5〜10倍量の範囲で使
用すればよい。 発明の効果 本発明の高分子系重金属捕捉剤は、該捕捉剤と
しての要求性能である重金属捕捉能、沈降分離
性、製品価格、ランニングコスト、二次公害防止
等のすべての点を同時に満足し得るものであり、
従来の高分子系重金属捕捉剤を有する上記諸性能
と比較して卓越している。 従つて、本発明の高分子系重金属捕捉剤は、有
害重金属を含有する各種の廃水、例えばメツキ廃
水、都市ゴミ焼却炉排煙処理廃水、乾電池メーカ
ーの産業用廃水などに広く適用できる。即ち、こ
れら廃水中に存在する各種重金属を効率よく捕捉
すると共に結果として不溶化物が形成されるため
容易に沈降分離することができる利点がある。ま
た、本発明の高分子系重金属捕捉剤によれば、と
りわけ水金、銅、カドミウム、鉛等の水質汚濁防
止法において特に規制の厳しい対象物質について
効率的捕捉除去が可能であるという優位性があ
る。 実施例 以下、実施例、比較例及び試験例を挙げて本発
明をより具体的に説明するが、本発明はこれ等各
例に限定されるものではない。尚、各例中、部及
び%は特記しない限りすべて重量基準である。 実施例 1 撹拌装置を備えた反応装置に次亜塩素酸ナトリ
ウム水溶液(1.67モル/Kg)90.8部を取り、これ
に95%水酸化ナトリウム5.3部を加え撹拌溶解さ
せた。反応系内温度を約−10℃まで冷却し、次い
でポリアクリルアミド(重量平均分子量10000)
の18.9%水溶液60部を10分間で滴下し、この間の
反応温度を−5℃に保持した。続いて48%水酸化
ナトリウム水溶液41.2部を10分間で滴下し、その
後0℃にて4時間保ち、更に室温に戻した。これ
に6%過酸化水素水10部を加え、1時間室温にて
撹拌した後、二硫化炭素11.2部を10分間で滴下し
た。室温で1時間撹拌した後、40℃に昇温し同温
度で3時間保持することによりポリアクリルアミ
ドのホフマン転位物である重合体のジチオカルバ
ミン酸ナトリウム塩の水溶液を得た。この重金属
捕捉剤は、外観が赤褐色であり、ポリマー濃度は
5.45%であつた。その他の性状は第1表に示す。 実施例 2〜7 実施例1において、原料ポリアクリルアミドの
分子量、ポリアクリルアミドのアミノ化率及び二
硫化炭素の使用量のいずれか少なくとも1種を第
1表の記載の如く変化させた他は同様にして反応
を行い、各種ポリアクリルアミドのホフマン転位
物である重合体のジチオカルバミン酸ナトリウム
塩の水溶液を得た。これらの重金属捕捉剤の性状
は1表に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a novel polymeric heavy metal scavenger. Conventional techniques and their problems Conventionally, the methods for removing harmful heavy metals contained in waste water from garbage disposal, waste water from garbage incinerators, etc. include (1) neutralization coagulation precipitation method, (2) soda sulfide method, (3) Chelate resin methods and the like are known. Among these methods, the neutralization coagulation-sedimentation method is suitable in terms of running costs and maintenance management, but is not suitable for removing mercury. In addition, the soda sulfide method poses a problem of secondary pollution due to the generation of hydrogen sulfide, which is a harmful gas. In addition, the chelate resin method also adsorbs organic matter present in wastewater, reducing the capture efficiency of heavy metals.Furthermore, it requires a large amount of highly concentrated mineral acids for regeneration, resulting in high treatment costs. Disadvantages include that there is a risk of secondary contamination and that regeneration is difficult. On the other hand, in recent years, a polymeric heavy metal scavenger method has been attracting attention as a method that can overcome the drawbacks of the above treatment methods. This method is characterized in that a water-soluble polymeric heavy metal scavenger captures heavy metals through neutralization, chelation, adsorption reactions, etc., becomes insoluble, and can be removed by precipitation out of the system. It is considered that almost all aspects are satisfactory. By the way, sodium dithiocarbamate of polyethyleneimine, sodium cellulose xanthate, sodium polyglutamate, etc. are known as the scavengers used in the polymer heavy metal scavenger method, but all of them have poor scavenging ability and sedimentation separation properties. The problem is that it is not sufficient. Means for Solving the Problems The present invention aims to overcome the drawbacks of conventional polymeric heavy metal scavengers. That is, it is an object of the present invention to provide a polymeric heavy metal scavenger that is excellent in heavy metal scavenging ability, sedimentation separability, etc., which are the performance requirements of a polymeric heavy metal scavenger, and is also satisfactory in terms of cost. In order to achieve the above object, the present inventors conducted intensive studies on molecular design, focusing on a Hofmann rearrangement product of polyacrylamide, which is known as a paper strength agent and a polymer flocculant. As a result, all of the above problems could be solved for the first time by reacting carbon disulfide with a polymer having a primary amino group such as the rearranged product to form a chelate with the heavy metal and introducing a dithiocarbamate group that exhibits a scavenging action. The present inventors have discovered that it is possible to obtain a polymeric heavy metal scavenger that absorbs water, and have completed the present invention. That is, the present invention is based on the formula The active ingredient is an alkali metal dithiocarbamate obtained by reacting a high molecular weight polymer containing 5 to 100 mol% of the structural unit represented by the above as a constituent component of the polymer with carbon disulfide. The present invention relates to a characteristic polymeric heavy metal scavenger. It is essential that the high molecular weight polymer serving as a starting material in the present invention contains 5 to 100 mol% of the structural unit of the formula [] as a structural component of the polymer. That is, if the content of the structural unit is less than 5 mol %, the heavy metal trapping ability will be insufficient, which is not preferable. The content of the structural unit is preferably 40 to 100 mol%, particularly preferably 60 to 100 mol%, from the viewpoint of heavy metal trapping ability. The molecular weight of the high molecular weight polymer is not particularly limited, but usually its weight average molecular weight is 1000 to 1000.
10,000,000, preferably 5,000 to 4,000,000. If the molecular weight is less than 1,000, the sedimentation separation property will be low, and if it exceeds 1,000,000, the viscosity of the aqueous solution of the scavenger will be excessive, resulting in a decrease in handling efficiency, which are both unfavorable. As a method for producing a high molecular weight polymer containing the structural unit of the formula [] as a constituent component of the polymer, polyacrylamide or a copolymer of acrylamide and an α,β-unsaturated monomer (hereinafter referred to as acrylamide) is used. It is preferable to employ a method in which a material (referred to as a polymer) is used as a raw material and subjected to a Hofmann rearrangement reaction.
Alternatively, it may be produced by polymerizing N-vinylphthalimide, N-vinylformamide or N-vinylacetamide and then hydrolyzing the polymer. As α,β-unsaturated monomers that can be copolymerized with acrylamide in the production of the above-mentioned acrylamide-based polymers, various monomers such as methacrylamide, lower alkyl esters of acrylic acid, acrylic acid, and methacrylic acid can be used. I can give an example. The amount of the monomer used is determined by the content of the structural unit of formula [] in the resulting polymer, and is usually 95 mol% or less, preferably 60 mol% or less, particularly preferably 40 mol%. The following should be used. The polymer containing a predetermined amount of the structural unit of the formula [] obtained by the above method is then reacted with carbon disulfide in the presence of an alkali to form an alkali metal dithiocarbamate salt of the polymer. It can be made into a polymeric heavy metal scavenger of the invention. Here, examples of the alkali metal include sodium, potassium, and lithium. In this reaction, it is a matter of course that the reaction product of the polymer production can be used as it is or after being isolated and produced as the polymer.
In addition, when using a Hofmann rearrangement reaction product, hydrogen peroxide can also be used to decompose unreacted hypohalite used as a reaction reagent during the Hofmann rearrangement reaction. The reaction for introducing a dithiocarbamate group can be represented by the following reaction formula. (In the formula, R represents the main chain of the polymer containing the structural unit of the formula [], and M represents a monovalent cation of an alkali metal.) The alkali used in the reaction is:
Hydroxides of alkali metals such as sodium, potassium, and lithium are preferred. In addition, the molar ratio of carbon disulfide to the primary amino groups in the polymer should originally be stoichiometric, but usually
It can be used in an amount of about 0.05 to 10 mol, preferably 0.5 to 2 mol. If the amount is less than 0.05 mol, the amount of carbamate groups produced will be too small and the performance of the resulting polymeric heavy metal scavenger (especially heavy metal scavenging ability and sedimentation separation property) will be insufficient. In either case, there is no point in using it in excess and it becomes uneconomical. The above reaction usually proceeds at room temperature, but in order to complete the reaction in a short time, it is preferable to heat it to reflux at about 40°C. The reaction time is not particularly limited;
The time period can be determined as appropriate, usually from about 1 to 24 hours, preferably from 2 to 8 hours. By employing these reaction conditions, dithiocarbamic acid groups can be easily introduced in an amount of about 1 to 90 mol%, usually 5 to 40 mol%, based on the total amount of side chain primary amino groups. The polymeric heavy metal scavenger of the present invention contains as an active ingredient the alkali metal dithiocarbamate of the specific polymer obtained by the above-mentioned method, and usually can exhibit excellent performance by itself. However, sodium sulfide, sodium polysulfide,
This does not preclude the use of sulfides such as sodium hydrosulfide in combination. In addition, when the concentration of the metal ion to be captured is extremely dilute, if necessary, a known polymer flocculant such as a carboxylic acid-based anionic polymer flocculant, an acrylamide-based nonionic polymer flocculant, It goes without saying that a polyamine-based cationic polymer flocculant can be used in combination to further enhance the sedimentation separation properties. The polymeric heavy metal scavenger of the present invention is usually used in the form of an aqueous solution of about 5% by weight or less, and the amount used varies depending on the amount of heavy metals present in the treated wastewater, but it is usually expressed in terms of weight. Content of 0.1~
It may be used in an amount of about 20 times, preferably in a range of 0.5 to 10 times. Effects of the Invention The polymeric heavy metal scavenger of the present invention simultaneously satisfies all of the performance requirements of the scavenger, such as heavy metal capture ability, sedimentation separability, product price, running cost, and prevention of secondary pollution. It is something to be gained;
It is superior in performance compared to the above-mentioned performances of conventional polymeric heavy metal scavengers. Therefore, the polymeric heavy metal scavenger of the present invention can be widely applied to various wastewaters containing harmful heavy metals, such as wood wastewater, municipal waste incinerator flue gas treatment wastewater, and industrial wastewater from dry cell manufacturers. That is, it has the advantage that various heavy metals present in these wastewaters can be efficiently captured and, as a result, insolubilized substances are formed, so that they can be easily separated by sedimentation. Furthermore, the polymeric heavy metal trapping agent of the present invention has the advantage of being able to efficiently trap and remove substances that are subject to particularly strict regulations under the Water Pollution Control Act, such as water metal, copper, cadmium, and lead. be. Examples Hereinafter, the present invention will be described in more detail with reference to Examples, Comparative Examples, and Test Examples, but the present invention is not limited to these Examples. In each example, all parts and percentages are based on weight unless otherwise specified. Example 1 90.8 parts of an aqueous sodium hypochlorite solution (1.67 mol/Kg) was placed in a reaction apparatus equipped with a stirring device, and 5.3 parts of 95% sodium hydroxide was added thereto and dissolved with stirring. The temperature inside the reaction system was cooled to about -10℃, and then polyacrylamide (weight average molecular weight 10,000) was added.
60 parts of an 18.9% aqueous solution of was added dropwise over 10 minutes, and the reaction temperature was maintained at -5°C during this time. Subsequently, 41.2 parts of a 48% aqueous sodium hydroxide solution was added dropwise over 10 minutes, and the mixture was then kept at 0° C. for 4 hours and then returned to room temperature. To this was added 10 parts of 6% hydrogen peroxide solution, and after stirring at room temperature for 1 hour, 11.2 parts of carbon disulfide was added dropwise over 10 minutes. After stirring at room temperature for 1 hour, the temperature was raised to 40° C. and maintained at the same temperature for 3 hours to obtain an aqueous solution of dithiocarbamate sodium salt of a polymer which is a Hofmann rearrangement product of polyacrylamide. This heavy metal scavenger has a reddish-brown appearance and a polymer concentration of
It was 5.45%. Other properties are shown in Table 1. Examples 2 to 7 Same procedure as in Example 1 except that at least one of the molecular weight of the raw material polyacrylamide, the amination rate of polyacrylamide, and the amount of carbon disulfide used was changed as shown in Table 1. The reaction was carried out to obtain an aqueous solution of a sodium dithiocarbamate salt of a polymer which is a Hofmann rearrangement product of various polyacrylamides. The properties of these heavy metal scavengers are shown in Table 1.

【表】 比較例 1 撹拌装置及び冷却管を備えた反応装置にポリエ
チレンイミン(重量平均分子量70000)の30%水
溶液50部を取り、これに10%水酸化ナトリムウム
42部を加え撹拌した。次いで40℃に加熱し二硫化
炭素26.5部を1時間で滴下した。その後、同温度
で4時間保持することによりポリエチレンイミン
ジチオカルバミン酸ナトリウム塩の水溶液を得
た。ポリマー中のジチオカルバミン酸基の量は、
1級、2級及び3級アミノ基を含む全アミノ基に
対し、35.0モル%であつた。この重金属捕捉剤の
ポリマー濃度は23.6%であつた。 試験例 1 7.2ppmのHg2+を含む水溶液100mlをビーカー
に取り、これに実施例1〜7で得られた重金属捕
捉剤を0.1%濃度に水で稀釈調整した溶液を第2
表のように添加し撹拌した。10分放置後、実験上
共沈を速めるための試薬として1%の塩化第二鉄
水溶液0.2mlを加えた後、2Nの水酸化ナトリウム
でPHを8に調節した。更に10分後、アニオン系高
分子凝集剤((株)協立有機工業研究所製、商品名
「ハイモロツクSS−120A」)0.04%水溶液1mlを
加え10分間撹拌した後、更に10分間静置し過し
た。液中の残存Hg2+濃度を還元気化原子吸光
法により測定した。結果を第2表に示す。
[Table] Comparative Example 1 50 parts of a 30% aqueous solution of polyethyleneimine (weight average molecular weight 70,000) was placed in a reaction apparatus equipped with a stirring device and a cooling tube, and 10% sodium hydroxide was added to it.
42 parts were added and stirred. The mixture was then heated to 40°C and 26.5 parts of carbon disulfide was added dropwise over 1 hour. Thereafter, the solution was maintained at the same temperature for 4 hours to obtain an aqueous solution of polyethyleneimine dithiocarbamate sodium salt. The amount of dithiocarbamate groups in the polymer is
The amount was 35.0 mol% based on the total amino groups including primary, secondary and tertiary amino groups. The polymer concentration of this heavy metal scavenger was 23.6%. Test Example 1 Take 100 ml of an aqueous solution containing 7.2 ppm Hg 2+ in a beaker, and add a second solution of the heavy metal scavenger obtained in Examples 1 to 7 diluted with water to a concentration of 0.1%.
Add and stir as shown in the table. After standing for 10 minutes, 0.2 ml of a 1% ferric chloride aqueous solution was added as a reagent to speed up coprecipitation in an experiment, and the pH was adjusted to 8 with 2N sodium hydroxide. After another 10 minutes, 1 ml of a 0.04% aqueous solution of an anionic polymer flocculant (manufactured by Kyoritsu Organic Industrial Research Institute, trade name "Himoloku SS-120A") was added, stirred for 10 minutes, and then left to stand for another 10 minutes. passed. The residual Hg 2+ concentration in the liquid was measured by reduction vaporization atomic absorption spectrometry. The results are shown in Table 2.

【表】【table】

【表】 試験例 2 M工場より得られた都市ゴミ焼却炉洗煙廃水
(Hg2+濃度:667ppb)100mlをビーカーの取りPH
を7に調節した。これに実施例1〜7で得られた
重金属捕捉剤を0.1%濃度に水で稀釈調整した溶
液を第3表のように添加し撹拌した。10分放置
後、1%塩化第二鉄水溶液0.2mlを加えた後、2N
の水酸化ナトリウムでPHを8に調節した。更に10
分後、前記アニオン系高分子凝集剤0.04%水溶液
1mlを加え10分間撹拌した後、更に10分間静置し
過した。液中の残存Hg2+濃度を還元気化原
子吸光法により測定した。結果を第3表に示す。
[Table] Test Example 2 Take 100 ml of municipal garbage incinerator smoke wash wastewater (Hg 2+ concentration: 667 ppb) obtained from M factory into a beaker and collect PH.
was adjusted to 7. A solution prepared by diluting the heavy metal scavenger obtained in Examples 1 to 7 with water to a concentration of 0.1% was added to the solution as shown in Table 3, and the mixture was stirred. After leaving for 10 minutes, add 0.2ml of 1% ferric chloride aqueous solution, then add 2N
The pH was adjusted to 8 with sodium hydroxide. 10 more
After a few minutes, 1 ml of the 0.04% aqueous solution of the anionic polymer flocculant was added, stirred for 10 minutes, and then allowed to stand for an additional 10 minutes. The residual Hg 2+ concentration in the liquid was measured by reduction vaporization atomic absorption spectrometry. The results are shown in Table 3.

【表】【table】

【表】 比較試験例 1 実施例1〜3における中間段階で得られた各種
ホフマン転位反応物、ポリアクリルアミド(重量
平均分子量10000)及び比較例1で得られた重金
属捕捉剤を、いずれも0.1%水溶液として試験例
1と同様な操作により残存Hg2+濃度を測定した。
経過を第4表に示す。
[Table] Comparative Test Example 1 Various Huffmann rearrangement reactants obtained at the intermediate stage in Examples 1 to 3, polyacrylamide (weight average molecular weight 10,000), and the heavy metal scavenger obtained in Comparative Example 1 were all mixed at 0.1%. The residual Hg 2+ concentration was measured as an aqueous solution in the same manner as in Test Example 1.
The progress is shown in Table 4.

【表】 試験例 3 50ppmのCu2+を含む水溶液100mlをビーカーに
取り、これに実施例1〜7で得られた重金属捕捉
剤を1%濃度に水で稀釈調整した溶液を第5表の
ように添加し撹拌した。10分放置後、前記アニオ
ン系高分子凝集剤0.2%水溶液1mlを加え10分間
撹拌した後、更に10分間静置し過した。液中
の残存Cu2+濃度を原子吸光法により測定した。
結果を第5表に示す。
[Table] Test Example 3 Take 100 ml of an aqueous solution containing 50 ppm Cu 2+ in a beaker, and add the solution prepared by diluting the heavy metal scavenger obtained in Examples 1 to 7 with water to a concentration of 1% as shown in Table 5. and stirred. After standing for 10 minutes, 1 ml of the 0.2% aqueous solution of the anionic polymer flocculant was added, stirred for 10 minutes, and then left standing for an additional 10 minutes. The residual Cu 2+ concentration in the liquid was measured by atomic absorption spectrometry.
The results are shown in Table 5.

【表】【table】

【表】 比較試験例 2 実施例1〜3における中間段階で得らえた各種
ホフマン転位反応物、ポリアクリルアミド(重量
平均分子量10000)及び比較例1で得られた重金
属捕捉剤を、いずれも1%水溶液として試験例3
と同様な操作により残存Cu2+濃度を測定した。
結果を第6表に示す。
[Table] Comparative Test Example 2 Various Hofmann rearrangement reactants obtained at the intermediate stage in Examples 1 to 3, polyacrylamide (weight average molecular weight 10,000), and the heavy metal scavenger obtained in Comparative Example 1 were all added at 1%. Test example 3 as an aqueous solution
The residual Cu 2+ concentration was measured using the same procedure as above.
The results are shown in Table 6.

【表】【table】

Claims (1)

【特許請求の範囲】 1 式【式】で表わされる構成単位 を重合体の構成成分として5〜100モル%含有す
る高分子重合体と二硫化炭素とを反応させて得ら
れる該重合体のジチオカルバミン酸アルカリ金属
塩を、有効成分とすることを特徴とする高分子系
重金属捕捉剤。 2 該高分子重合体がポリアクリルアミドのホフ
マン転位物である特許請求の範囲第1項に記載の
捕捉剤。 3 該高分子重合体の重量平均分子量が1000〜
10000000である特許請求の範囲第1項又は第2項
に記載の捕捉剤。 4 該高分子重合体が該構成単位を40〜100モル
%含有する特許請求の範囲第1項に記載の捕捉
剤。 5 該高分子重合体が該構成単位を60〜100モル
%含有する特許請求の範囲第4項に記載の捕捉
剤。
[Scope of Claims] 1. Dithiocarbamine of a polymer obtained by reacting a polymer containing 5 to 100 mol% of the structural unit represented by the formula [formula] as a constituent component of the polymer with carbon disulfide. A polymeric heavy metal scavenger characterized by containing an acid alkali metal salt as an active ingredient. 2. The scavenger according to claim 1, wherein the high molecular weight polymer is a Hofmann rearrangement product of polyacrylamide. 3 The weight average molecular weight of the high molecular weight polymer is 1000 or more.
10,000,000, the scavenger according to claim 1 or 2. 4. The scavenger according to claim 1, wherein the high molecular weight polymer contains 40 to 100 mol% of the structural unit. 5. The scavenger according to claim 4, wherein the high molecular weight polymer contains 60 to 100 mol% of the structural unit.
JP32027987A 1987-12-17 1987-12-17 High molecular heavy metal sequestering agent Granted JPH01164492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32027987A JPH01164492A (en) 1987-12-17 1987-12-17 High molecular heavy metal sequestering agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32027987A JPH01164492A (en) 1987-12-17 1987-12-17 High molecular heavy metal sequestering agent

Publications (2)

Publication Number Publication Date
JPH01164492A JPH01164492A (en) 1989-06-28
JPH0468035B2 true JPH0468035B2 (en) 1992-10-30

Family

ID=18119729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32027987A Granted JPH01164492A (en) 1987-12-17 1987-12-17 High molecular heavy metal sequestering agent

Country Status (1)

Country Link
JP (1) JPH01164492A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0547720A3 (en) * 1991-12-19 1993-09-01 Eniricerche S.P.A. Polymer containing chelating groups, process for preparing it and its use in water purification
JP2007029917A (en) * 2005-07-29 2007-02-08 Makoto Taniguchi Heavy metal flocculating agent
US8747789B2 (en) * 2010-04-06 2014-06-10 Nalco Company Metal scavenging polymers
CA2841881A1 (en) * 2011-07-12 2013-01-17 General Electric Company Polymer and method for removing undesirable elements from aqueous solutions
CN102701348A (en) * 2012-06-12 2012-10-03 徐梁冰 Preparation method for environment-friendly composite flocculant
CN102701365B (en) * 2012-06-12 2014-02-19 邓建平 Flocculant for sewage treatment
JP2018043232A (en) * 2016-09-08 2018-03-22 東ソー株式会社 Purification agent for mercury-containing aqueous solution, and method of purifying mercury-containing aqueous solution
CN106315808B (en) * 2016-10-13 2020-03-13 仲恺农业工程学院 Heavy metal trapping agent and preparation method thereof
CN108211193A (en) * 2018-01-15 2018-06-29 广东中科乐活环境科技有限公司 A kind of fly-ash heavy metal capture high-molecular chelating agent and preparation method thereof
CN109626536A (en) * 2018-12-06 2019-04-16 深圳粤鹏环保技术股份有限公司 A kind of preparation method and applications of anion base metal agent for capturing
CN112321767B (en) * 2020-11-11 2022-10-14 西安热工研究院有限公司 Preparation method and application of iron element chelating agent
CN112778042A (en) * 2020-12-07 2021-05-11 九江礼涞生物科技有限公司 Preparation method of heavy metal chelating agent in animal waste

Also Published As

Publication number Publication date
JPH01164492A (en) 1989-06-28

Similar Documents

Publication Publication Date Title
US5510040A (en) Removal of selenium from water by complexation with polymeric dithiocarbamates
RU2564811C2 (en) Polymers for purification from metals and use thereof
AU646763B2 (en) Dithiocarbamate polymers
JPH0468035B2 (en)
AU2011238529B2 (en) Metal scavenging polymers
JP3412842B2 (en) Metal collecting agent and method for producing the same
JP5007965B2 (en) Treatment method for fluorine compounds
CN112850867A (en) Deep defluorination medicament and preparation method thereof
JP4607847B2 (en) Treatment method and treatment agent for boron-containing wastewater
CN111995025A (en) Macromolecular heavy metal chelating agent for treating nickel-complex-containing wastewater and preparation method thereof
JPH0252558B2 (en)
JP6053260B2 (en) Treatment method for wastewater containing boron and fluorine
JPH05239133A (en) Dithiocarbamate polymer
CN113896306A (en) Polyaluminum ferric chloride flocculant and preparation method thereof
JP4306917B2 (en) Anion scavenger and method for recovering inorganic anion from waste water
JPH0582871B2 (en)
JPS643549B2 (en)
JPH08103774A (en) Treatment of waste water
CN110759450A (en) Amphoteric chitosan, preparation method and application thereof
US20230182068A1 (en) Ammonia Removal in Contaminated Liquid and Gas Streams
JP4019889B2 (en) Method for treating heavy metal-containing waste liquid and treating agent used therefor
JP2003136068A (en) Method of removing boron
JP3840857B2 (en) Method for dewatering sludge mainly composed of inorganic particles and refining agent for dewatering
JP3715004B2 (en) Treatment of acrylamide-containing wastewater
JPH0940936A (en) Metal trapping agent and its production