JPH046758A - Manufacture of metal-hydrogen alkaline storage battery - Google Patents

Manufacture of metal-hydrogen alkaline storage battery

Info

Publication number
JPH046758A
JPH046758A JP2109104A JP10910490A JPH046758A JP H046758 A JPH046758 A JP H046758A JP 2109104 A JP2109104 A JP 2109104A JP 10910490 A JP10910490 A JP 10910490A JP H046758 A JPH046758 A JP H046758A
Authority
JP
Japan
Prior art keywords
battery
discharge
hydrogen
negative electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2109104A
Other languages
Japanese (ja)
Other versions
JP2983577B2 (en
Inventor
Takanao Matsumoto
松本 孝直
Yoshikazu Ishikura
石倉 良和
Ikuo Kanekawa
金川 育生
Motohiro Miki
三木 基弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2109104A priority Critical patent/JP2983577B2/en
Publication of JPH046758A publication Critical patent/JPH046758A/en
Application granted granted Critical
Publication of JP2983577B2 publication Critical patent/JP2983577B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To increase the discharge operating voltage and improve the battery characteristic by assembling a battery with a positive electrode, a negative electrode made of a hydrogen storage alloy electrode and an alkaline electrolyte, then applying the discharge treatment with preset deep depth. CONSTITUTION:A positive electrode made of a sintered nickel electrode, a negative electrode made of a hydrogen storage alloy electrode and an alkali- resistant separator are wound into a spiral electrode body, it is inserted into a battery can, an alkaline electrolyte is injected, and an opening is sealed to assemble a battery. The battery is charged as required, then the discharge treatment is applied nearly completely so that the discharging current is continuously decreased until the discharge stop voltage becomes 0.3-1.0V. The hydrogen stored in the hydrogen storage alloy easily permeate or break an oxide film formed on the surface of the alloy via the deep discharge, and the activity of the negative electrode is improved. A metal-hydrogen alkaline storage battery using the hydrogen storage alloy as the negative electrode and having increased discharge operating voltage and improved battery characteristic is obtained.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、水素を可逆的に吸蔵及び放出することのでき
る水素吸蔵合金を負極に備えた金属−水素アルカリ蓄電
池の製造方法に関するものである。
Detailed Description of the Invention (a) Field of Industrial Application The present invention relates to a method for manufacturing a metal-hydrogen alkaline storage battery whose negative electrode is equipped with a hydrogen storage alloy that can reversibly absorb and release hydrogen. be.

(ロ)従来の技術 従来からよく用いられている蓄電池として、ニジケル−
カドミウム蓄電池の如きアルカリ蓄電池、あるいは鉛蓄
電池などが挙げられる。近年、これらの電池より軽量且
つ高容量で高エネルギー密度となる可能性のある、水素
吸蔵合金を用いてなる水素吸蔵合金電極を負極に備えた
金属−水素電池が注目されている。
(b) Conventional technology Nijikel is a storage battery that has been commonly used.
Examples include alkaline storage batteries such as cadmium storage batteries, and lead storage batteries. In recent years, metal-hydrogen batteries, which are lighter, have higher capacity, and may have higher energy density than these batteries, have been attracting attention, and have a negative electrode equipped with a hydrogen storage alloy electrode made of a hydrogen storage alloy.

この種金属−水素電池の負極に用いられる水素板a会金
としては、例えば特開昭63 21750号公報、特開
昭62 246259号公報等に代表されるように、希
土類系水素吸蔵合金が用いられており、この組成を改良
することにより、充放電時の合金耐蝕性の向上及び微粉
化の抑制等が計られている。また電池組立前、即ち水素
吸蔵合金に気体状態の水素を吸蔵、放出させることによ
r)、活性化処理を行い電池特性の向上が計られている
。そしてこの水素吸蔵合金の活性化処理方法としては、
粉末状態、を極状態、注液前のt池状態等で種々検討さ
れている。
Rare earth hydrogen storage alloys are used as the hydrogen plate a metal used in the negative electrode of this type of metal-hydrogen battery, as typified by, for example, JP-A-63-21750 and JP-A-62-246259. By improving this composition, efforts are being made to improve the corrosion resistance of the alloy during charging and discharging, and to suppress pulverization. Furthermore, before the battery is assembled, that is, by causing the hydrogen storage alloy to store and release hydrogen in a gaseous state, an activation treatment is performed to improve the battery characteristics. The activation treatment method for this hydrogen storage alloy is as follows:
Various studies have been conducted, including powder state, polar state, and t-pool state before injection.

このようにして構成された金属−水素電池を、注液、封
口等の過程を紅で組立を完了した後、即使用するには、
未だ負極の活性度が不十分である。そこで、通常、数回
の電気化学的な活性化、即ち充放電操作を行うことによ
り、主として負極の活性度を高め、実用に耐える性能を
得るようにしている。
In order to use the metal-hydrogen battery constructed in this way immediately after completing the assembly process such as injection and sealing,
The activity of the negative electrode is still insufficient. Therefore, the activity of the negative electrode is usually increased by performing electrochemical activation, that is, charging and discharging several times, in order to obtain performance that can withstand practical use.

しか−1このような電気化学的な活性化を施した電池で
あっても、放電時の作動電圧、特に高率放電時において
作動電圧が低く、また急速充電時、電池内圧が上昇し弁
作動するという問題があった。
However, -1 Even with such electrochemically activated batteries, the operating voltage during discharging, especially during high rate discharging, is low, and during rapid charging, the internal pressure of the battery rises and the valve operation becomes difficult. There was a problem.

この種、金属−水素電池は、負極に水素吸蔵合金の微粉
末を用いており、電池組立前の水素ガスを用いる活性化
処理、或いは電池組立後の充放電による活性化処理等に
より、この水素吸蔵合金に水素をU、Fka、放電させ
て負極の活性化、即ち電池の活性化を計っている。また
、前記処理を繰り返すことにより、水素の吸蔵放出反応
が速やかに行なわれ、放電時、特に高率放電時において
、作動t〒が徐々に上昇すると共に、急速充電時の内圧
上昇による弁作動も徐々に少なくなる傾向にある。しか
しながら、これらの操作を行っただけでは、まだ十分に
、負極である水素吸蔵合金!極の活性化処理を行うこと
ができなかった。
This type of metal-hydrogen battery uses fine powder of a hydrogen storage alloy for the negative electrode, and this hydrogen is removed by activation treatment using hydrogen gas before battery assembly, or by activation treatment by charging and discharging after battery assembly. Hydrogen (U, Fka) is discharged into the storage alloy to activate the negative electrode, that is, to activate the battery. In addition, by repeating the above process, the hydrogen storage and release reaction occurs quickly, and during discharging, especially during high rate discharging, the operating t〒 gradually increases, and the valve operating due to the internal pressure increase during rapid charging also increases. It tends to gradually decrease. However, just performing these operations is still insufficient for hydrogen storage alloys, which are negative electrodes! Pole activation processing could not be performed.

(ハ)発明が解決しようとする課題 本発明は前記間騙点に鑑みなされたものであって、負極
に水素吸蔵合金を極を用いた金属−水素アルカリ蓄電池
の好ましい活性化処理の方法を提案するものである。そ
の結果、この種電池の放電作動電圧を高め、電池特性の
向上を計るものである。
(c) Problems to be Solved by the Invention The present invention has been made in view of the above disadvantages, and proposes a preferable activation treatment method for a metal-hydrogen alkaline storage battery using a hydrogen storage alloy as a negative electrode. It is something to do. As a result, the discharge operating voltage of this type of battery is increased and the battery characteristics are improved.

(ニ)  課題を解決するための手段 本発明の金属−水素アルカリ蓄電池の製造方法は、正極
と、負極としての水素吸蔵合金電極と、アルカリ電解液
とを用いて電池を組立てる組立て工程と、前記電池の放
電電流を連続的に減少させるようにほぼ完全に放電させ
る放電処理工程とを有するものである。
(d) Means for Solving the Problems The method for manufacturing a metal-hydrogen alkaline storage battery of the present invention comprises an assembly step of assembling a battery using a positive electrode, a hydrogen storage alloy electrode as a negative electrode, and an alkaline electrolyte; The method includes a discharge treatment step in which the battery is almost completely discharged so that the discharge current of the battery is continuously decreased.

そして、ここで前記放電処理工程において、前5ピfL
池の放電終止電圧を0,3V−1,0〜′とするのが、
好ましい。
Then, in the discharge treatment step, the front 5 pi fL
The final discharge voltage of the battery is 0.3V-1.0~'.
preferable.

(ホ)作 用 金属−水素アルカリ蓄電池に用いられている水素吸蔵合
金は、電池組立直後は不活性であるので、通常充放電に
より活性度を高めている。そこで、本発明者が種々検討
したところ、電池特性例えば放電率特性及び過充電特性
を支配しているのは、主として負極の性能、即ち負極の
活性度であって、一方、正極は組立直後より十分活性で
あることがわかった。
(e) Function Metal-Hydrogen The hydrogen storage alloy used in alkaline storage batteries is inactive immediately after battery assembly, so its activity is normally increased by charging and discharging. Therefore, the present inventor conducted various studies and found that it is mainly the performance of the negative electrode, that is, the activity of the negative electrode that controls battery characteristics, such as discharge rate characteristics and overcharge characteristics.On the other hand, the positive electrode It was found to be sufficiently active.

そこで、組立後の電池を充放電処理し、負極を観察した
ところ、負極を構成する水素吸蔵1金が放出残の水素を
多量に含有しており、電位で見ても卑側に高い状態とな
っており、充電は行なわれているが、放電が完全に行な
われていないという知見が得られた。更に、負極の活性
度は放電深度によって決まり、放電深度を深くすれば活
性度が高くなり、電池の放電率特性及び過充電特性も改
良されることがわかった。そして、電池組立後の放電条
件を種々検討したところ、水素吸蔵1金の内部に吸蔵さ
れている水素が合金表面に形成された酸化膜を透過、或
いは、一部破壊し易くなり、負極の活性度を高める場合
があることを見い出した。即ち、電池組立後の放電時、
連続的に放電電流を減少させることにより、酸化が始ま
るまで、水素吸蔵合金電極表面でのOH−との反応が速
やかに行なわれ放電容量が増加するため、放電深度が深
くなる。−度水素吸蔵合金において反応性が確保される
と、その反応性が維持されるため、高率放電特性が向上
する。更に、負極の活性度が高くなっているために、過
充電時、酸素ガスと水素吸蔵合金内の水素との反応が速
やかに進行し、電池内圧の上昇が抑制され、過充電特性
が向上する。
Therefore, when the assembled battery was charged and discharged and the negative electrode was observed, it was found that the hydrogen-absorbing 1-metal gold that makes up the negative electrode contained a large amount of unreleased hydrogen, and the potential was high on the base side. It was found that charging was occurring, but discharging was not complete. Furthermore, it has been found that the activity of the negative electrode is determined by the depth of discharge, and that the deeper the depth of discharge, the higher the activity, and the discharge rate characteristics and overcharge characteristics of the battery are also improved. After examining various discharge conditions after battery assembly, we found that the hydrogen stored inside the hydrogen-absorbing 1-metal gold easily permeates or partially destroys the oxide film formed on the surface of the alloy, which reduces the activity of the negative electrode. It was found that there are cases where the degree of That is, when discharging after battery assembly,
By continuously decreasing the discharge current, the reaction with OH- on the surface of the hydrogen storage alloy electrode rapidly occurs until oxidation begins, increasing the discharge capacity and deepening the depth of discharge. Once the reactivity is ensured in the hydrogen storage alloy, the reactivity is maintained and the high rate discharge characteristics are improved. Furthermore, because the activity of the negative electrode is high, during overcharging, the reaction between oxygen gas and hydrogen in the hydrogen storage alloy proceeds quickly, suppressing the rise in battery internal pressure and improving overcharging characteristics. .

(へ)実施例 以下に1本発明と比較例との対比に言及し、詳述する。(f) Example Below, a comparison between the present invention and a comparative example will be mentioned and explained in detail.

を池の作製(組立工程) 負極を構成する水素1’&a合金として、希土類系水素
吸蔵合金であるL a N l ! CO3を粉砕巳て
微粉化したものを95重量部、ここに結着剤としてのポ
リテトラフルオロエチレン(P T F E ンデイス
バージョンを5重量部添加し、均一に混合し、PTFE
を繊維化させる。これに水を加えてペースト状とし、ニ
ッケルメッキを施−たパンチングメタル集電体の両面に
貼り付は水素吸蔵合金電極である負極を得る。
Preparation of the pond (assembly process) As the hydrogen 1'&a alloy constituting the negative electrode, L a N l ! which is a rare earth hydrogen storage alloy is used. 95 parts by weight of CO3 was pulverized into a fine powder, and 5 parts by weight of polytetrafluoroethylene (PTFE) as a binder was added thereto.
into fibers. Water is added to this to form a paste, and the paste is pasted on both sides of a nickel-plated punched metal current collector to obtain a negative electrode, which is a hydrogen storage alloy electrode.

正極はニッケルーカドミウム電池等に用いられる公知の
焼結式ニッケル極を使用した。
As the positive electrode, a known sintered nickel electrode used in nickel-cadmium batteries and the like was used.

これら正極及び負極を、耐アルカリ性を有するセパレー
タと共に持回し、渦巻電極体を得、電池附にこの電極体
を挿入した後、アルカリ電解液を注入し、封口を行い密
閉して公称容量120OiAHの電池を組立てた。
These positive and negative electrodes are carried around together with an alkali-resistant separator to obtain a spiral electrode body. After inserting this electrode body into a battery, an alkaline electrolyte is injected, and the seal is sealed to form a battery with a nominal capacity of 120 OiAH. Assembled.

(実施例1) 前記方法により得た電池を用い、120IllAの充t
it流で16時間充電した後、この電池を放電させ電池
電圧が1.OVに達した時点で、放電電流を減少させ更
に放電を行った(放!処理工程)。
(Example 1) Using the battery obtained by the above method, charging of 120IllA was carried out.
After charging for 16 hours using the IT method, the battery was discharged until the battery voltage reached 1. When OV was reached, the discharge current was decreased and further discharge was performed (release! treatment step).

ユニで、この放it流を減少させて放電を行う回路を、
第1図に示す。
At Uni, we created a circuit that reduces this discharge current and discharges.
Shown in Figure 1.

第1図は、本発明に用いる電池の放電回路図である。第
1図においてDlは順向電圧が〜′1であるシリコンダ
イオード、D、は順方向電圧がV、であるショットキー
バリアダイオードであり、通常V 、 > V 、の関
係を有している。この回路を用いて電池を放電させたと
きに得られる、放電時間経過に伴う電池電圧及び放電電
流の変化のようすを、第2図及び第3図において、それ
ぞれ曲線Aとして示した。第2図及び第3図において、
放電を開始して電池電圧が約(V、−V、)ボルトであ
る間は回路に流れる電流は、i = i 、、i、りO
の関係を有する。そして時間経過に伴い、電池電圧が低
下し、第2図に示す如く、約1.0〜0.8V(”■1
〜■2ボルト)以下になると、i = i 、+ i 
、(7)関係を満たしながら、徐々にi、が増加し、1
1は減少していく(第3図参照)。そして放電を続ける
と、11は更に減少し、放電反応が進行するために電池
電圧も徐々に減少していく。但し、この実施例の回路で
は7時間を超えると、電池:こ流れる電流l、が極めて
小さくなり、実際の放it気量も著しく減少するので7
.5時間で放電を中止している。そして、このようにし
て充放電を5回繰り返した。上述のようにして、本発明
電池Aを作製した。
FIG. 1 is a discharge circuit diagram of a battery used in the present invention. In FIG. 1, Dl is a silicon diode with a forward voltage of ~'1, and D is a Schottky barrier diode with a forward voltage of V, and they usually have the relationship of V, > V. The changes in battery voltage and discharge current as the discharge time elapses, which are obtained when a battery is discharged using this circuit, are shown as curve A in FIGS. 2 and 3, respectively. In Figures 2 and 3,
When the battery voltage is approximately (V, -V,) volts after discharge starts, the current flowing through the circuit is i = i,,i,riO
have the following relationship. Then, as time passes, the battery voltage decreases, as shown in Figure 2, approximately 1.0 to 0.8V ("■1
~■2 volts) or less, i = i, + i
, (7) While satisfying the relation, i gradually increases and becomes 1
1 decreases (see Figure 3). As the discharge continues, the number of 11 decreases further, and as the discharge reaction progresses, the battery voltage also gradually decreases. However, in the circuit of this embodiment, after 7 hours, the current flowing through the battery becomes extremely small, and the actual amount of air discharged also decreases significantly.
.. Discharge was stopped after 5 hours. Then, charging and discharging were repeated five times in this manner. Invention battery A was produced as described above.

(実施例2) 前記組立工程で作製した電池を用い、第4図に示す放電
回路を使用して放電を行った。第4図の回路の1ヤ動原
理は、基本的には第1図の回路と同様である。第4図に
おいてり、、D、は順方向電圧が■1、v4であるシリ
コンダイオード、D8、D6は順方向電圧がV3、■、
であるショットキーバリアダイオードであり、通常V3
、V、>V、、■、の関係を有している。この第4図に
示す回路を用いて電池を放電させた時に得られる、放電
時間経過に伴う電池電圧及び放Xtt流の変化のようす
を、第2図及び第3図において、それぞれ曲線Bとして
示した。第2図及び第3図において、放電を開始して電
池電圧が約:Vx+V、)−(V、+V、)ボルトであ
る間は、回路に流れる電流は1zl1.14夕0の関係
を有する。そして時間経過に伴い、電池電圧が低下し、
第2図に示すごとく、約1.3−1.IV I”(v、
+V、)−C〜’++■g)ボルト1以下になると、l
 =l x+ + 4の関係を満たしながら、徐々にi
、が増加し、i Iは減少していく (第3図参照)。
(Example 2) Using the battery manufactured in the above assembly process, discharge was performed using the discharge circuit shown in FIG. 4. The principle of one-way operation of the circuit of FIG. 4 is basically the same as that of the circuit of FIG. In Fig. 4, D is a silicon diode with a forward voltage of ■1, v4, D8, D6 is a silicon diode with a forward voltage of V3, ■,
It is a Schottky barrier diode, which is usually V3
,V,>V, ,■,. The changes in the battery voltage and discharged Xtt current as the discharge time elapses, which are obtained when the battery is discharged using the circuit shown in FIG. 4, are shown as curve B in FIGS. 2 and 3, respectively. Ta. In FIGS. 2 and 3, while the battery voltage is approximately: Vx+V, )-(V, +V, ) volts after discharge is started, the current flowing through the circuit has a relationship of 1zl1.14t0. Then, as time passes, the battery voltage decreases,
As shown in Figure 2, approximately 1.3-1. IV I” (v,
+V,)-C~'++■g) When the voltage is less than 1, l
While satisfying the relationship =l x+ + 4, gradually i
, increases, and i I decreases (see Figure 3).

そして放電を続けると1゜は更に減少し、電池電圧も放
電反応が進行するために徐々に減少していく。そしてこ
の実施例2でも、前記実施例1と同様にして、放電を7
.5時間で中止した。そしてこの充放電を5回繰り返し
た。充電条件は前記実施例1と同様である。上述のよう
にして、本発明電池Bを作製した。
As the discharge continues, 1° further decreases, and the battery voltage gradually decreases as the discharge reaction progresses. In Example 2 as well, the discharge was carried out for 7
.. It was stopped after 5 hours. This charging and discharging was repeated five times. The charging conditions were the same as in Example 1 above. Invention battery B was produced as described above.

(比較例) 前記組立工程で得た電池を用い、前記実施例iと同様の
条件で充電を行い、従来行なわれている定電流にて放電
を行った。そしてこの充放電を5回繰り返した。この時
の電池の放電時間経過に伴う電池電圧及び放ttIL流
の変化のようすを、第2図及び第3図において、それぞ
れ曲IsCとして示した。この放電パターンは、放電開
始後、終始、定電流で放電されるため、電池電圧が1.
0■より低くなっても放電電流は一定となる。従って、
過放電となり、転極に伴うガス発生及び内部圧力上昇に
より電池特性を低下させてしまう。よって電池電圧がO
vに至った時点で、放電を中止している。このようにし
て、比較電池Cを作製した。
(Comparative Example) Using the battery obtained in the assembly process, it was charged under the same conditions as in Example i, and discharged at a conventional constant current. This charging and discharging was repeated five times. Changes in the battery voltage and discharged ttIL current as the battery discharge time progresses at this time are shown as the song IsC in FIGS. 2 and 3, respectively. In this discharge pattern, after the start of discharge, the battery is discharged with a constant current from beginning to end, so that the battery voltage is 1.
Even if it becomes lower than 0■, the discharge current remains constant. Therefore,
This results in overdischarge, resulting in deterioration of battery characteristics due to gas generation and internal pressure increase due to polarity reversal. Therefore, the battery voltage is O
When the voltage reaches v, the discharge is stopped. In this way, comparative battery C was produced.

以上のようにして作製した電池A、B、Cを用い、電池
の放電特性を比較した。この実験は、各電池を120m
Aの電流で16時間充電した後、2400mAの電流で
放電した時の放電容量と作動電圧を調べるというもので
ある。この結果を、第1表に示す。更に、この時の放電
特性を、第5図に示す。
Using batteries A, B, and C produced as described above, the discharge characteristics of the batteries were compared. In this experiment, each battery was
After charging with a current of A for 16 hours, the discharge capacity and operating voltage were investigated when discharging with a current of 2400 mA. The results are shown in Table 1. Furthermore, the discharge characteristics at this time are shown in FIG.

以下余白 第  1 表 第1表及び第5図の結果より、本発明電池A、Bは、比
較電池Cに比べて、放電容量及び作動電圧が高く、優れ
たものであることが理解5れる。
From the results shown in Table 1 and FIG. 5, it can be seen that the batteries A and B of the present invention have a higher discharge capacity and a higher operating voltage than the comparative battery C, and are superior.

これは負極を構成する水素吸蔵合金中に吸蔵された水素
のうち、合金表面の酸化等により放電し難かった部分、
即ち電気化学的に不活性であった部分においても活性化
が進み、放電反応に関与するため、電池の放電特性が改
善されたと考えられる。
This is due to the part of the hydrogen stored in the hydrogen storage alloy that makes up the negative electrode that is difficult to discharge due to oxidation of the alloy surface, etc.
In other words, it is thought that the activation progresses even in the electrochemically inactive portions and participates in the discharge reaction, thereby improving the discharge characteristics of the battery.

次に、前記電池A、B、Cを用い、240m、Aの電流
で3日間過充電した時の、電池内圧を調べた。この時の
電池内圧を、第1表に併せて示す。
Next, using the batteries A, B, and C, the internal pressures of the batteries were examined when they were overcharged at a current of 240 m and A for 3 days. The battery internal pressure at this time is also shown in Table 1.

また第6図に、この時の電池内圧の変化のようすを示す
。91表及び第6図の結果から明らかな如く、本発明電
池A、Bは、比較電池Cに比へて、過充電特性において
優れたものであることが理解される。これは、本発明電
池A、Bが、負極の活性度が高く、過充電時に発生した
酸素ガスの消費速度が大きく、結果的に電池内圧が低下
したものと考えられる。このように本発明によれば急速
充電時においては、電池内圧の上昇に伴う安全弁作動及
び電解液の電池系外への逸散も防げるという効果を奏す
る。
Moreover, FIG. 6 shows how the battery internal pressure changes at this time. As is clear from the results shown in Table 91 and FIG. 6, it can be seen that the batteries A and B of the present invention are superior to the comparative battery C in terms of overcharge characteristics. This is considered to be because, in Batteries A and B of the present invention, the activity of the negative electrode was high and the rate of consumption of oxygen gas generated during overcharging was high, resulting in a decrease in the battery internal pressure. As described above, according to the present invention, during rapid charging, it is possible to prevent the operation of the safety valve and the dissipation of the electrolyte to the outside of the battery system due to the increase in the internal pressure of the battery.

(実施例3) 前記組立工程により得た電池を用い、放電終止電圧を変
化させて、本発明電池を得た。この時の充放電条件は、
各電池を120mAで16時間充電後、第1図及び第3
図のAに類似する放電制御、即ち電池電圧が1.OV以
下の領域で放電電流を減少させる制御を、ファンクショ
ンジェネレータと定電流放電電源を併用して行ない、活
性化工程における放電終始電圧を種々変化させるという
ものである。そして、電池!田を、第7図に示す如く、
1.OV以下の領域で漸減するように制御し、放電終止
を圧の異なる電池を得るために放電時間を変化させた。
(Example 3) A battery of the present invention was obtained by using the battery obtained through the above assembly process and varying the discharge end voltage. The charging and discharging conditions at this time are:
After charging each battery at 120mA for 16 hours, Figures 1 and 3
Discharge control similar to A in the figure, that is, when the battery voltage is 1. Control to reduce the discharge current in the region below OV is performed by using a function generator and a constant current discharge power supply, and the discharge end voltage in the activation process is varied in various ways. And batteries! As shown in Figure 7,
1. The discharge time was controlled to gradually decrease in the region below OV, and the discharge time was varied in order to obtain batteries with different discharge end pressures.

この電池を、前記実施例1と同様に、120mAで16
時間充を後、2400mAで放電した。この時の作動電
圧を、第8図に示す。第7図及び第8図の結果から明ら
かなように、放電終止!圧をt、OV以上と;で活性化
した電池では、負極の放電深度が浅く、十分活性化が行
なえないため、負極の活性度が低い。よって、この電池
を用い、高率放電を行った場合、作動を田が低下したと
思われる。また放電終始電圧を−0,3v以下とすると
、負極における水素吸蔵訃音が酸化され、不活性化する
ため、放電時の作動電圧が低くなったものと忠われる。
This battery was operated at 160 mA at 120 mA in the same manner as in Example 1 above.
After charging for an hour, it was discharged at 2400 mA. The operating voltage at this time is shown in FIG. As is clear from the results in Figures 7 and 8, the discharge has ended! In a battery activated at a pressure of t, OV or more, the depth of discharge of the negative electrode is shallow and activation cannot be performed sufficiently, so the activity of the negative electrode is low. Therefore, when this battery was used and subjected to high rate discharge, it seems that the operation decreased. Furthermore, if the discharge end voltage is -0.3 V or less, the hydrogen storage in the negative electrode is oxidized and inactivated, so it is believed that the operating voltage during discharge is lowered.

従って電池を活性化する場合の放電終始電圧:よ、1.
0〜−0.3Vとすることが好ましい。
Therefore, the voltage at the end of discharge when activating the battery: 1.
It is preferable to set it as 0--0.3V.

一方、比較例として、従来の定電流放!(第2図及び第
3図の曲線C)により活性化させた電池においても、放
電終止電圧の検討を行ったところ、放電終止電圧を1.
0v〜−〇、3〜′とした比較電池においては、活性化
後の2400mA放電時の作動電圧が全て1.10〜′
程度と低い値を示した。これは、従来の定電流紋を処理
では、水素吸蔵合金中に吸蔵されている水素のうち、一
部分が、合金表面に形成されている酸化膜のために放電
に関与し難くなっていると推定される。このような状態
の1金粒子に強制的にt流が流れるため、水素の還元反
応が追いつかず放電不良となり、合金粒子中に残存する
ため、負極の活性化が遅れる。したがって、本発明では
、電池電圧が1.0v〜−0、3Vにおける、放電反応
が起こり難い部分の水素ガスをも、放it流の制御によ
り放電させることができるため、負極の活性度が向上し
、電池の高率放電特性が改良されたと考えられる。尚、
ニッケルーカドミウム電池においてら、電池組立後の活
性化の際に第1図の回路を用いて処理を行ったが、負極
であるカドミウム電極の場合、放電反応により表面が閉
塞し反応が終了するため、電池を王は徐々に減少せずに
電位は急速に低下した。また、この活性化方法をとった
ニッケルーカドミウム電池の高率放電特性は、改善され
ていなかった。従って、本発明の製造方法、即ち電池の
活性化方法:よ、金属−水素蓄電池特有の効果であり、
水素ガスが徐々に放電したことに起因する負極活性化の
効果と推定される。
On the other hand, as a comparative example, the conventional constant current discharge! (Curve C in Figures 2 and 3) was also investigated for the end-of-discharge voltage, and it was found that the end-of-discharge voltage was 1.
In the comparative batteries set at 0v~-〇 and 3~', the operating voltages at 2400mA discharge after activation were all 1.10~'
It showed a low value. This is because in conventional constant current pattern processing, it is estimated that a portion of the hydrogen stored in the hydrogen storage alloy becomes difficult to participate in the discharge due to the oxide film formed on the alloy surface. be done. Since the t current is forced to flow through the gold particles in such a state, the reduction reaction of hydrogen cannot catch up, resulting in poor discharge and remaining in the alloy particles, which delays the activation of the negative electrode. Therefore, in the present invention, even hydrogen gas in areas where a discharge reaction is difficult to occur at a battery voltage of 1.0 V to -0, 3 V can be discharged by controlling the discharge flow, thereby improving the activity of the negative electrode. However, it is thought that the high rate discharge characteristics of the battery were improved. still,
For nickel-cadmium batteries, the circuit shown in Figure 1 was used during activation after battery assembly, but in the case of a cadmium electrode, which is the negative electrode, the surface is blocked by the discharge reaction and the reaction ends. , the potential of the battery decreased rapidly without gradually decreasing. Furthermore, the high rate discharge characteristics of nickel-cadmium batteries using this activation method were not improved. Therefore, the manufacturing method of the present invention, that is, the battery activation method: This is an effect unique to metal-hydrogen storage batteries.
This is presumed to be an effect of negative electrode activation caused by gradual discharge of hydrogen gas.

本発明の実施例では、ダイオードを用いた制御回路及び
ファンクションジェネレータを用いた回路を例示したが
、本発明はこれに限るものではなく、簡易方法として固
定抵抗を電池に接続して、徐々に放電電流を減少させな
がら活性化を進めても、全く同様の効果が得られる。
In the embodiments of the present invention, a control circuit using a diode and a circuit using a function generator are illustrated, but the present invention is not limited to this.As a simple method, a fixed resistor is connected to the battery to gradually discharge the battery. Exactly the same effect can be obtained by proceeding with activation while decreasing the current.

また1本実施例においては、負極において希土類系の水
素吸蔵合金であるLaN1tCosを用いたが、これ以
外のMmN i 、(o r tMn o a等の希土
類系水素吸蔵合金、Ti−Ni系、Ti−Mn系、Ti
−Fe系、Mg−Ni系、T i −Z r系、Zr−
へ1n系水素U&蔵合會等を用いても、同様の効果が期
待できることは言うまでもない。
In addition, in this example, LaN1tCos, which is a rare earth hydrogen storage alloy, was used in the negative electrode, but other rare earth hydrogen storage alloys such as MmN i , (or tMno a, Ti-Ni system, Ti -Mn-based, Ti
-Fe system, Mg-Ni system, Ti-Zr system, Zr-
It goes without saying that the same effect can be expected even if a 1n-based hydrogen U & storage group or the like is used.

(ト)発明の効果 本発明の製造方法によれば、高率放電特性及び過充電特
性に優れた金属−水素アルカリ蓄電池が提供でき、その
工業的価値は極めて大きい。
(g) Effects of the Invention According to the manufacturing method of the present invention, a metal-hydrogen alkaline storage battery with excellent high rate discharge characteristics and overcharge characteristics can be provided, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いた放電回路図、第2図は放電時間
と電池電圧の関係を示す図、第3図は放電時間と電池の
放電電流との関係を示す図、第4図は本発明に用いた他
の放電回路図、第5図は電池の高率放電特性図、第6図
は充電時間と電池内圧の関係を示す図、第7図は放電時
間と電池電圧の関係を示す図、第8図は放電終止電圧と
電池の放電作動電圧との関係を示す図である。 A、B・・・本発明電池、 C・・・比較電池。
Figure 1 is a diagram of the discharge circuit used in the present invention, Figure 2 is a diagram showing the relationship between discharge time and battery voltage, Figure 3 is a diagram showing the relationship between discharge time and battery discharge current, and Figure 4 is a diagram showing the relationship between discharge time and battery discharge current. Other discharge circuit diagrams used in the present invention: Figure 5 is a high rate discharge characteristic diagram of the battery, Figure 6 is a diagram showing the relationship between charging time and battery internal pressure, and Figure 7 is a diagram showing the relationship between discharge time and battery voltage. The diagram shown in FIG. 8 is a diagram showing the relationship between the discharge end voltage and the discharge operating voltage of the battery. A, B...Battery of the present invention, C...Comparison battery.

Claims (2)

【特許請求の範囲】[Claims] (1)正極と、負極としての水素吸蔵合金電極と、アル
カリ電解液とを用いて電池を組立てる組立工程と、 前記電池の放電電流を連続的に減少させるようにほぼ完
全に放電させる放電処理工程とを有する金属−水素アル
カリ蓄電池の製造方法。
(1) An assembly process for assembling a battery using a positive electrode, a hydrogen storage alloy electrode as a negative electrode, and an alkaline electrolyte, and a discharge treatment process for substantially completely discharging the battery so as to continuously reduce its discharge current. A method for manufacturing a metal-hydrogen alkaline storage battery comprising:
(2)前記放電処理工程において、前記電池の放電終止
電圧を−0.3V〜1.0Vとすることを特徴とする請
求項1記載の金属−水素アルカリ蓄電池の製造方法。
(2) The method for manufacturing a metal-hydrogen alkaline storage battery according to claim 1, wherein in the discharge treatment step, the end-of-discharge voltage of the battery is set to -0.3V to 1.0V.
JP2109104A 1990-04-25 1990-04-25 Manufacturing method of metal-hydrogen alkaline storage battery Expired - Lifetime JP2983577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2109104A JP2983577B2 (en) 1990-04-25 1990-04-25 Manufacturing method of metal-hydrogen alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2109104A JP2983577B2 (en) 1990-04-25 1990-04-25 Manufacturing method of metal-hydrogen alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH046758A true JPH046758A (en) 1992-01-10
JP2983577B2 JP2983577B2 (en) 1999-11-29

Family

ID=14501679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2109104A Expired - Lifetime JP2983577B2 (en) 1990-04-25 1990-04-25 Manufacturing method of metal-hydrogen alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2983577B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135339A (en) * 2010-02-05 2010-06-17 Gs Yuasa Corporation Nickel-hydrogen storage battery and method of manufacturing the same
CN117117358A (en) * 2023-02-25 2023-11-24 荣耀终端有限公司 Battery processing method and battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135339A (en) * 2010-02-05 2010-06-17 Gs Yuasa Corporation Nickel-hydrogen storage battery and method of manufacturing the same
CN117117358A (en) * 2023-02-25 2023-11-24 荣耀终端有限公司 Battery processing method and battery

Also Published As

Publication number Publication date
JP2983577B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
JPH01309265A (en) Alkaline secondary battery and its manufacture
JP2002313412A (en) Method of activating secondary battery
JPH046758A (en) Manufacture of metal-hydrogen alkaline storage battery
JP2594149B2 (en) Manufacturing method of metal-hydrogen alkaline storage battery
JP3478030B2 (en) Alkaline storage battery
JP2944152B2 (en) Method for manufacturing nickel-hydrogen storage battery
JP2925695B2 (en) Method for manufacturing metal hydride storage battery
JP2008259260A (en) Charging method of power supply
JP2925671B2 (en) Nickel-hydrogen storage battery charging method
JP3182193B2 (en) Sealed metal-hydrogen alkaline storage battery
JP2823301B2 (en) Hydrogen storage alloy electrode
JP2975701B2 (en) Method for manufacturing metal hydride storage battery
JP2975755B2 (en) Activation method of metal hydride storage battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3211660B2 (en) Manufacturing method of cylindrical battery
JP2994731B2 (en) Method for manufacturing metal hydride storage battery
JP3144879B2 (en) Metal-hydrogen alkaline storage battery
JP2755682B2 (en) Metal-hydrogen alkaline storage battery
JP2975640B2 (en) Sealed alkaline storage battery with hydrogen storage alloy negative electrode
JP2854109B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH0521092A (en) Charging of metal hydride storage battery
JP2001076753A (en) Nickel-hydrogenized metal sealed storage battery
JP2975635B2 (en) Method for producing hydrogen storage alloy electrode for alkaline storage battery
JPH05182655A (en) Alkaline battery
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11