JPH046750A - Manufacture of lead battery - Google Patents

Manufacture of lead battery

Info

Publication number
JPH046750A
JPH046750A JP2108089A JP10808990A JPH046750A JP H046750 A JPH046750 A JP H046750A JP 2108089 A JP2108089 A JP 2108089A JP 10808990 A JP10808990 A JP 10808990A JP H046750 A JPH046750 A JP H046750A
Authority
JP
Japan
Prior art keywords
pbo2
chemically synthesized
pbo
crystal
thermal decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2108089A
Other languages
Japanese (ja)
Inventor
Imakichi Hirasawa
今吉 平沢
Manabu Saiki
齊木 學
Takeshi Kawamura
剛 川村
Koki Tamura
弘毅 田村
Toshiyuki Matsumura
敏之 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2108089A priority Critical patent/JPH046750A/en
Publication of JPH046750A publication Critical patent/JPH046750A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the discharge characteristic of a positive electrode by heat-treating chemically synthesized PbO2 at 290-500 deg.C. CONSTITUTION:When chemically synthesized PbO2 is heated for a preset period at 290-500 deg.C, thermal decomposition occurs from the surface to some depth. The generated material depends on the treating temperature, and the thermal decomposition quantity depends on the treatment time. The surface layer of PbO2 crystal is converted into an oxide with a grade lower than that of PbO2. When it is brought into contact with dilute sulfuric acid of an electrolyte, lead sulfate is generated, and the crystal surface of the chemically synthesized PbO2 is electrochemically activated during the process to return it to PbO2 via electrolytic oxidation. The discharge characteristic of a positive electrode using it is sharply improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鉛電池の新規な製造方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a novel method for manufacturing lead-acid batteries.

従来の技術 従来から、ペースト式鉛電池極板の製造には酸化鉛を主
成分とするいわゆる鉛粉が原料として用いられ、これを
希硫酸で混練してペースト状物とし、格子体に充填した
後熟成、化成工程を経て製造されている。この方法では
、熟成及び化成工程での時間が長くかかること、及び化
成工程に於いて発生する酸霧による環境悪化か大きな問
題である。
Conventional technology Traditionally, so-called lead powder containing lead oxide as the main component has been used as a raw material in the production of paste-type lead battery electrode plates, which was kneaded with dilute sulfuric acid to form a paste, which was then filled into a lattice. It is manufactured through post-ripening and chemical conversion processes. The major problems with this method are that the ripening and chemical conversion steps take a long time, and that the acid mist generated during the chemical conversion step degrades the environment.

このような問題点を解決するために、化学的に合成され
たPbO,を直接極板基体に充填する方法が、たとえば
イー、ジエー、ティラーら(ジャーナル オブ エレク
トロケミカル ソサイエティ。
In order to solve these problems, a method of directly filling the electrode plate substrate with chemically synthesized PbO has been proposed, for example, by Yi, Jie, Tiller et al. (Journal of Electrochemical Society).

131巻、483及び487頁(1984))されてい
る。
131, pp. 483 and 487 (1984)).

発明が解決しようとする課題 しかし、化学的に合成されたPbO,は電気化学的活性
に乏しいため、この方法でつくられた陽極の容量は、従
来の方法でつくられた陽極に比較して容量が低いという
問題がある。
Problems to be Solved by the Invention However, since chemically synthesized PbO has poor electrochemical activity, the capacity of an anode made by this method is lower than that of an anode made by a conventional method. There is a problem of low

本発明はPbO2を主成分とする粉末を基体と一体に成
形して得られる陽極板に於いて上記の問題点を解決し、
化学的に合成されたpbo、の活物質問の電気化学的活
性を向上させ、容量の高い陽極板の製造方法を提供する
ものである。
The present invention solves the above problems in an anode plate obtained by integrally molding a powder containing PbO2 as a main component, and
The present invention provides a method for producing a high-capacity anode plate by improving the electrochemical activity of a chemically synthesized PBO active substance.

課題を解決するための手段 上記課題を解決するために、本発明では、化学的に合成
されたに’bo、を290から500℃、好ましくは2
90から370℃の範囲で熱処理することとした。
Means for Solving the Problems In order to solve the above problems, in the present invention, chemically synthesized Ni'bo is heated at 290 to 500°C, preferably 2
The heat treatment was carried out at a temperature in the range of 90 to 370°C.

作用 化学的に合成されたPbO,か電気化学的活性に乏しい
理由は、デイ、パブロブら〔ジャーナルオブ パワーソ
ース、19巻、15頁(1987)](D、Pavlo
vら[J、Power  5ources。
The reason why chemically synthesized PbO has poor electrochemical activity is explained by Day, Pavlo et al. [Journal of Power Source, Vol. 19, p. 15 (1987)].
v et al. [J, Power 5 sources.

Vol、19 p45 (1987)) ’)によれば
、電解酸化によって作製したPbO,と異なり、pbo
Vol. 19 p45 (1987))'), unlike PbO, which was produced by electrolytic oxidation, pbo
.

の結晶の表面に化学的に結合したOHがほとんど存在し
ないためである。このOH−の働きは、pbo、の結晶
の溶液に対するぬれ性を良くし、結晶表面に存在するミ
クロポア西部への溶液の侵入を容易にすることであると
言われている。また、水の解離によって生成するOH−
と対になるH゛は、pbo、の放電反応に直接関与し、
放電容量の増大に寄与していると言われている。
This is because there is almost no OH chemically bonded to the surface of the crystal. It is said that the function of this OH- is to improve the wettability of the pbo crystal to the solution and to facilitate the penetration of the solution into the western part of the micropores present on the crystal surface. In addition, OH- generated by dissociation of water
H, which is paired with pbo, is directly involved in the discharge reaction of pbo,
It is said that this contributes to an increase in discharge capacity.

本発明によって、化学的に合成されたPb(J、を29
0から500しの範囲で所要時間熱処理すると、i’b
o、の結晶の表面からある深さまで熱分解を起こす。熱
分解によって生成する物質の種類は処理温度に依るが、
290から370℃では主としてf’b、0..370
から500しでは主としてPb、Q、である。また、熱
分解の量は処理時間による。このようにPbO,の結晶
の表面層をpbo、より低級酸化物とすることによって
、これが電解液である希硫酸と接触したときに硫酸鉛を
生成することになる。このpbo、の結晶の表面に生成
した硫酸鉛を電解酸化によってPbO,に戻す過程で、
化学的に合成されたi’bo、の結晶の表面が電気化学
的に活性なものとなる。
According to the present invention, chemically synthesized Pb (J, 29
When heat treated for the required time in the range of 0 to 500, i'b
o, thermal decomposition occurs from the surface of the crystal to a certain depth. The types of substances produced by thermal decomposition depend on the processing temperature, but
From 290 to 370°C, mainly f'b, 0. .. 370
From 500 to 500, the main materials are Pb and Q. The amount of thermal decomposition also depends on the treatment time. By forming the surface layer of the PbO crystal to be PBO, a lower oxide, lead sulfate is produced when it comes into contact with dilute sulfuric acid, which is an electrolytic solution. In the process of converting the lead sulfate generated on the surface of this pbo crystal into PbO through electrolytic oxidation,
The surface of the chemically synthesized i'bo crystal becomes electrochemically active.

実施例 以下に、本発明の実施例を述べる。Example Examples of the present invention will be described below.

pb、u、  を95℃、3Mの硝酸水溶液と反応させ
ることによって、pbo、の粉末を調製した。このpb
o、の粉末に320℃、15分間の熱処理を施した後、
これに水を加えて練ることによりペースト状物を調製し
た。このペースト状物を縦5fi、横15厘、厚さ1.
5糎の鉛−アンチモン合金から成るまず目に充填し、乾
燥後、比重1.06(20℃)の希硫酸中で電解酸化し
た。電解電流はlQmA。
A powder of pbo, was prepared by reacting pb, u, with a 3M aqueous nitric acid solution at 95°C. This pb
After heat-treating the powder at 320°C for 15 minutes,
A paste-like material was prepared by adding water to this and kneading it. This paste-like material has a length of 5 fi, a width of 15 mil, and a thickness of 1.
First, the holes were filled with a lead-antimony alloy of 500 g, and after drying, they were electrolytically oxidized in dilute sulfuric acid with a specific gravity of 1.06 (20 DEG C.). The electrolytic current is lQmA.

電解時間は60分である。このようにして作製した陽極
の両側に縦50■、横50閣の鉛板を対極として配置し
、比重1.28(20℃)の希硫酸300m1中で放電
試験を行なった。試験条件は以下のごとくである。
Electrolysis time is 60 minutes. A lead plate measuring 50 mm in length and 50 mm in width was placed on both sides of the anode thus prepared as a counter electrode, and a discharge test was conducted in 300 ml of dilute sulfuric acid having a specific gravity of 1.28 (20° C.). The test conditions are as follows.

電流:10mA(放電終止電圧 1.70Vv5Pb/
Pb5O,) 温度:25℃ 図面に試験結果を示す。図中には、比較のために従来品
T戸わち熱処理を施していないpbo、の粉末を用いた
ときの結果を示したが、本発明によって放電容量が明ら
かに増大していることかわかる。この理由は、これまで
述べてきたように化学的に合成されたpbo、に熱処理
を施すことにより、以下の陽極の作製過程でPbo、の
結晶の表面が電気化学的に活性化さnるためである。
Current: 10mA (discharge end voltage 1.70Vv5Pb/
Pb5O,) Temperature: 25°C The test results are shown in the drawing. For comparison, the figure shows the results obtained when using conventional TBO powder, which is not heat-treated, and it can be seen that the discharge capacity is clearly increased by the present invention. . The reason for this is that, as mentioned above, by heat-treating chemically synthesized PBO, the surface of the PBO crystal is electrochemically activated during the following anode manufacturing process. It is.

充明の効果 以上述べたように、本発明によって化学的に合成された
P b (Jlの結晶の表面か電気化学的に活性になる
ため、これを用いた陽極の放電特性か大幅に改善される
Effect of Charging As mentioned above, the surface of the crystal of chemically synthesized P b (Jl) becomes electrochemically active according to the present invention, so that the discharge characteristics of the anode using it are greatly improved. Ru.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明による陽極の放電特性と従来品のそれと
の比較を示−r=である。 特許呂願人 新神戸電機株式会社 代表取締役 斉 木   草
The drawings show a comparison between the discharge characteristics of the anode according to the present invention and those of a conventional product. Patent Rogannin Shin-Kobe Electric Co., Ltd. CEO Saiki Kusa

Claims (1)

【特許請求の範囲】 PbO_2を主成分とする粉末を基体と一体に成形して
得られる陽極と、金属鉛を主成分とする粉末を基体に成
形して得られる陰極とで構成される鉛電池に於いて、 PbO_2を主成分とする粉末が290から500℃の
範囲で熱処理を施したものである事を特徴とする鉛電池
の製造方法。
[Claims] A lead battery consisting of an anode obtained by molding a powder whose main component is PbO_2 integrally with a base, and a cathode obtained by molding a powder whose main component is metallic lead into a base. A method for producing a lead battery, characterized in that the powder containing PbO_2 as a main component is heat-treated at a temperature in the range of 290 to 500°C.
JP2108089A 1990-04-24 1990-04-24 Manufacture of lead battery Pending JPH046750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2108089A JPH046750A (en) 1990-04-24 1990-04-24 Manufacture of lead battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2108089A JPH046750A (en) 1990-04-24 1990-04-24 Manufacture of lead battery

Publications (1)

Publication Number Publication Date
JPH046750A true JPH046750A (en) 1992-01-10

Family

ID=14475595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2108089A Pending JPH046750A (en) 1990-04-24 1990-04-24 Manufacture of lead battery

Country Status (1)

Country Link
JP (1) JPH046750A (en)

Similar Documents

Publication Publication Date Title
EP0228647B1 (en) Method of improving the formation efficiency of positive plates of a lead-acid battery
JPH046750A (en) Manufacture of lead battery
JPH09289020A (en) Positive plate for lead-acid battery and its manufacture
JPH0569263B2 (en)
JPH01302661A (en) Lead acid battery and its manufacture
JP2949767B2 (en) Lead battery manufacturing method
JPH11273666A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JP3065630B2 (en) Anode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JPS6136346B2 (en)
JP2002198039A (en) Negative electrode active material in paste form and its manufacturing method
JPS6136347B2 (en)
JP3648766B2 (en) Manufacturing method of current collector for lead acid battery
JPH04345756A (en) Manufacture of lead storage battery electrode
JPH0817436A (en) Manufacture of collector for lead acid battery
JPH11120998A (en) Manufacture of lead-acid battery
JPH04355055A (en) Manufacture of position plate for lead-acid battery
JPH07320728A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JPH0461749A (en) Manufacture of positive electrode for lead-acid battery
JPH04264360A (en) Positive plate for lead acid battery
JPH046751A (en) Manufacture of lead battery
JPS6229064A (en) Manufacture of positive electrode plate for lead storage battery
JPH11273667A (en) Manufacture of plate for lead-acid battery
JPH11111275A (en) Manufacture of plate for lead-acid battery
JPH07288128A (en) Activation method for sealed lead-acid battery
JPH06310130A (en) Manufacture of sealed lead-acid battery