JPH0467301B2 - - Google Patents

Info

Publication number
JPH0467301B2
JPH0467301B2 JP57162038A JP16203882A JPH0467301B2 JP H0467301 B2 JPH0467301 B2 JP H0467301B2 JP 57162038 A JP57162038 A JP 57162038A JP 16203882 A JP16203882 A JP 16203882A JP H0467301 B2 JPH0467301 B2 JP H0467301B2
Authority
JP
Japan
Prior art keywords
sealing lid
thickness
battery
battery case
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57162038A
Other languages
Japanese (ja)
Other versions
JPS5951458A (en
Inventor
Ryuzo Fukao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP57162038A priority Critical patent/JPS5951458A/en
Publication of JPS5951458A publication Critical patent/JPS5951458A/en
Publication of JPH0467301B2 publication Critical patent/JPH0467301B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はハーメチツクシールを採用する密閉形
電池の改良に係り、電池ケースと封口蓋との溶接
不良の発生を防止することを目的とする。 たとえば塩化チオニルーリチウム電池などのよ
うに高度の密閉性が要求される電池では密閉手段
としてハーメチツクシールが採用されている。こ
のハーメチツクシールの場合、電池ケースと封口
蓋との接合は溶接で行なわれ、封口蓋のボデイー
部は電池ケースとの溶接性や塩化チオニルの強い
腐食作用に対する耐性を考慮して、電池ケースと
同様にSUS304、SUS304Lなどのオーステナイト
系ステンレス鋼で形成されている。 ところが、封口蓋のボデイー部の場合は、ガラ
スまたはセラミツクスで形成される絶縁部の強度
を保つ必要があることから、一定の板厚を必要と
し、従来使用のSUS304、SUS304Lなどでは、第
3図に示すように、封口蓋5のボデイー部8の板
厚が電池ケース4の板厚より厚くなり(約2倍程
度である)、そのため溶接時に高い入熱が必要と
なつて、電池ケース内に充填されている活物質、
セパレータなどの内容物や、ガラスまたはセラミ
ツクスで形成される絶縁部に悪影響を及ぼしやす
く、また不均一加熱となるため溶接そのものも良
好な強度が得られないという問題がある。 本発明はそのような事情に鑑みてなされたもの
であり、封口蓋のボデイー部にSUS329J1、
SUS329J2などの2相ステンレス鋼を用いること
によつて、封口蓋のボデイー部の厚さを電池ケー
スの厚さとほぼ同じ厚さまでに薄肉化できるよう
にし、前記の諸問題を解決したものである。 本発明においてボデイー部の形成材料として用
いるSUS329J1やSUS329J2などの2相ステンレ
ス鋼は、従来使用のSUS304などの抗張力が焼鈍
状態で45〜55Kg/mm2であるのに対し、70〜90Kg/
mm2という高抗張力を有するので、たとえ薄肉化し
てもガラスまたはセラミツクスで形成される絶縁
部を充分に保持することができる。 ボデイー部の薄肉化は、絶縁部の材質や大きさ
などによつても多少異なるが、電池ケースの厚さ
に対して1:0.9〜1.8程度まで薄くすることが可
能である。 そして上記のSUS329J1やSUS329J2などの2
相ステンレス鋼は電池ケースに一般に使用されて
いるSUS304やSUS304Lとの溶接性もよく、また
耐腐食性もすぐれている。 つぎに本発明の実施例を図面とともに説明す
る。第1図は本発明の密閉形電池の一実施例を示
す半裁断面図であり、図面において、1はリチウ
ムよりなる負極で、2はガラス繊維付織布よりな
るセパレータであり、3は炭素多孔質成形体より
なる正極である。4はステンレス鋼製の電池ケー
スであり、この電池ケース4はその内周面に上記
リチウム負極1が圧着されていて負極端子を兼ね
ている。5は封口蓋で、この封口蓋5は中央部に
正極側の端子部6と、該端子部6の外周側に位置
するガラスまたはセラミツクよりなる絶縁部7
と、該絶縁部7の外周側に位置する環状で2相ス
テンレス鋼製のボデイー部8を有してなり、この
実施例ではボデイー部8はその外周部および内周
部がともに上方に隆起した形状をしている。そし
てボデイー部8の外周部は電池ケース4の開口端
部と溶接され、内周部には上記絶縁部7が溶着さ
れている。端子部6は金属製パイプ9と金属細棒
10とで形成され、金属細棒10の下部は正極3
内に達していて正極集電体としての役目をはた
し、上部はパイプ9の上端部と溶接されて正極端
子11を構成している。そして、この実施例で
は、パイプ9は耐熱ステンレス鋼製のものが用い
られ、金属細棒10はステンレス鋼製のものが用
いられている。なお、端子部6の形成は、端子部
構成部材としてのパイプ9をあらかじめ絶縁部7
の内周側に溶着しておき、封口蓋6を電池ケース
4に溶接し、電解液を該パイプ9から注入したの
ち、金属細棒10をパイプ9に挿入し、パイプ9
と金属細棒10を溶接することによつて行なわれ
ている。12および13はセパレーター2と同質
材料で形成された上蓋および下蓋であり、電解液
としては塩化チオニルに四塩化アルミニウムリチ
ウムを溶解させたものが使用され、上記塩化チオ
ニルは同時に正極活物質としての作用をはたすも
のである。 このような本発明の電池においては、ボデイー
部8を構成する2相ステンレス鋼が強度が大き
く、たとえボデイー部8を薄肉化しても絶縁部7
を保持しうることから、たとえば第2図に詳示す
るように、ボデイー部8の厚さを電池ケース4の
厚さとほぼ同じ厚さにすることができる。従つ
て、封口蓋5と電池ケース4との溶接に際し、従
来のように高い入熱を必要とせず、その結果、従
来電池に見られたような絶縁部の破損や溶接不良
の発生などを防止することができる。なお、第2
図は封口蓋5と電池ケース4との溶接開始前の状
態を示し、この第2図と第3図では繁雑化を避け
るため後方の輪郭線は省略されている。 つぎの第1表は本発明の電池AおよびBと従来
電池CおよびDの封口蓋のボデイー部の外周部と
電池ケースの開口端部との溶接時の不良発生を調
べた結果を示すものである。溶接不良には溶接が
不完全なものと、溶接はできたが絶縁部の破損が
生じたもののとの両者を含んでいる。電池は直径
14.5mmの塩化チオニルーリチウム電池で絶縁部は
ガラスで形成されており、溶接はプラズマアーク
により行なわれ、溶接条件は本発明の電池Aおよ
びBの場合と従来電池Cの場合は最適条件が選ば
れ、従来電池Dの場合は本発明の電池と同条件が
選ばれている。上記電池A〜Dの電池ケースはい
ずれもSUS304製で厚さは0.3mmであり、封口蓋の
ボデイー部は本発明の電池Aの場合はSUS329J1
製で厚さは0.3mmで、本発明の電池Bの場合は
SUS329J2製で厚さは0.3mmであり、従来電池Cお
よびDの場合はいずれもSUS304製で厚さは0.6mm
である。これら封口蓋のボデイー部の材質および
厚さ、電池ケースの材質および厚さならびに溶接
条件を第2表にまとめて示す。
The present invention relates to an improvement in a sealed battery that employs a hermetic seal, and an object of the present invention is to prevent the occurrence of poor welding between the battery case and the sealing lid. For example, in batteries that require a high degree of sealing, such as lithium thionyl chloride batteries, hermetic seals are used as a sealing means. In the case of this hermetic seal, the battery case and the sealing lid are joined by welding, and the body of the sealing lid is attached to the battery case in consideration of weldability with the battery case and resistance to the strong corrosive action of thionyl chloride. Similarly, it is made of austenitic stainless steel such as SUS304 and SUS304L. However, in the case of the body part of the sealing lid, it is necessary to maintain the strength of the insulating part made of glass or ceramics, so a certain plate thickness is required, and the conventionally used SUS304, SUS304L, etc. As shown in the figure, the thickness of the body part 8 of the sealing lid 5 is thicker than the thickness of the battery case 4 (approximately twice as much), and therefore a high heat input is required during welding, causing heat to build up inside the battery case. active material filled,
There is a problem in that it tends to have an adverse effect on the contents of the separator and other insulating parts made of glass or ceramics, and that good strength cannot be obtained during welding itself due to uneven heating. The present invention was made in view of such circumstances, and the body part of the sealing lid is made of SUS329J1,
By using duplex stainless steel such as SUS329J2, the thickness of the body of the sealing lid can be reduced to approximately the same thickness as the battery case, thereby solving the aforementioned problems. In the present invention, the duplex stainless steels such as SUS329J1 and SUS329J2 used as the material for forming the body part have a tensile strength of 70 to 90 Kg/mm 2 in the annealed state, whereas the tensile strength of conventionally used SUS304 is 45 to 55 Kg/mm 2 in the annealed state.
Since it has a high tensile strength of mm 2 , it can sufficiently hold an insulating part made of glass or ceramics even if the thickness is reduced. Although the thickness of the body part varies somewhat depending on the material and size of the insulating part, it is possible to make the body part thinner by about 1:0.9 to 1.8 with respect to the thickness of the battery case. And 2 such as SUS329J1 and SUS329J2 mentioned above.
Compatible stainless steel has good weldability with SUS304 and SUS304L, which are commonly used for battery cases, and also has excellent corrosion resistance. Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a half-cut sectional view showing an embodiment of the sealed battery of the present invention. In the drawing, 1 is a negative electrode made of lithium, 2 is a separator made of a woven fabric with glass fibers, and 3 is a carbon porous The positive electrode is made of a quality molded body. Reference numeral 4 denotes a battery case made of stainless steel, and the lithium negative electrode 1 is crimped onto the inner peripheral surface of the battery case 4, which also serves as a negative electrode terminal. Reference numeral 5 denotes a sealing lid, and this sealing lid 5 has a positive electrode side terminal portion 6 in the center, and an insulating portion 7 made of glass or ceramic located on the outer peripheral side of the terminal portion 6.
and an annular body part 8 made of duplex stainless steel located on the outer peripheral side of the insulating part 7, and in this embodiment, the body part 8 has both the outer peripheral part and the inner peripheral part raised upward. It has a shape. The outer circumferential portion of the body portion 8 is welded to the open end of the battery case 4, and the insulating portion 7 is welded to the inner circumferential portion. The terminal part 6 is formed of a metal pipe 9 and a thin metal rod 10, and the lower part of the thin metal rod 10 is connected to the positive electrode 3.
It reaches inside and serves as a positive electrode current collector, and its upper part is welded to the upper end of the pipe 9 to form a positive electrode terminal 11. In this embodiment, the pipe 9 is made of heat-resistant stainless steel, and the thin metal rod 10 is made of stainless steel. Note that in forming the terminal portion 6, the pipe 9 as a component of the terminal portion is preliminarily connected to the insulating portion 7.
After welding the sealing lid 6 to the battery case 4 and injecting the electrolyte through the pipe 9, insert the thin metal rod 10 into the pipe 9, and
This is done by welding the thin metal rod 10 to the metal rod 10. 12 and 13 are upper and lower lids made of the same material as separator 2, and the electrolyte used is lithium aluminum tetrachloride dissolved in thionyl chloride, and the thionyl chloride is also used as a positive electrode active material. It is something that works. In such a battery of the present invention, the duplex stainless steel that constitutes the body portion 8 has high strength, and even if the body portion 8 is made thinner, the insulating portion 7
For example, as shown in detail in FIG. 2, the thickness of the body portion 8 can be made approximately the same as the thickness of the battery case 4. Therefore, when welding the sealing lid 5 and the battery case 4, there is no need for high heat input as in the conventional case, and as a result, damage to the insulation part and occurrence of welding defects, which are seen in conventional batteries, are prevented. can do. In addition, the second
The figure shows the state before the start of welding between the sealing lid 5 and the battery case 4, and the rear outline is omitted in FIGS. 2 and 3 to avoid complication. Table 1 below shows the results of an investigation into the occurrence of defects during welding between the outer periphery of the sealing lid body and the open end of the battery case in Batteries A and B of the present invention and conventional batteries C and D. be. Defective welding includes both incomplete welding and successful welding, but with damage to the insulation. battery diameter
This is a 14.5 mm lithium thionyl chloride battery, and the insulating part is made of glass. Welding is performed by plasma arc, and optimal welding conditions are selected for batteries A and B of the present invention and conventional battery C. In the case of conventional battery D, the same conditions as those for the battery of the present invention were selected. The battery cases of the batteries A to D above are all made of SUS304 and have a thickness of 0.3 mm, and the body part of the sealing lid is SUS329J1 in the case of battery A of the present invention.
In the case of battery B of the present invention, the thickness is 0.3 mm.
It is made of SUS329J2 and has a thickness of 0.3mm, whereas conventional batteries C and D are both made of SUS304 and have a thickness of 0.6mm.
It is. Table 2 summarizes the material and thickness of the body portion of these sealing lids, the material and thickness of the battery case, and the welding conditions.

【表】【table】

【表】 第1表に示す結果から明らかなように、本発明
によれば溶接不良の発生を効果的に防止すること
ができる。
[Table] As is clear from the results shown in Table 1, according to the present invention, it is possible to effectively prevent the occurrence of welding defects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の密閉形電池の一実施例を示す
半截断面図で、第2図は第1図に示す電池の封口
蓋と電池ケースとの溶接前における要部拡大断面
図であり、第3図は従来電池の要部拡大断面図で
ある。 4……電池ケース、5……封口蓋、6……正極
側の端子部、7……絶縁部、8……ボデイー部。
FIG. 1 is a half-cut sectional view showing an embodiment of the sealed battery of the present invention, and FIG. 2 is an enlarged sectional view of the main parts of the battery shown in FIG. 1 before welding the sealing lid and the battery case. FIG. 3 is an enlarged sectional view of the main parts of a conventional battery. 4...Battery case, 5...Sealing lid, 6...Positive side terminal section, 7...Insulating section, 8...Body section.

Claims (1)

【特許請求の範囲】 1 一方の電極端子部材と、該電極端子部材の外
周側に位置するガラスまたはセラミツクスよりな
る絶縁部と、該絶縁部の外周側に位置する環状で
金属製のボデイー部とを有する封口蓋のボデイー
部の外周部を電池ケースの開口端部と溶接する密
閉形電池において、封口蓋のボデイー部を2相ス
テンレス鋼で形成したことを特徴とする密閉形電
池。 2 2相ステンレス鋼がSUS329J1または
SUS329J2である特許請求の範囲第1項記載の密
閉形電池。 3 封口蓋のボデイー部の厚さと電池ケースの開
口端部の厚さがほぼ同じである特許請求の範囲第
1項または第2項記載の密閉形電池。
[Claims] 1. One electrode terminal member, an insulating part made of glass or ceramics located on the outer periphery of the electrode terminal member, and an annular metal body part located on the outer periphery of the insulating part. 1. A sealed battery in which the outer periphery of a body of a sealing lid is welded to an open end of a battery case, characterized in that the body of the sealing lid is made of two-phase stainless steel. 2 Duplex stainless steel is SUS329J1 or
The sealed battery according to claim 1, which is SUS329J2. 3. The sealed battery according to claim 1 or 2, wherein the thickness of the body portion of the sealing lid and the thickness of the open end of the battery case are approximately the same.
JP57162038A 1982-09-16 1982-09-16 Enclosed battery Granted JPS5951458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57162038A JPS5951458A (en) 1982-09-16 1982-09-16 Enclosed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57162038A JPS5951458A (en) 1982-09-16 1982-09-16 Enclosed battery

Publications (2)

Publication Number Publication Date
JPS5951458A JPS5951458A (en) 1984-03-24
JPH0467301B2 true JPH0467301B2 (en) 1992-10-27

Family

ID=15746896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57162038A Granted JPS5951458A (en) 1982-09-16 1982-09-16 Enclosed battery

Country Status (1)

Country Link
JP (1) JPS5951458A (en)

Also Published As

Publication number Publication date
JPS5951458A (en) 1984-03-24

Similar Documents

Publication Publication Date Title
JPH11111246A (en) Sealed battery and manufacture thereof
JPH1186809A (en) Jointing method of container
JP3908838B2 (en) Aluminum container and manufacturing method thereof
JPH09320551A (en) Sealed battery
JPH10144268A (en) Sealing structure for sealed battery
JPH0467301B2 (en)
US4124740A (en) Sodium-sulfur battery
JPH0524622B2 (en)
JPS60165040A (en) Sealed type battery
JPS61285655A (en) Manufacture of thin enclosed cell
JPS595568A (en) Manufacturing method for sealed type battery
JPS6226767A (en) Sodium-sulfur battery
JPH08250079A (en) Welding method of sealed vessel for rectangular battery
JPS595569A (en) Manufacturing method for sealed type battery
JPS63207059A (en) Alkaline storage battery
JPH0438463Y2 (en)
JPH0316213Y2 (en)
JPS595567A (en) Manufacturing method for sealed type battery
JPS60117543A (en) Sealed battery
JPS61232555A (en) Manufacture of sealed type battery
JPS5951459A (en) Production process for enclosed battery
JPS61176053A (en) Enclosed cell
JPS63181256A (en) Nonaqueous solvent cell
JPS5910694Y2 (en) flat battery
JPH0574484A (en) Manufacture of sealed secondary battery