JP3908838B2 - Aluminum container and manufacturing method thereof - Google Patents

Aluminum container and manufacturing method thereof Download PDF

Info

Publication number
JP3908838B2
JP3908838B2 JP28253097A JP28253097A JP3908838B2 JP 3908838 B2 JP3908838 B2 JP 3908838B2 JP 28253097 A JP28253097 A JP 28253097A JP 28253097 A JP28253097 A JP 28253097A JP 3908838 B2 JP3908838 B2 JP 3908838B2
Authority
JP
Japan
Prior art keywords
lid
width
container
container body
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28253097A
Other languages
Japanese (ja)
Other versions
JPH11104866A (en
Inventor
茂利 成願
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP28253097A priority Critical patent/JP3908838B2/en
Publication of JPH11104866A publication Critical patent/JPH11104866A/en
Application granted granted Critical
Publication of JP3908838B2 publication Critical patent/JP3908838B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/206Laser sealing

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、精密度が高く、密閉度の高い金属製容器、例えば精密電気材料、精密機械材料、医薬品または宇宙あるいは深海などの特殊な環境において使用する材料などの容器、特にリチウムイオン二次電池などの高性能電池のための電池ケース、中でもアルミニウムまたはアルミニウム合金(以下単に両者を「アルミニウム」という。)の箔またはアルミニウム板を用いた電池ケースの製造に関する。容器本体と蓋体の溶融接合に際し、内容物に熱的な影響を与えず、かつ耐衝撃性、耐震性に優れ、高い密封性及び高い寸法精度が要求されるアルミニウム製電池ケースの接合方法に関する
【0002】
【従来の技術】
密閉容器、例えばアルミニウムなどの素材を用いた各種の電池ケースが開発されているが、リチウムイオン二次電池などのためにはアルミニウム製電池ケースが多く使用されている。
この電池ケースの製造には、電極及び電解液などを充填した後、容器本体及び蓋体を溶接(本明細書においては溶融接合または接合と言うこともある。)することによって行われる。この接合する方法として現在実施されている方法の一つにレーザ溶接が挙げられる。
これは比較的薄肉のアルミニウム容器本体に載置あるいは嵌め込みなどの方法により組まれた蓋体が接した部分を直接炭酸ガスレーザあるいはYAGレーザなどにより加熱し溶接する方法である。電池ケースの継ぎ手形状はほとんどの場合、図5に示すような片側に壁を有する突合わせ接合がほとんどであり、炭酸ガスレーザやYAGレーザでは溶接部の深さ(D)と溶融溶接部の幅(W)の比[以下本発明においては(D/W)をアスペクト比という。]が小さいため溶け込みが浅くなり、未溶融部4が比較的大きく残ることが避けられなかった。その結果、溶け込み不良や溶着部にルート割れを起こし易く、密閉度不良を発生することになる。
【0003】
このルート割れの対策として、図5に示すように容器本体1の外周部に切り欠き部5を設ける(特開平8−77983)、あるいは図6に示すような蓋体内面に切り欠き部5を設け、蓋体の完全溶け込みを得ようとしたり、接合部形状に工夫を凝らした提案がなされている。これらの対策はいずれも加工工程を増すことになり、生産性の面からはマイナス要素となり積極的に採用することにはならなかった。
【0004】
【発明が解決しようとする課題】
本発明は、アルミニウムの容器本体と蓋体を高密度熱源溶接により接合し、内容物に悪影響を与えると思われる容器内部を高温度にすることなく、密封性高くかつルート割れを起こさない接合を有する密封容器及びその容器を歩留高く製造する方法の開発を目的とする。
【0005】
【課題を解決するための手段】
本発明は、
[1] アルミニウムまたはアルミニウム合金からなる容器本体及び蓋体を、スラブレーザを用い、アスペクト比(D/W)が1〜5で溶接した密封容器、
[2] 蓋体が、下部に角度(α)5〜30°で、蓋体厚みの30〜70%の高さ(T)の上部が広がったテーパー部を有し、該テーパー部の高さの中央部(T/2のところ)における、幅(紙面に垂直な面)と長さW1を容器本体の開口部の内側のサイズ(幅と長さW2)と同一とすることを特徴とする上記[1]に記載の密封容器、
[3] アルミニウムまたはアルミニウム合金からなる容器本体及び蓋体を溶接するに際し、スラブレーザを用いて、当該容器本体及び当該蓋体を、アスペクト比(D/W)が1〜5の範囲になるように溶接することを特徴とする密封容器の製造方法、
[4] 蓋体に、角度(α)5〜30°で、蓋体厚みの30〜70%の高さ(T)の、上部に広がったテーパー部を設け、該テーパー部の高さの中央部(T/2のところ)における、幅(紙面に垂直な面)と長さW1を容器本体の開口部の内側のサイズ(幅と長さW2)と同一とし、これを容器本体に圧入・嵌合した後にスラブレーザを用いて溶接する請求項3に記載の密封容器の製造方法、
[5] アルミニウムまたはアルミニウム合金からなる容器本体及び蓋体を、スラブレーザを用いて、アスペクト比(D/W)が1〜5の範囲で溶接された高性能電池のための電池ケース、
[6] 蓋体が、下部に角度(α)5〜30°で、蓋体厚みの30〜70%の高さ(T)の、上部に広がったテーパー部を有し、該テーパー部の高さの中央部(T/2のところ)における、幅(紙面に垂直な面)と長さW1を容器本体の開口部の内側のサイズ(幅と長さW2)と同一とすることを特徴とする上記[5]に記載の電池ケース、
[7] 二次電池の製造方法において、電池の組み立て時に容器本体に電極、セパレーター、電解液を充填した後、上記[3]又は[4]の方法を用いて蓋体を溶接することを特徴とする二次電池の製造方法、及び
[8] 上記[5]又は[6]に記載の電池ケースを用いた二次電池、を開発することにより上記の課題を解決した。
【0006】
【発明の実施の形態】
本発明において、アルミニウムとは、アルミニウム及びアルミニウムを主体とした合金を意味する。特にリチウム電池などにおいて汎用されるマンガン系合金(3000番系)が好適に用いられる。
従来の容器本体と蓋体との接合に比して、大きいアスペクト比(D/W)を必要とする本発明においては、溶融接合で使用できる高密度熱源として加熱されるところができるだけ狭く局限されており、かつ供給熱量が大きい大出力化及び高収束化できるものであればその種類は問わないが、現時点においては、YAGスラブ型レーザが有効である。
YAGレーザは、アルミニウムなどの高反射率材に対する加工性の良いこと、光ファイバーによる扱い易さなどの特徴を持ち、近年大出力化も可能となったのにともない一般的な加工である溶接、溶断の分野に適用されるようになってきた。
このようなYAGレーザにおいても更なる大出力化、高収束化、及び小型化の要求がある。これに対しスラブレーザは、原理的に大出力化に適し、更に高収束されたビームの発生に適している方法であり、本発明の接合部のアスペクト比(D/W)を達成するのに好適な手段である。
【0007】
容器本体と蓋体の接合において、レーザビームの収束度が高くなるに従い、容器本体と蓋体の嵌合が精密になることが要求される。このため本発明の密閉容器の製造においては、嵌合が精密であればその製法は問題ないが、例えばレーザビームが高収束である場合には、蓋体の上部は容器本体の内側のサイズより極めてわずか大きくすることなどにより嵌合した時に容器本体と蓋体の間にすき間を生ずることのないような成形加工することが好ましい。
【0008】
またレーザビームの高収束化は、アルミニウム製電池ケースを使用した二次電池、例えばリチウムイオン二次電池などのためのケースの接合に好適である。リチウムイオン二次電池などの高性能電池は、容器本体に電極、セパレーター、電解液など必要な素材を充填した後蓋体を接合する。このため、容器本体と蓋体の接合に際して電池ケースはできるだけ温度をかけないようにすることが必要であり、このためこれらの容器の接合には加熱部が局限されている高密度熱源溶接が好適に用いられる。
【0009】
エレクトロンビーム、レーザ、プラズマまたは高周波誘導加熱などの高密度熱源による時は、接合部のアスペクト比(D/W)が小さく、特別の加工をする時以外は1.0に達することはなく、通常は0.5〜0.8程度であり、表面部分のみが接合されている。
この接合は、図4に示すように表面の溶融接合幅(W)は広い割には溶融接合深さ(D)は浅く、表面的には完全に接合がされているように見えるが、その接合部の断面は図4のように接合部断面に対して未溶接部がそのほとんどを占めている。このため高密度熱源で溶融した時は比較的広い範囲に亙り溶融されているが、凝固時にはルート割れを起こし易い。
【0010】
かかる場合に、アスペクト比(D/W)が大きいほど凝固収縮が大きいため、接合部のアスペクト比(D/W)が0.5〜0.8のように小さい場合には接合部のルート割れを惹起し、このアスペクト比(D/W)が1.0を超える時はルート割れの発生が急激に低下し、その危険率は無視できる程度になる。
このアスペクト比(D/W)が1.0〜5.0、好ましくは1.0〜3.0の範囲にあると、凝固時のルート割れが顕著に少なくなるのは局部的な加熱による溶融、冷却及びそれに伴う再結晶化が影響しているものと考えるが、断面積で見るとほぼ同じ断面積であってもその未溶融部に接する線の長さ(実態的には未溶融部に接する界面の面積)は短く、冷却速度が小さくなり、それが影響しているものと推定している。ただし、容器接合部を加熱して冷却速度を小さくしても余りその影響がないところから見て他の要因、例えば凝固に際して凝縮方向がアスペクト比(D/W)が大きい時はその方向性が接合深さの方向に大きくなるのに対し、アスペクト比(D/W)が小さい時はその凝縮方向が溶融面に平行する方向になるためなどの影響が大きく働いている可能性も否定できない。
この場合接合部のアスペクト比(D/W)が1.0未満であると、ルート割れの発生が発生する率が大きくなる。一方アスペクト比(D/W)が5.0以上にしてもルート割れの発生率はほとんど極限まで低下しているので変わらず、容器の形状にも限界があり、エネルギーを多量消費するだけでメリットはない。
【0011】
以下図面を参照して詳細に説明する。
図1は、容器本体1の一部を切り欠き、蓋体2を嵌めさせるタイプの嵌合を行ったものである。この場合の溶融接合深さ(D)と溶融接合幅(W)の比、アスペクト比(D/W)を1〜5、好ましくは1〜3にすることである。
図2は、容器本体1に蓋体2を突合わせタイプのはめ込みをしたものであり、この場合においてもアスペクト比(D/W)は同様に1〜5、好ましくは1〜3とすることが必要である。 いずれの場合においても、高密度熱源としてスラブレーザを用いる時は、簡単なテストを行うことにより接合部のアスペクト比(D/W)を容易に1以上とする接合条件を見いだすことは容易であり、簡単にテストランをすることで、耐衝撃性の優れたアルミニウム密閉容器を製造することができる。
【0012】
容器本体がプレス成形などで製造する場合において、ある程度の加工のバラツキが避けられない。
したがって、本発明の容器の接合方法においては、容器本体及び蓋体を図3に示すように、蓋体Aに角度(α)5〜30°で、蓋体厚みの30〜70%の高さ(T)のテーパー部を設け、該テーパー部の高さの中央部(T/2のところ)における、幅(紙面に垂直な面)と長さW1 を容器本体の開口部の内側のサイズ(幅と長さW2 )と同一とし、これを容器本体に圧入・嵌合することが好ましい方法である。
かかる方法による時は容器本体の加工による誤差が、マイナスの時であってもプラスの時であってもバラツキを吸収し、容器本体と蓋体の接合面の密着性を高め、溶け込みをルート部の先端近くまで行かせることによりルート割れを効果的に防止することが可能である。
【0013】
【実施例】
(実施例1)
図1に示すような、角型電池ケースとして、厚さ0.5mm、内面のサイズが8.0mm×50mm(コーナー部2R)、ケース内部の高さ70mmからなるJIS 3003アルミニウム(マンガン系アルミニウム合金)製のプレス成形された容器本体及び全体の厚さ(H)が1.5mm、テーパー部高さ(T)が0.7mm、テーパー部の角度(α)を15°、蓋体テーパー部中央部のサイズを8.0mm×50mm(コーナー部2R)に仕上げた容器本体と同材質の板状体の蓋体を準備し、蓋体を容器本体に圧入に近い状態で嵌合して接合界面に圧縮応力が加わるようにし、これにアシストガスとしてアルゴン30リットル/分を用い、テストランでアスペクト比(D/W)が1になる条件を検討した後、YAGスラブレーザ(出力:2000W、接合速度25m/分)で溶接した。
この容器を500個準備し、水中気密テストを行ったところ漏洩品はなかった。水中気密テストを行った密閉容器の1個を取り出し切断して、その接合部のアスペクト比(D/W)を測定したところ、1.1であり、再現性の良い接合ができることが確認できた。
【0014】
(実施例2〜4)
容器本体、蓋体及びYAGスラブレーザはは実施例1で用いたものと同じものであるが、接合部のアスペクト比(D/W)を1.3〜3.0になるようにYAGスラブレーザの接合速度を調整し、実施例1と同様に水中気密テストを行った。結果を表1に示す。
【0015】
(比較例1〜2)
YAGスラブレーザに代え、Nb−YAGレーザ(出力2000W)を用い、アスペクト比(D/W)を0.5〜0.8とするために接合速度を4〜2m/分としたほかは実施例1と同様に処理を行った。
水中気密テストの合格率は96.8%、98.2%であった。
【0015】
実施例1〜4及び比較例1〜2で得た容器の水中気密テストの結果を表1に示す。
【表1】

Figure 0003908838
漏れ試験:常温で24時間、5kg/cm2 のN2 ガスを圧入して漏れ試験を行った。
【0016】
【発明の効果】
本発明はアルミニウム製容器本体及びアルミニウム製蓋体の接合を、アスペクト比(D/W)が1〜5の範囲になるように接合する時は、従来のレーザなどの高密度熱源を用いた通常の接合(一般にアスペクト比(D/W)が0.5〜0.8程度)に比較して、接合部のルート割れを起こさない優れた密閉容器となることを見いだした。
このような接合にに好適な熱源としてはスラブレーザを使用して接合する時は、容易にアスペクト比(D/W)が1〜5を達成する条件を見いだすことができ、安定に製造することができる。
本発明方法により製造されたアルミニウム製容器は、高性能のリチウムイオン二次電池などの高密度電池のためのアルミニウムを用いた電池ケースとして使用できるものである。
【図面の簡単な説明】
【図1】本発明の接合部の断面図の一例。
【図2】本発明の接合部の断面図の一例。
【図3】本発明の実施に好適な蓋材の形状の一例。
【図4】従来の高密度熱源により接合した断面の一例。
【図5】ルート割れを防ぐために容器本体外側を切り欠きした断面拡大図。
【図6】ルート割れを防ぐために蓋体内側を切り欠きした断面拡大図。
【符号の説明】
1 容器本体
2 蓋体
3 溶融接合部
4 未溶融部
5 切り欠き部
D 溶融接合部の深さ
W 溶融接合部の幅
A 蓋体
B 容器本体
H 蓋体の厚み
T 傾斜部の高さ
α 傾斜部の角度
1 蓋体傾斜部の中央における幅
2 容器本体内側の幅[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal container with high precision and high sealing, such as a container for precision electric materials, precision mechanical materials, pharmaceuticals or materials used in special environments such as space or the deep sea, particularly lithium ion secondary batteries. The present invention relates to the manufacture of battery cases for high-performance batteries such as those using foils or aluminum plates of aluminum or aluminum alloys (hereinafter simply referred to as “aluminum”). The present invention relates to an aluminum battery case joining method that does not affect the contents of the container body and the lid when melted and has excellent impact resistance and earthquake resistance, and requires high sealing performance and high dimensional accuracy. [0002]
[Prior art]
Various battery cases using materials such as airtight containers such as aluminum have been developed, but aluminum battery cases are often used for lithium ion secondary batteries and the like.
The battery case is manufactured by filling an electrode, an electrolytic solution, and the like, and then welding the container body and the lid (sometimes referred to as melt bonding or bonding in this specification) . One of the currently practiced methods for joining is laser welding.
This is a method in which a portion in contact with a lid formed by placing or fitting on a relatively thin aluminum container main body is directly heated and welded with a carbon dioxide laser or YAG laser. In most cases, the joint shape of the battery case is a butt joint having a wall on one side as shown in FIG. 5, and the depth (D) of the welded portion and the width of the fusion welded portion ( W) ratio [Hereinafter, in the present invention, (D / W) is referred to as an aspect ratio. ] Is small, the penetration becomes shallow, and it is inevitable that the unmelted portion 4 remains relatively large. As a result, poor penetration and root cracks are likely to occur in the welded portion, resulting in poor sealing.
[0003]
As a countermeasure against this root cracking, a notch 5 is provided on the outer periphery of the container body 1 as shown in FIG. 5 (Japanese Patent Laid-Open No. 8-77783), or the notch 5 is provided on the inner surface of the lid as shown in FIG. Proposals have been made to try to obtain complete melting of the lid and to devise the shape of the joint. All of these measures increased the number of processing steps, and in terms of productivity, became a negative factor and were not actively adopted.
[0004]
[Problems to be solved by the invention]
The present invention joins an aluminum container main body and a lid by high-density heat source welding, and does not cause a high temperature inside the container, which is likely to adversely affect the contents, and has high sealing performance and does not cause root cracking. The purpose is to develop a hermetically sealed container and a method for producing the container with high yield.
[0005]
[Means for Solving the Problems]
The present invention
[1] A sealed container in which a container main body and a cover made of aluminum or an aluminum alloy are welded with a slab laser at an aspect ratio (D / W) of 1 to 5,
[2] The lid body has a tapered portion with an angle (α) of 5 to 30 ° at the lower portion and an upper portion having a height (T) of 30 to 70% of the lid body thickness, and the height of the tapered portion. The width (surface perpendicular to the paper surface) and the length W1 at the center of the container (at T / 2 ) and the size (width and length W2) inside the opening of the container body are the same. The sealed container according to the above [1],
[3] When welding a container body and a cover body made of aluminum or an aluminum alloy , an aspect ratio (D / W) of the container body and the cover body is within a range of 1 to 5 using a slab laser. A method for producing a sealed container, characterized by welding to
[4] The lid body is provided with a taper portion extending at the top at an angle (α) of 5 to 30 ° and a height (T) of 30 to 70% of the lid body thickness, and the center of the height of the taper portion is provided. The width (surface perpendicular to the paper surface) and length W1 at the part ( T / 2 ) are the same as the size (width and length W2) inside the opening of the container body, and this is press-fitted into the container body. method of manufacturing a sealed container according to claim 3, soluble in contact with the slab laser after fitted,
[5] A battery case for a high-performance battery in which a container body and a cover body made of aluminum or an aluminum alloy are welded using a slab laser in an aspect ratio (D / W) of 1 to 5,
[6] The lid body has a taper portion that spreads in the upper part at an angle (α) of 5 to 30 ° in the lower part and a height (T) of 30 to 70% of the lid body thickness. The width (surface perpendicular to the paper surface) and the length W1 at the central portion (at T / 2 ) are the same as the size (width and length W2) inside the opening of the container body. The battery case according to [5] above,
[7] In the method for producing a secondary battery, after assembling the battery, the container body is filled with electrodes, a separator, and an electrolytic solution, and then the lid is welded using the method of [3] or [4]. The above-mentioned problems have been solved by developing a secondary battery manufacturing method and [8] a secondary battery using the battery case described in [5] or [6] above.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, aluminum means aluminum and an alloy mainly composed of aluminum. In particular, a manganese-based alloy (No. 3000 series) widely used in lithium batteries and the like is preferably used.
In the present invention, which requires a large aspect ratio (D / W) compared to the conventional bonding between the container body and the lid, the place to be heated as a high-density heat source that can be used in melt bonding is as narrow and localized as possible. However, the YAG slab type laser is effective at this time, though the type thereof is not limited as long as the supply heat amount is large and the output can be increased and the convergence can be increased.
YAG laser has features such as good workability for high reflectivity materials such as aluminum, and easy handling with optical fiber, and it has become possible to increase output in recent years. It has come to be applied to the field.
Even in such a YAG laser, there is a demand for further higher output, higher convergence, and smaller size. On the other hand, the slab laser is in principle suitable for increasing the output, and further suitable for generating a highly focused beam, and achieves the junction aspect ratio (D / W) of the present invention. It is a suitable means.
[0007]
In joining the container body and the lid body, it is required that the fitting between the container body and the lid body becomes more precise as the degree of convergence of the laser beam increases. For this reason, in the production of the sealed container of the present invention, if the fitting is precise, the production method is not a problem. For example, when the laser beam is highly converged, the upper part of the lid body is larger than the size inside the container body. It is preferable to perform molding so that there is no gap between the container main body and the lid when they are fitted to each other, for example, by slightly increasing the size.
[0008]
The high convergence of the laser beam is suitable for joining a case for a secondary battery using an aluminum battery case, for example, a lithium ion secondary battery. A high performance battery such as a lithium ion secondary battery has a container body filled with necessary materials such as an electrode, a separator, and an electrolytic solution, and then a lid is joined. For this reason, it is necessary to apply as little temperature as possible to the battery case when joining the container body and the lid. For this reason, high-density heat source welding in which the heating section is localized is suitable for joining these containers. Used for.
[0009]
When using a high-density heat source such as an electron beam, laser, plasma, or high-frequency induction heating, the junction aspect ratio (D / W) is small and does not reach 1.0 except during special processing. Is about 0.5 to 0.8, and only the surface portion is bonded.
As shown in FIG. 4, although the fusion bonding width (W) of the surface is large, the fusion bonding depth (D) is shallow, and this bonding seems to be completely bonded on the surface. As for the cross section of a junction part, the unwelded part has occupied most with respect to the junction part cross section like FIG. For this reason, when melted with a high-density heat source, it is melted over a relatively wide range, but root cracking is likely to occur during solidification.
[0010]
In this case, the larger the aspect ratio (D / W), the larger the solidification shrinkage. Therefore, when the aspect ratio (D / W) of the joint is as small as 0.5 to 0.8, the root crack of the joint When the aspect ratio (D / W) exceeds 1.0, the occurrence of route cracking is drastically reduced and the risk factor becomes negligible.
When this aspect ratio (D / W) is in the range of 1.0 to 5.0, preferably 1.0 to 3.0, root cracks during solidification are remarkably reduced because of melting by local heating. However, even if the cross-sectional area is almost the same, the length of the line in contact with the unmelted part (actually in the unmelted part) It is estimated that the area of the contacting interface) is short and the cooling rate becomes small, which is influencing. However, when the container junction is heated and the cooling rate is reduced, there is not much influence. For example, when the aspect ratio (D / W) of the condensation direction is large during solidification, the directionality is It is undeniable that there is a possibility that the influence of the condensing direction is large when the aspect ratio (D / W) is small while the condensing direction becomes parallel to the melting surface.
In this case, if the aspect ratio (D / W) of the joint is less than 1.0, the rate of occurrence of root cracking increases. On the other hand, even if the aspect ratio (D / W) is 5.0 or more, the rate of root cracking is almost as low as it can be, so there is no limit to the shape of the container. There is no.
[0011]
Hereinafter, it will be described in detail with reference to the drawings.
FIG. 1 shows a type of fitting in which a part of the container body 1 is cut out and the lid 2 is fitted. In this case, the ratio of the melt joint depth (D) to the melt joint width (W) and the aspect ratio (D / W) are 1 to 5, preferably 1 to 3.
FIG. 2 shows a case in which the container body 1 is fitted with the lid body 2 in a butting manner. In this case, the aspect ratio (D / W) is similarly 1 to 5, preferably 1 to 3. is necessary. In any case, when a slab laser is used as a high-density heat source, it is easy to find a joining condition that makes the aspect ratio (D / W) of the joint part 1 or more easily by performing a simple test. By simply performing a test run, an aluminum sealed container with excellent impact resistance can be produced.
[0012]
When the container body is manufactured by press molding or the like, a certain degree of processing variation cannot be avoided.
Therefore, in the container joining method of the present invention, as shown in FIG. 3, the container body and the lid body are at an angle (α) of 5 to 30 ° to the lid body A and 30 to 70% of the lid thickness. (T) taper part is provided, and the width (surface perpendicular to the paper surface) and the length W 1 at the center part (at T / 2) of the height of the taper part are defined as the size inside the opening of the container body. It is preferable to use the same method as (width and length W 2 ) and press fit and fit the container body.
When using this method, the error due to the processing of the container body is negative or positive, and the dispersion is absorbed, improving the adhesion between the joint surface of the container body and the lid, and making the root part melt. It is possible to effectively prevent the route cracking by making it go close to the tip of the root.
[0013]
【Example】
Example 1
As shown in FIG. 1, a JIS 3003 aluminum (manganese-based aluminum alloy) having a thickness of 0.5 mm, an inner surface size of 8.0 mm × 50 mm (corner portion 2R), and a height of 70 mm inside the case as a rectangular battery case. ) Made of press-molded container body and overall thickness (H) is 1.5 mm, taper height (T) is 0.7 mm, taper angle (α) is 15 °, lid taper center Prepare a lid of a plate-like body made of the same material as the container body with a size of 8.0 mm x 50 mm (corner part 2R), and fit the lid body to the container body in a state close to press-fitting. A compressive stress is applied to the gas, and 30 liters / min of argon is used as an assist gas. After examining conditions for an aspect ratio (D / W) of 1 in a test run, a YAG slab laser (output: 20) 0 W, and welded at welding speed 25 m / min).
When 500 containers were prepared and an underwater airtight test was performed, no leaked product was found. One of the sealed containers subjected to the underwater airtightness test was taken out and cut, and the aspect ratio (D / W) of the joint was measured. As a result, it was 1.1, and it was confirmed that reproducible joining was possible. .
[0014]
(Examples 2 to 4)
The container body, the lid, and the YAG slab laser are the same as those used in Example 1, but the YAG slab laser is adjusted so that the aspect ratio (D / W) of the joint is 1.3 to 3.0. The underwater airtightness test was conducted in the same manner as in Example 1. The results are shown in Table 1.
[0015]
(Comparative Examples 1-2)
Example except that an Nb-YAG laser (output 2000 W) was used in place of the YAG slab laser, and the bonding speed was 4 to 2 m / min in order to set the aspect ratio (D / W) to 0.5 to 0.8. The same treatment as in 1 was performed.
The passing rates of the underwater airtight test were 96.8% and 98.2%.
[0015]
Table 1 shows the results of the underwater airtight test of the containers obtained in Examples 1 to 4 and Comparative Examples 1 and 2.
[Table 1]
Figure 0003908838
Leak test: A leak test was performed by press-fitting 5 kg / cm 2 of N 2 gas at room temperature for 24 hours.
[0016]
【The invention's effect】
In the present invention, when joining an aluminum container body and an aluminum lid so that the aspect ratio (D / W) is in the range of 1 to 5, a conventional high-density heat source such as a laser is usually used. It has been found that it becomes an excellent hermetic container that does not cause root cracking of the joint portion compared to the above joint (generally the aspect ratio (D / W) is about 0.5 to 0.8).
As a heat source suitable for such joining, when joining using a slab laser, conditions for achieving an aspect ratio (D / W) of 1 to 5 can be easily found, and production should be stable. Can do.
The aluminum container manufactured by the method of the present invention can be used as a battery case using aluminum for a high-density battery such as a high-performance lithium ion secondary battery.
[Brief description of the drawings]
FIG. 1 is an example of a cross-sectional view of a joint according to the present invention.
FIG. 2 is an example of a cross-sectional view of a joint portion of the present invention.
FIG. 3 shows an example of the shape of a lid material suitable for carrying out the present invention.
FIG. 4 is an example of a cross section joined by a conventional high-density heat source.
FIG. 5 is an enlarged cross-sectional view in which the outer side of the container body is cut away in order to prevent root cracking.
FIG. 6 is an enlarged cross-sectional view in which the inside of the lid is cut away to prevent root cracking.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Container main body 2 Lid body 3 Melting | bonding part 4 Unmelting part 5 Notch part D Depth W of melt | fusion joining part Width A of fusion | bonding part Lid B Container main body H Thickness of lid T Height of inclination part Inclination Angle W 1 Width at the center of the lid slope W 2 Width inside the container body

Claims (8)

アルミニウムまたはアルミニウム合金からなる容器本体及び蓋体を、スラブレーザを用い、溶接部の深さ(D)と溶融溶接部の幅(W)の比(D/W)が1〜5で溶接した密封容器。Sealing the container body and the lid made of aluminum or an aluminum alloy, using a slab laser, the ratio of the depth of the weld (D) and molten weld width (W) (D / W) is welded at 1-5 container. 蓋体の下部に、角度(α)5〜30°で、蓋体厚みの30〜70%の高さ(T)の上部が広がったテーパー部を有し、該テーパー部の高さの中央部(T/2のところ)における、幅(紙面に垂直な面)と長さW1を容器本体の開口部の内側のサイズ(幅と長さW2)と同一とすることを特徴とする請求項1に記載の密封容器。 The lower part of the lid has a taper part with an angle (α) of 5 to 30 ° and an upper part of the height (T) of 30 to 70% of the thickness of the lid spreading , and the central part of the height of the taper part 2. The width (surface perpendicular to the paper surface) and the length W1 at ( T / 2 ) are the same as the size (width and length W2) inside the opening of the container body. The sealed container according to 1. アルミニウムまたはアルミニウム合金からなる容器本体及び蓋体を溶接するに際し、スラブレーザを用いて、当該容器本体及び当該蓋体を、溶接部の深さ(D)と溶融溶接部の幅(W)の比(D/W)が1〜5の範囲になるように溶接することを特徴とする密封容器の製造方法。When welding a container main body and a lid made of aluminum or an aluminum alloy, a ratio of the depth (D) of the welded portion and the width (W) of the welded welded portion is determined by using a slab laser. (D / W) welding so that it may become the range of 1-5, The manufacturing method of the sealed container characterized by the above-mentioned. 蓋体に、角度(α)5〜30°で、蓋体厚みの30〜70%の高さ(T)の、上部に広がったテーパー部を設け、該テーパー部の高さの中央部(T/2のところ)における、幅(紙面に垂直な面)と長さW1を容器本体の開口部の内側のサイズ(幅と長さW2)と同一とし、これを容器本体に圧入・嵌合した後にスラブレーザを用いて溶接する請求項3に記載の密封容器の製造方法。The lid body is provided with a taper portion that spreads upward at an angle (α) of 5 to 30 ° and a height (T) of 30 to 70% of the lid body thickness, and the center portion of the height of the taper portion ( T The width (surface perpendicular to the paper surface) and the length W1 are equal to the inner size (width and length W2) of the opening of the container body, and this is press-fitted and fitted into the container body. method of manufacturing a sealed container according to claim 3, soluble in contact with the slab laser after. アルミニウムまたはアルミニウム合金からなる容器本体及び蓋体を、スラブレーザを用いて、溶接部の深さ(D)と溶融溶接部の幅(W)の比(D/W)が1〜5の範囲で溶接された高性能電池のための電池ケース。 Using a slab laser , a container body and lid made of aluminum or an aluminum alloy, the ratio (D / W) of the depth (D) of the welded portion and the width (W) of the molten welded portion is in the range of 1 to 5. Battery case for welded high performance batteries. 蓋体の下部に、角度(α)5〜30°で、蓋体厚みの30〜70%の高さ(T)の、上部に広がったテーパー部を有し、該テーパー部の高さの中央部(T/2のところ)における、幅(紙面に垂直な面)と長さW1を容器本体の開口部の内側のサイズ(幅と長さW2)と同一とすることを特徴とする請求項5に記載の電池ケース。At the lower part of the lid body, there is a taper part spreading at the top at an angle (α) of 5-30 ° and a height (T) of 30-70% of the lid body thickness, and the center of the height of the taper part The width (surface perpendicular to the paper surface) and the length W1 in the section (at T / 2 ) are the same as the size (width and length W2) inside the opening of the container body. 5. The battery case according to 5. 二次電池の製造方法において、電池の組み立て時に容器本体に電極、セパレーター、電解液を充填した後、請求項3又は4の方法を用いて蓋体を溶接することを特徴とする二次電池の製造方法。A method for manufacturing a secondary battery, comprising: filling a container body with an electrode, a separator, and an electrolyte when assembling the battery; and welding a lid using the method according to claim 3 or 4 . Production method. 請求項5又は6に記載の電池ケースを用いた二次電池。 A secondary battery using the battery case according to claim 5 .
JP28253097A 1997-09-30 1997-09-30 Aluminum container and manufacturing method thereof Expired - Fee Related JP3908838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28253097A JP3908838B2 (en) 1997-09-30 1997-09-30 Aluminum container and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28253097A JP3908838B2 (en) 1997-09-30 1997-09-30 Aluminum container and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11104866A JPH11104866A (en) 1999-04-20
JP3908838B2 true JP3908838B2 (en) 2007-04-25

Family

ID=17653667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28253097A Expired - Fee Related JP3908838B2 (en) 1997-09-30 1997-09-30 Aluminum container and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3908838B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065068A (en) * 2001-08-29 2003-03-05 Mitsubishi Heavy Ind Ltd Method for closing used hole on top of gas turbine blade
JP2008084803A (en) * 2006-09-29 2008-04-10 Sanyo Electric Co Ltd Manufacturing method of gastight battery
US20090139969A1 (en) * 2007-11-29 2009-06-04 Global Nuclear Fuel - Americas Llc Laser welding of castings to minimize distortion
JP5260990B2 (en) * 2008-03-11 2013-08-14 三洋電機株式会社 Sealed battery and method for manufacturing the same
JP5169548B2 (en) * 2008-07-03 2013-03-27 トヨタ自動車株式会社 Weld penetration depth evaluation method
JP5656802B2 (en) 2011-10-28 2015-01-21 株式会社神戸製鋼所 Aluminum can body for secondary battery and manufacturing method thereof
JP6108178B2 (en) 2014-06-16 2017-04-05 トヨタ自動車株式会社 Laser welding apparatus and laser welding method
JP6213784B2 (en) 2015-06-12 2017-10-18 トヨタ自動車株式会社 Sealed battery
CN105234557B (en) * 2015-10-28 2017-08-22 大族激光科技产业集团股份有限公司 A kind of method for laser welding of air locking
WO2017081719A1 (en) * 2015-11-09 2017-05-18 株式会社 豊田自動織機 Electrical storage device
JP6899253B2 (en) * 2017-05-11 2021-07-07 株式会社アマダ Laser welding method
JP7086773B2 (en) * 2018-07-25 2022-06-20 株式会社東芝 Welding method, manufacturing method of welded material, and welded material
CN109709137B (en) * 2018-12-28 2021-12-10 湖北雷迪特冷却系统股份有限公司 Battery water cooling plate temperature uniformity test equipment and method

Also Published As

Publication number Publication date
JPH11104866A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
JP3908838B2 (en) Aluminum container and manufacturing method thereof
JP4184663B2 (en) Manufacturing method of lead-acid battery and jig for manufacturing the same
JP2000090893A (en) Battery and manufacture thereof
US6045944A (en) Battery and method of manufacturing the same
CN100587999C (en) Enclosed-type battery manufacturing method and enclosed-type battery
JP2011204396A (en) Sealed battery and method for manufacturing the same
WO1999025035A1 (en) Method of manufacturing enclosed battery and enclosed battery
JP2011129266A (en) Manufacturing method of square shape sealed battery
JPH1186809A (en) Jointing method of container
JPH1177347A (en) Laser welding method of aluminum sheet, manufacture of enclosed cell, and enclosed cell itself
EP0484368B1 (en) A method of closing one end of the case of a sodium/sulphur cell and a sodium/sulphur cell produced by this method
JP3876058B2 (en) Aluminum battery case joining method
JP2001155698A (en) Encapsulated type battery
KR101838382B1 (en) Sealed battery and a method for manufacturing the same
JPH097560A (en) Sealing mouth welding method for sealed battery
JP2002042769A (en) Secondary battery and its manufacturing method
JPH11135080A (en) Square sealed battery and its manufacture
JPH1147920A (en) Method for joining aluminum-made battery case
CN114012263A (en) Lightweight aluminum plate welding method and battery module shell machining method
CN210182468U (en) Connecting structure of lithium ion battery
JP2002042742A (en) Manufacturing method of sealed battery
CN114792862A (en) Battery module and method for manufacturing same
CN217281052U (en) Module frame and battery module
CN114639909B (en) Shell of battery pack and manufacturing method thereof
US20220320478A1 (en) Method and device for producing a component for a battery cell and such a component

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040916

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040916

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20050510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees