JPS61285655A - Manufacture of thin enclosed cell - Google Patents

Manufacture of thin enclosed cell

Info

Publication number
JPS61285655A
JPS61285655A JP60128939A JP12893985A JPS61285655A JP S61285655 A JPS61285655 A JP S61285655A JP 60128939 A JP60128939 A JP 60128939A JP 12893985 A JP12893985 A JP 12893985A JP S61285655 A JPS61285655 A JP S61285655A
Authority
JP
Japan
Prior art keywords
electrolyte
battery
injection port
positive electrode
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60128939A
Other languages
Japanese (ja)
Other versions
JPH0677447B2 (en
Inventor
Atsushi Sato
淳 佐藤
Koji Mimura
三村 康二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP60128939A priority Critical patent/JPH0677447B2/en
Publication of JPS61285655A publication Critical patent/JPS61285655A/en
Publication of JPH0677447B2 publication Critical patent/JPH0677447B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PURPOSE:To reduce defective welding when sealing the electrolyte injection port by making an electrolyte injection port at the circumferential section of cell cover covering the open section of cell container and welding the injection port upon injection of electrolyte while inclining the cell and never existing the electrolyte near the injection port. CONSTITUTION:Positive electrode current collector 2 comprising an expanded nickel pressure applied with positive electrode 1 is spot welded to the lower end portion of positive electrode terminal 5 fixed through glass insulation layer 4 to the cell cover 3. Then the positive electrode 1 and the positive electrode current collector 2 are surrounded by a separator 6 and a lithium board is pressure applied to the inner face of the cell cover 3 to form a negative electrode 7 which is fitted to the cell container 8 to laser weld the circumferential end section 3c of the cell cover and the flange section 8a of the cell container 8. Upon injection of electrolyte through an electrolyte injection port 9 made in the cell cover 3 by means of an injector, a nickel sealing plug 11 is inserted into said port 9 to incline the cell by 15 deg. against the horizontal face then a laser beam is irradiated from immediately above to weld the sealing plug 11 and the circumferential portion 3b of the injection port thus to seal the electrolyte injection port 9.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はアルカリ金属を負極活物質、オキシハロゲン
化物を正極活物質および電解液の溶媒とする薄形密閉電
池の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a thin sealed battery using an alkali metal as a negative electrode active material, an oxyhalide as a positive electrode active material and an electrolyte solvent.

〔従来の技術〕[Conventional technology]

リチウム、ナトリウムなどのアルカリ金属を負極活物質
、塩化チオニル、塩化ホスホリル、塩化スルフリルなど
のオキシハロゲン化物を正極活物質および電解液の溶媒
とし、完全密閉構造をとる薄形の密閉電池では、電解液
を電池蓋に設けた電解液注入口から電池内に注入し、電
解液注入後に、封止栓を上記電解液注入口に挿入し、封
止栓と電池蓋の電解液注入口の周辺部分とをレーザ溶接
などで溶接して電解液注入口を封止することが行われて
いる(文献不詳)。
In a thin sealed battery with a completely sealed structure, the electrolyte is completely sealed, with alkali metals such as lithium and sodium used as the negative electrode active material, and oxyhalides such as thionyl chloride, phosphoryl chloride, and sulfuryl chloride used as the positive electrode active material and the electrolyte solvent. is injected into the battery through the electrolyte injection port provided on the battery lid, and after the electrolyte is injected, a sealing plug is inserted into the electrolyte injection port, and the sealing plug and the area around the electrolyte injection port on the battery lid are connected. The electrolyte injection port is sealed by laser welding or the like (unspecified literature).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記のように、電解液注入後の電解液注
入口を溶接で封止する場合、溶接時に発生する熱によっ
て電解液注入口の近傍に存在する電解液が気化して、電
池の内圧が上昇するため、溶接部にピンホールが発生し
て封止が不完全になったり、溶接部分の形状がいびつに
なって溶接強度が低くなるなどの溶接不良が発生すると
いう問題があった。
However, as mentioned above, when the electrolyte injection port is sealed by welding after the electrolyte is injected, the electrolyte existing near the electrolyte injection port evaporates due to the heat generated during welding, and the internal pressure of the battery increases. This raises the problem of welding defects such as pinholes occurring in the weld, resulting in incomplete sealing, and the shape of the weld becoming distorted, resulting in a decrease in weld strength.

これは、この種の電池では電解液に使用されている塩化
チオニルなどのオキシハロゲン化物が正極活物質でもあ
る関係上、他の電池より電解液が多く注入されること、
またその反面では電解液の熱膨張による電池破裂(ガラ
スなどで形成される絶縁層が破壊する)を防ぐために電
池内に10〜30容量%の空隙部分を設けているが、正
極の電解液を吸収する速度が遅く、電解液が注入後ただ
ちに正極中に吸収されず、電池内の液面が高い状態にあ
り、第5図に示すように、電解液注入口9の付近に電解
液10が存在することが関連していると考えられる。
This is because in this type of battery, the oxyhalide such as thionyl chloride used in the electrolyte is also the positive electrode active material, so more electrolyte is injected than in other batteries.
On the other hand, in order to prevent the battery from rupturing due to thermal expansion of the electrolyte (destruction of the insulating layer made of glass, etc.), a void space of 10 to 30% by volume is provided inside the battery. The absorption speed is slow, and the electrolyte is not absorbed into the positive electrode immediately after injection, and the liquid level inside the battery is high, and as shown in FIG. It is thought that the existence is related.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は上述した従来技術の問題点を解決するもので
、電解液注入口を電池蓋の電池容器の開口部を覆う部分
の周縁部に設け、電解液を上記電解液注入口から電池内
に注入し、封止栓を電解液注入口に挿入した後の電解液
注入口の溶接封止を、電池を傾けて、電解液注入口の近
傍に電解液が存在しないようにして、行うことより溶接
不良の発生を防止したものである。
This invention solves the above-mentioned problems of the prior art, and includes providing an electrolyte injection port on the periphery of the part of the battery cover that covers the opening of the battery container, and injecting the electrolyte into the battery from the electrolyte injection port. After injection and inserting the sealing plug into the electrolyte injection port, the electrolyte injection port is welded and sealed by tilting the battery so that there is no electrolyte near the electrolyte injection port. This prevents welding defects from occurring.

本発明の実施に際して、電解液注入口からの電解液の注
入や、電解液注入後の電解液注入口への封止栓の挿入は
、電池を傾けて行ってもよいし、また電池を傾けないで
行ってもよい。要は溶接による電解液注入口の封止を電
池を傾けて電解液注入口の近傍に電解液が存在しない状
態で行いさえすればよい。
When implementing the present invention, injecting the electrolyte from the electrolyte injection port and inserting a sealing plug into the electrolyte injection port after injecting the electrolyte may be performed by tilting the battery, or by tilting the battery. You can go without it. In short, it is only necessary to seal the electrolyte injection port by welding in a state where the battery is tilted so that no electrolyte exists near the electrolyte injection port.

電解液注入口の溶接封止時における電池の傾け角度は、
10〜20度が好ましい。これは傾斜角度が10度未満
では電解液が電解液注入口の近傍に存在させなくするの
がむつかしく、一方、傾斜角度が20度を超えると、溶
接手段として好用されるレーザ溶接のレーザ発振器が、
安全性の面から、通常、被溶接物の真上に配設され、レ
ーザビームが被溶接物に対して真上から真下に向けて直
角に照射するようにされている関係上、傾斜角度が大き
くなると、レーザビームが被溶接物に対して適正に照射
されなくなり、溶接を適正に行うことができなくなるか
らである。
The tilt angle of the battery when welding and sealing the electrolyte inlet is:
10 to 20 degrees is preferable. This is because if the angle of inclination is less than 10 degrees, it is difficult to prevent the electrolyte from existing near the electrolyte inlet, whereas if the angle of inclination exceeds 20 degrees, the laser oscillator of laser welding, which is the preferred welding method, is difficult to prevent. but,
For safety reasons, the laser beam is usually placed directly above the workpiece, and the inclination angle is such that the laser beam irradiates the workpiece at right angles from directly above to below. This is because if the size becomes too large, the laser beam will not be properly irradiated onto the object to be welded, making it impossible to properly perform welding.

なお、この電池において、電池内の気体占有率を10〜
30容量%にしているのは、電解液の溶媒として使用さ
れているオキシハロゲン化物が正極活物質を兼ねている
ので、電池内にできるだけ多く電解液を充填したいこと
と、空隙すなわち気体が占める容積を残しておかないと
、高温下での使用などで温度が上がって電解液が熱膨張
したときに電池破裂が生じるのを防止することができな
くなるからであり、電池内の気体占有率が10容量%未
満では電解液が熱膨張したときの電池破裂を防止する上
において安全性が充分ではなく、一方、電池内の気体占
有率が30容量%を超えると電池の正極活物質の充填量
が少なくなって放電容量が低下するからである。なお、
上記気体占有率における気体とは、通常、空気であるが
、チッ素、アルゴンなどの不活性気体であってもよい。
In addition, in this battery, the gas occupancy rate in the battery is 10~
The reason why it is set to 30% by volume is because the oxyhalide used as a solvent for the electrolyte also serves as the positive electrode active material, so we want to fill the battery with as much electrolyte as possible, and also to reduce the volume occupied by voids, that is, gas. If this is not left in place, it will not be possible to prevent the battery from rupturing when the electrolyte expands due to temperature rise due to use under high temperatures, etc., and the gas occupancy rate within the battery will be If the gas occupancy in the battery exceeds 30% by volume, it will not be safe enough to prevent the battery from bursting when the electrolyte expands thermally. This is because the discharge capacity decreases. In addition,
The gas in the above gas occupancy rate is usually air, but may also be an inert gas such as nitrogen or argon.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

第1図は本発明に係る薄形密・閉電池の一例を示す断面
図であり、第2図は第1図に示す電池の平面図である。
FIG. 1 is a sectional view showing an example of a thin sealed/closed battery according to the present invention, and FIG. 2 is a plan view of the battery shown in FIG. 1.

ただし、第2図は電解液注入口を溶接封止する前の状態
を示す。第3図は第1図に示す電池に使用された電池容
器を示す断面図である。
However, FIG. 2 shows the state before the electrolyte injection port is welded and sealed. FIG. 3 is a sectional view showing a battery container used in the battery shown in FIG. 1.

実施例1 炭素多孔質成形体からなる正極1を圧着したエキスバン
ドニッケルからなる正極集電体2と、電池蓋3にガラス
で形成された絶縁層4を介して取り付けられた正極端子
5の下端部をスポ7ト熔接したのち、正極1と正極集電
体2をガラス繊維不織布からなるセパレータ6で包み、
リチウム板を上記電池蓋3の内面に圧着して負極7を形
成し、これを電池容器8と嵌合して、電池蓋3の周端部
3cと電池容器8の鍔部8aとをレーザ溶接した。
Example 1 A positive electrode current collector 2 made of expanded nickel to which a positive electrode 1 made of a carbon porous molded body is crimped, and the lower end of a positive electrode terminal 5 attached to a battery lid 3 via an insulating layer 4 made of glass. After welding the parts at 7 spots, the positive electrode 1 and the positive electrode current collector 2 are wrapped with a separator 6 made of glass fiber nonwoven fabric,
A lithium plate is crimped onto the inner surface of the battery lid 3 to form the negative electrode 7, which is fitted into the battery container 8, and the peripheral end 3c of the battery lid 3 and the flange 8a of the battery container 8 are laser welded. did.

つぎに、電池蓋3に設けた電解液注入口9から電解液1
0を注射器で注入した後、第4図に示すように、電解液
注入口9にニッケル製の封止栓11を挿入し、電池を水
平面に対して15度傾け、真上からレーザビームを照射
して封止栓11と電池蓋3の電解液注入口の周辺部分3
bとを溶接して電解液注入口9を封止した。
Next, pour the electrolyte 1 from the electrolyte inlet 9 provided on the battery lid 3.
After injecting 0 with a syringe, as shown in Fig. 4, insert a nickel sealing plug 11 into the electrolyte injection port 9, tilt the battery 15 degrees with respect to the horizontal plane, and irradiate the laser beam from directly above. The sealing plug 11 and the surrounding area 3 of the electrolyte inlet of the battery cover 3
b and welded to seal the electrolyte injection port 9.

上記電池において、正極lはアセチレンブラック100
重量部、りん状黒鉛10重量部、ポリテトラフルオロエ
チレン10重量部からなる炭素多孔質成形体からなり、
寸法は25mm X 30mmで厚み1.61の角板状
をしており、負極7を形成するのに用いたリチウム板は
20mm X 25mmで厚み0.81の角板状をした
ものである。電解液10は塩化チオニルに四塩化アルミ
ニウムリチウムを1.2 mol /β溶解させたもの
であり、塩化チオニルは上記のように電解液の溶媒であ
るとともに、正極活物質でもある。
In the above battery, the positive electrode l is made of acetylene black 100
A carbon porous molded body consisting of parts by weight, 10 parts by weight of phosphorous graphite, and 10 parts by weight of polytetrafluoroethylene,
It has a rectangular plate shape with dimensions of 25 mm x 30 mm and a thickness of 1.61 mm, and the lithium plate used to form the negative electrode 7 has a rectangular plate shape of 20 mm x 25 mm and a thickness of 0.81 mm. The electrolytic solution 10 is prepared by dissolving 1.2 mol/β of lithium aluminum tetrachloride in thionyl chloride, and thionyl chloride is not only the solvent of the electrolytic solution as described above, but also the positive electrode active material.

そして、この電解液の電池内への注入量は3.0miで
あり、この電解液注入後の電池の気体占有率(本実施例
では、気体は空気であって、特殊な気体を充填していな
い。従って通常にいう空隙率ということになる)は20
容量%である。
The amount of this electrolyte injected into the battery was 3.0 mi, and the gas occupancy rate of the battery after this electrolyte was injected (in this example, the gas was air, and the gas was filled with a special gas). Therefore, the porosity (usually called porosity) is 20
It is capacity %.

電池容器8は厚み0.51のステンレス鋼板を絞り加工
して形成したもので、第3図に示すように上端部に鍔部
8aを有してなり、電池容器8の開口部8bの寸法は4
[imm X 36mmである。そして、電池蓋3は厚
み0.51のステンレス鋼板からなり、電解液注入口9
は、第2図に示すように、電池蓋3の電池容器8の開口
部8bを覆う部分3aの周縁部(実施例では電池容器8
の上端部内周端より10mm内側)に設けられており、
直径は0.75mmである。なお、第2図中の12は電
解液の注入を容易にするための空気抜き孔で、電解液注
入口9と同様に電池蓋3の電池容器8の開口部8bを覆
う部分3aの電池容器8の上端部内周端より10ffl
I11内側にあたる部分に設けられており、その直径は
0.75mmである。この空気抜き孔12は、電解液注
入口9から電解液を注入後、電解液注入口9と同様に封
止栓(図示せず)を挿入し、電池を傾けた状態でレーザ
溶接して封止される。ただし、この空気抜き孔12は電
解液の注入を真空含浸で行う(電池内を減圧して電池内
の空気を電解液で置換する)場合は不要である。
The battery container 8 is formed by drawing a stainless steel plate with a thickness of 0.51 mm, and has a flange 8a at the upper end as shown in FIG. 3, and the dimensions of the opening 8b of the battery container 8 are as follows. 4
[imm x 36mm. The battery cover 3 is made of a stainless steel plate with a thickness of 0.51, and the electrolyte inlet 9
As shown in FIG.
(10 mm inside from the inner peripheral edge of the upper end),
The diameter is 0.75mm. Note that 12 in FIG. 2 is an air vent hole for facilitating the injection of electrolyte, and like the electrolyte injection port 9, the battery container 8 of the part 3a of the battery cover 3 covers the opening 8b of the battery container 8. 10ffl from the inner edge of the upper end of
It is provided on the inside of I11, and its diameter is 0.75 mm. After injecting the electrolyte from the electrolyte injection port 9, the air vent hole 12 is sealed by inserting a sealing plug (not shown) in the same way as the electrolyte injection port 9, and by laser welding with the battery tilted. be done. However, this air vent hole 12 is not necessary when the electrolyte is injected by vacuum impregnation (the pressure inside the battery is reduced to replace the air inside the battery with the electrolyte).

封止栓11は拡大頭部11a付きで、その軸部11bの
直径は0.70mmであり、頭部11aの直径は1.0
 mmで頭部11aの厚さは0.2 mmである。そし
て、電解液注入口封止のためのレーザ溶接条件は出力1
kW1熔接速度60mm/secである。
The sealing plug 11 has an enlarged head 11a, the diameter of the shaft portion 11b is 0.70 mm, and the diameter of the head 11a is 1.0 mm.
The thickness of the head 11a is 0.2 mm. The laser welding conditions for sealing the electrolyte injection port are output 1.
The kW1 welding speed was 60 mm/sec.

実施例2 レーザ溶接による電解液注入口の封止を、電池を水平面
に対して10度傾けて行なつたほかは実施例1と同様に
して電池を製造した。
Example 2 A battery was manufactured in the same manner as in Example 1, except that the electrolyte injection port was sealed by laser welding with the battery tilted 10 degrees with respect to the horizontal plane.

実施例3 レーザ溶接による電解液注入口の封止を、電池を水平面
に対して20度傾けて行ったほかは実施例1と同様にし
て電池を製造した。
Example 3 A battery was manufactured in the same manner as in Example 1, except that the electrolyte injection port was sealed by laser welding with the battery tilted at 20 degrees with respect to the horizontal plane.

比較例 レーザ溶接による電解液注入口の封止を、電池を傾けな
いで行ったほかは実施例1と同様にして電池を製造した
Comparative Example A battery was manufactured in the same manner as in Example 1, except that the electrolyte injection port was sealed by laser welding without tilting the battery.

上記実施例1〜3の電池および比較例の電池の製造時に
おける電解液注入口の封止時の溶接不良発生率を第1表
に示す。
Table 1 shows the incidence of welding defects when sealing the electrolyte inlet during the manufacture of the batteries of Examples 1 to 3 and the batteries of Comparative Example.

第1表 第1表に示すように、電池を傾けて電解液注入口を溶接
封止することにより、溶接不良が激減した。特に電池を
水平面に対して15度傾けたとき溶接不良率が最も少な
く、これより角度が小さくなっても、また大きくなって
も溶接不良の発生が多くなる傾向が認められた。これは
傾斜角度が10度より小さくなると電解液を電解液注入
口の近傍に存在させなくすることがむつかしくなり、一
方、傾斜角度が20度を超えると、レーザビーム発振器
が被溶接物に対してレーザビームを真上から真下に向け
て照射するように設置されているため、溶接が適正に行
われなくなるためであると考えられる。それでも、実施
例2および実施例3に見られるように、電池を10度傾
けることにより、また電池を20度傾けることにより、
まったく傾けなかった比較例の場合に比べて、溶接不良
の発生が大きく減少した。
Table 1 As shown in Table 1, welding defects were drastically reduced by tilting the battery and sealing the electrolyte inlet by welding. In particular, when the battery was tilted at 15 degrees with respect to the horizontal plane, the rate of welding defects was lowest, and even if the angle was smaller or larger than this, there was a tendency for the occurrence of welding defects to increase. This is because when the tilt angle is smaller than 10 degrees, it becomes difficult to prevent the electrolyte from existing near the electrolyte injection port.On the other hand, when the tilt angle exceeds 20 degrees, the laser beam oscillator This is thought to be because the laser beam is installed so as to irradiate from directly above to directly below, which prevents proper welding. Nevertheless, as seen in Examples 2 and 3, by tilting the battery by 10 degrees and by tilting the battery by 20 degrees,
Compared to the comparative example in which there was no tilting at all, the occurrence of welding defects was greatly reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、電解液注入口9を電
池蓋3の電池容器8の開口部8bを覆う部分3aの周縁
部に設け、電解液注入後の電解液注入口9の溶接封止を
、電池を傾けて、電解液10が電解液注入口9の近傍に
存在しないようにして、行うことにより、電解液注入口
の封止に際して溶接不良の発生を減少させることができ
た。
As described above, in the present invention, the electrolyte injection port 9 is provided at the peripheral edge of the portion 3a of the battery lid 3 that covers the opening 8b of the battery container 8, and the electrolyte injection port 9 is welded and sealed after the electrolyte is injected. By tilting the battery so that the electrolytic solution 10 is not present in the vicinity of the electrolytic solution injection port 9, the occurrence of welding defects can be reduced when sealing the electrolytic solution injection port.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る薄形密閉電池の一例を示す断面図
で、第2図は第1図に示す電池の平面図である。ただし
、第2図は電解液注入口を溶接封止する前の状態を示す
、第3図は第1図に示す電池に使用された電池容器を示
す断面図である。第4図は本発明の方法により薄形密閉
電池を製造する際の主要工程における電池の要部を模式
的に示す断面図であり、第5図は従来法により薄形密閉
電池を製造する際の主要工程における電池の要部を模式
的に示す断面図である。 1・・・正極、 3・・・電池蓋、 3a・・・電池蓋
の電池容器の開口部を覆う部分、 3b・・・電池蓋の
電解液注入口の周辺部分、 6・・・セパレータ、 7
・・・負極、 8・・・電池容器、 8b・・・電池容
器の開口部、 9・・・電解液注入口、 10・・・電
解液、11・・・封止栓 特許出願人 日立マクセル株式会社 第 3図 旦 第 4 図
FIG. 1 is a sectional view showing an example of a thin sealed battery according to the present invention, and FIG. 2 is a plan view of the battery shown in FIG. 1. However, FIG. 2 shows a state before the electrolyte injection port is welded and sealed, and FIG. 3 is a sectional view showing a battery container used in the battery shown in FIG. 1. FIG. 4 is a cross-sectional view schematically showing the main parts of a battery in the main steps when manufacturing a thin sealed battery by the method of the present invention, and FIG. FIG. 3 is a cross-sectional view schematically showing the main parts of the battery in the main steps. 1... Positive electrode, 3... Battery lid, 3a... Portion of the battery lid that covers the opening of the battery container, 3b... Portion around the electrolyte inlet of the battery lid, 6... Separator, 7
... Negative electrode, 8... Battery container, 8b... Opening of battery container, 9... Electrolyte inlet, 10... Electrolyte, 11... Sealing plug Patent applicant Hitachi Maxell Co., Ltd. Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)アルカリ金属を負極活物質、オキシハロゲン化物
を正極活物質および電解液の溶媒とし、電池内の気体占
有率が10〜30容量%で、電解液10を電池蓋3に設
けた電解液注入口9から電池内に注入し、電解液注入後
に上記電解液注入口9に封止栓11を挿入し、封止栓1
1と電池蓋3の電解液注入口の周辺部分3bとを溶接し
て電解液注入口9を封止する薄形密閉電池の製造におい
て、電解液注入口9を電池蓋3の電池容器の開口部を覆
う部分3aの周縁部に設け、電解液10を上記電解液注
入口9から電池内に注入後、封止栓11と電池蓋3の電
解液注入口9の周辺部分3bとを、電池を傾け、電解液
注入口9の付近に電解液10が存在しない状態にして、
溶接することにより電解液注入口9を封止することを特
徴とする薄形密閉電池の製造方法。
(1) An electrolytic solution in which an alkali metal is used as a negative electrode active material, an oxyhalide is used as a positive electrode active material and an electrolyte solvent, the gas occupancy in the battery is 10 to 30% by volume, and the electrolyte 10 is provided in the battery lid 3. The electrolyte is injected into the battery through the injection port 9, and after the electrolyte is injected, the sealing plug 11 is inserted into the electrolyte injection port 9.
1 and the peripheral portion 3b of the electrolyte inlet of the battery lid 3 to seal the electrolyte inlet 9. In manufacturing a thin sealed battery, the electrolyte inlet 9 is connected to the opening of the battery container of the battery lid 3. After injecting the electrolyte 10 into the battery from the electrolyte injection port 9, the sealing plug 11 and the peripheral portion 3b of the electrolyte injection port 9 of the battery cover 3 are connected to the battery. Tilt it so that there is no electrolyte 10 near the electrolyte injection port 9,
A method for manufacturing a thin sealed battery, characterized in that the electrolyte injection port 9 is sealed by welding.
(2)電解液注入口9の溶接封止時の電池の傾け角度が
10〜20度である特許請求の範囲第1項記載の薄形密
閉電池の製造方法。
(2) The method for manufacturing a thin sealed battery according to claim 1, wherein the inclination angle of the battery when the electrolyte inlet 9 is welded and sealed is 10 to 20 degrees.
JP60128939A 1985-06-12 1985-06-12 Thin sealed battery manufacturing method Expired - Lifetime JPH0677447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60128939A JPH0677447B2 (en) 1985-06-12 1985-06-12 Thin sealed battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60128939A JPH0677447B2 (en) 1985-06-12 1985-06-12 Thin sealed battery manufacturing method

Publications (2)

Publication Number Publication Date
JPS61285655A true JPS61285655A (en) 1986-12-16
JPH0677447B2 JPH0677447B2 (en) 1994-09-28

Family

ID=14997142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60128939A Expired - Lifetime JPH0677447B2 (en) 1985-06-12 1985-06-12 Thin sealed battery manufacturing method

Country Status (1)

Country Link
JP (1) JPH0677447B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999025036A1 (en) * 1997-11-07 1999-05-20 Sony Corporation Square-shape closed battery
EP0924779A1 (en) * 1997-12-19 1999-06-23 Sony Corporation Non-aqueous electrolyte secondary battery
JP2001256965A (en) * 2000-03-09 2001-09-21 Matsushita Electric Ind Co Ltd Sealed type battery and method for sealing cap thereof
KR100690015B1 (en) 2004-11-09 2007-03-08 주식회사 엘지생활건강 Open-typed thin film battery
JP2019053929A (en) * 2017-09-15 2019-04-04 株式会社東芝 Battery manufacturing method and manufacturing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810364A (en) * 1981-07-13 1983-01-20 Sanyo Electric Co Ltd Sealing of battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810364A (en) * 1981-07-13 1983-01-20 Sanyo Electric Co Ltd Sealing of battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999025036A1 (en) * 1997-11-07 1999-05-20 Sony Corporation Square-shape closed battery
US6746798B1 (en) 1997-11-07 2004-06-08 Sony Corporation Rectangular and sealed battery
EP0924779A1 (en) * 1997-12-19 1999-06-23 Sony Corporation Non-aqueous electrolyte secondary battery
US6572998B2 (en) 1997-12-19 2003-06-03 Sony Corporation Non-aqueous electrolyte secondary battery
JP2001256965A (en) * 2000-03-09 2001-09-21 Matsushita Electric Ind Co Ltd Sealed type battery and method for sealing cap thereof
KR100690015B1 (en) 2004-11-09 2007-03-08 주식회사 엘지생활건강 Open-typed thin film battery
JP2019053929A (en) * 2017-09-15 2019-04-04 株式会社東芝 Battery manufacturing method and manufacturing device

Also Published As

Publication number Publication date
JPH0677447B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
EP0360039B1 (en) A flat typed sealed battery with hermetic sealing structure
CN117638336B (en) Battery case and power battery
JPS61285655A (en) Manufacture of thin enclosed cell
US4182028A (en) Hermetically sealed button-type electrochemical cell and method for making same
JPH09320551A (en) Sealed battery
KR0153001B1 (en) Inorganic nonaqueous electrolytic solution type cell
JPS59154743A (en) Sealed type battery
JPH11154506A (en) Sealed battery
JPS60165040A (en) Sealed type battery
JP6792802B2 (en) How to manufacture sealed batteries and sealed batteries
JP3454565B2 (en) Sealing method of sealed battery and battery
JPH11149915A (en) Closed-type battery
JPH0290456A (en) Manufacture of flat sealed battery
JPH0621172Y2 (en) Sealed battery
JPS6196653A (en) Manufacture of sealed battery
JPS59154741A (en) Sealed type battery
JPH0290457A (en) Flat sealed battery
JPH0524622B2 (en)
JPH04196049A (en) Manufacture of boy type enclosed cell
JPH0265052A (en) Flat sealed battery
JPS5812707B2 (en) sealed battery
JP2000090966A (en) Manufacture of sodium-sulfur battery and manufacturing device therefor
JPS6386243A (en) Hermetic seal type liquid active material battery
GB2381945A (en) Cell
JP2002050397A (en) Sodium-sulfur battery and its manufacturing method