JPH0265052A - Flat sealed battery - Google Patents

Flat sealed battery

Info

Publication number
JPH0265052A
JPH0265052A JP63214578A JP21457888A JPH0265052A JP H0265052 A JPH0265052 A JP H0265052A JP 63214578 A JP63214578 A JP 63214578A JP 21457888 A JP21457888 A JP 21457888A JP H0265052 A JPH0265052 A JP H0265052A
Authority
JP
Japan
Prior art keywords
battery
sealing plate
electrolyte
sealing
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63214578A
Other languages
Japanese (ja)
Inventor
Hirokazu Yoshikawa
吉川 博和
Atsushi Sato
淳 佐藤
Shigeru Ikenari
池成 茂
Kenichi Yokoyama
賢一 横山
Yoshio Uetani
植谷 慶雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP63214578A priority Critical patent/JPH0265052A/en
Publication of JPH0265052A publication Critical patent/JPH0265052A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To obtain the high sealability of a flat sealed battery and prevent the battery bursting under the high pressure by using a metallic ball as sealing body of the flat sealed battery and providing a cross shaped thin part for the explosion proof in the sealing plate. CONSTITUTION:A cylindrical or taper tubelous electrolyte filler hole 12 having its tip at the inner side of a battery is provided at the center of a bottom part 5a of a battery vessel 5, and after the filling of the electrolyte, a sealing plug 13 made of a metallic ball is pressed-in the electrolyte filler hole 12. And the opening of the base end side of the electrolyte filler hole 12 is covered by a metallic sealing plate 14 in which a thin part 15 for the explosion proof is provided, and the outer peripheral part of the sealing plate 14 is welded to the bottom part 5a of the battery vessel 5. Thereby, at the time of welding of the sealing plate 14, the vaporized material of the electrolyte can not come fly to the part to be welded so that the outer peripheral part of the sealing plate 14 can be welded to the bottom part 5a of the battery vessel 5 without any hindrance. And the thin part 15 provided in the sealing plate 14 is destroyed by the pressure within the range that the safety can be secured and the battery bursting under the high pressure can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は防爆機能を備えた扁平形密閉電池に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a flat sealed battery with an explosion-proof function.

〔従来の技術〕[Conventional technology]

近年、電子機器の発達に伴い、自己放電が小さく、長寿
命のリチウム電池が多く使用されるようになってきた。
In recent years, with the development of electronic devices, lithium batteries with low self-discharge and long life have come into widespread use.

そこで、CMOS  RAMのメモリバックアップ用電
源として筒形でメタル−ガラス−メタルのハーメチック
シールを電池蓋に採用したりチウム−塩化チオニル電池
が開発され(例えば、特開昭59−51458号公報)
、これらは密閉性が高り10年間以上にわたって使用で
きることから象、速に需要が伸びている。
Therefore, as a memory backup power source for CMOS RAM, a cylindrical metal-glass-metal hermetic seal was adopted for the battery lid, and a thium-thionyl chloride battery was developed (for example, Japanese Patent Laid-Open No. 59-51458).
Demand for these products is rapidly increasing because they have a high airtightness and can be used for more than 10 years.

しかし、市場においては、上記筒形のパックアツブ用電
池のみならず、ICの消費電流の低減から、あるいは機
器の小形、軽量化に伴う要請から、より小形、薄形のメ
モリバックアップ用電池が求められている。
However, in addition to the above-mentioned cylindrical pack-tub batteries, the market is demanding smaller and thinner memory backup batteries due to the need to reduce the current consumption of ICs, or to reduce the size and weight of devices. ing.

そこで、そのような要望に応えるべく、扁平形電池の開
発が試みられているが、扁平形電池の場合、筒形電池で
採用されているような電池蓋の端子部分に電解液注入口
を設けることは、その溶接封止時の熱によってガラス層
を損傷することになるので、採用することができない。
Therefore, attempts have been made to develop flat batteries in order to meet such demands, but in the case of flat batteries, an electrolyte inlet is provided at the terminal part of the battery lid, as is used for cylindrical batteries. This cannot be used because the heat generated during welding and sealing would damage the glass layer.

すなわち、筒形電池の場合は形状が大きく、電池総高が
少なくとも251以上あるため、電池蓋の中央部に位置
する端子部分に電解液注入口を設けても、電解液注入口
の封止位置を電池蓋のガラス層から高さ方向に距離を置
いたところに設定することができるので、その溶接封止
時の熱によってガラス層が損傷を受けることはないが、
電池総高が高々10m+m程度の扁平形電池では、電池
蓋の端子部分に電解液注入口を設けた場合、その溶接封
止部分とガラス層との距離が短いために、溶接封止時の
熱によってガラス層が破壊して使用に耐えなくなるので
ある。
In other words, in the case of a cylindrical battery, the shape is large and the total height of the battery is at least 25 cm, so even if the electrolyte inlet is provided in the terminal part located in the center of the battery lid, the sealing position of the electrolyte inlet can be set at a distance in the height direction from the glass layer of the battery lid, so the glass layer will not be damaged by the heat during welding and sealing.
For flat batteries with a total battery height of at most 10m+m, when an electrolyte inlet is provided at the terminal part of the battery lid, the distance between the welded sealing part and the glass layer is short, so the heat generated during welding and sealing is This causes the glass layer to break and become unusable.

また、他の部分に電解液注入口を設ける場合でも、その
溶接封止部分と電解液との距離が近接せざるを得ないた
め、溶接封止時の熱によって電解液が気化し、それが溶
接部分にまで飛来してくるため、溶接部分にピンホール
が発生して気密性が低下するなどの問題が生じ、扁平形
密閉電池が市場から要請されているにもかかわらず、商
品化されていないのが実状であった。
Furthermore, even if an electrolyte inlet is provided in another part, the distance between the welded sealing part and the electrolyte must be close, so the electrolyte may vaporize due to the heat during welding and sealing. Since the particles fly into the welded parts, problems such as pinholes forming in the welded parts and reduced airtightness occur, and despite the market demand for flat sealed batteries, they have not been commercialized. The reality was that there was no such thing.

そこで、本発明者らは、そのような要請に応えるべく検
討を重ね、電池容器の底部の中央部に電池内部側に先端
部を存する円筒状またはテーパ筒状の電解液注入口を設
け、電解液注入後に上記電解液注入口に封止栓を圧入し
て、電解液注入口を一旦封止した上で、この電解液注入
口の基端部側の開口部を金属製の封止板で覆い、該封止
板の外周部を電池容器の底部に溶接することによって、
液状のオキシハロゲン化物を土掻活物質として用い、ハ
ーメチックシールを採用した密閉性の高い扁平形密閉電
池を開発してきた。
Therefore, the inventors of the present invention have made repeated studies in order to meet such demands, and have provided a cylindrical or tapered cylindrical electrolyte inlet in the center of the bottom of the battery container with a tip on the inside of the battery. After injecting the electrolyte, press fit a sealing plug into the electrolyte injection port to temporarily seal the electrolyte injection port, and then close the opening on the base end side of the electrolyte injection port with a metal sealing plate. by covering and welding the outer periphery of the sealing plate to the bottom of the battery container,
We have developed a flat sealed battery with a hermetic seal that uses liquid oxyhalide as a soil scraping material and has a highly hermetic seal.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記のようなハーメチックシールを採用
した電池は、密閉性が高く、貯蔵性に優れているという
長所を有するものの、その反面、密閉性が高いために、
高温加熱下にさらされたり、あるいは高電圧で充電され
るなどの異常事態に遭遇したときに、電池の内部圧力が
異常に上界して電池が高圧下で破裂し、いわゆる電池爆
発が生じ、大きな破裂音が発生すると共に、電池内容物
が周囲に飛び散って電池使用機器を汚損することになる
However, although batteries employing the above-mentioned hermetic seal have the advantage of being highly airtight and have excellent storage properties, on the other hand, due to their high airtightness,
When a battery encounters an abnormal situation such as being exposed to high temperature heating or being charged at a high voltage, the internal pressure of the battery rises abnormally and the battery ruptures under high pressure, resulting in a so-called battery explosion. A loud bursting sound is generated, and the contents of the battery are scattered around, contaminating equipment that uses the battery.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、前記扁平形密閉電池における封止栓として金
属球を用い、封止板に防爆用の薄肉部を十字状に設ける
ことによって、オキシハロゲン化物を王権活物質として
用い、ハーメチックシールを採用して高い密閉性を有し
、しかも高圧下での電池破裂を防止し得る安全性の高い
扁平形密閉電池を提供したものである。
The present invention uses a metal ball as a sealing stopper in the flat sealed battery, provides a thin section for explosion protection on the sealing plate in a cross shape, uses an oxyhalide as a royal active material, and employs a hermetic seal. The present invention provides a highly safe flat sealed battery that has high sealing properties and can prevent battery explosion under high pressure.

すなわち、本発明の構成を実施例に対応する第1〜6図
に基づいて説明すると、本発明は電池容器(5)の底部
(5a)の中央部に電池内部側に先端部を有する円筒状
またはテーパ筒状の電解液注入口0りを設け、電解液注
入後に上記電解液注入口(121に金属球からなる封止
栓面を圧入し、上記電解液注入口0″IJの基端部側の
開口部を防爆用の薄肉部05)を十字状に設けた金属製
の封止板(14)で覆い、該封止板0滲の外周部を電池
容器00の底部(5a)に溶接してなることを特徴とす
る扁平形密閉電池に関する。
That is, the structure of the present invention will be explained based on FIGS. 1 to 6 corresponding to the embodiments. Alternatively, a tapered cylindrical electrolyte injection port 0'' is provided, and after injecting the electrolyte, a sealing plug surface made of a metal ball is press-fitted into the electrolyte injection port (121), and the proximal end of the electrolyte injection port 0''IJ is The side opening is covered with a metal sealing plate (14) having a cross-shaped thin part 05) for explosion-proofing, and the outer periphery of the sealing plate 05 is welded to the bottom (5a) of the battery container 00. This invention relates to a flat sealed battery characterized by:

〔作用〕[Effect]

まず、封止板04)の溶接にあたっては、円筒状または
テーパ筒状の電解液注入口0りに封止栓0■を圧入して
いるので、封止栓側にその周囲から電解液注入口(12
1の反撥応力がかかり、両者の密接度が高まらて、少な
くとも封止板04)の溶接が終了するまでの間は、上記
封止栓0′!Jによって電解液注入口(+21が封止さ
れているので、封止板(14)の溶接時に電解液の気化
物が溶接部分にまで飛来することがなく、したがって封
止板(14)の外周部を電池容器(5)の底部(5a)
に何らの妨げがなく溶接することができ、また、ピンホ
ールが発生することがない。
First, when welding the sealing plate 04), the sealing plug 0■ is press-fitted into the cylindrical or tapered cylindrical electrolyte inlet 0, so the electrolyte inlet is inserted into the sealing plug side from around it. (12
1 is applied, the closeness between the two increases, and at least until the welding of the sealing plate 04) is completed, the sealing plug 0'! Since the electrolyte inlet (+21) is sealed by J, vaporized electrolyte does not fly to the welding part when welding the sealing plate (14), and therefore the outer periphery of the sealing plate (14) the bottom (5a) of the battery container (5)
Welding can be performed without any hindrance, and pinholes do not occur.

そして、電池が高温加熱下にさらされたり、高電圧で充
電されるなど、電池が異常事態に遭遇して、電池内部の
圧力が異常に上昇したときには、その内圧上昇によって
、電解液注入口(12)に圧入されていた金属球からな
る封止栓0■が押し戻され、封止板0滲に当接して封止
板04を押圧するので、封止板04に設けた薄肉部05
)が安全性の確保できる範囲内の圧力で破壊して、高圧
下での電池破裂、つまり電池爆発が防止される。
If the battery encounters an abnormal situation, such as being exposed to high temperature heating or being charged at a high voltage, and the pressure inside the battery rises abnormally, the electrolyte injection port ( The sealing stopper 0■ made of a metal ball that had been press-fitted into the sealing plate 04 is pushed back, contacts the sealing plate 0, and presses the sealing plate 04, so that the thin wall portion 05 provided on the sealing plate 04
) is destroyed at a pressure within a safe range, preventing the battery from bursting under high pressure, or in other words, from exploding the battery.

C実施例〕 つぎに本発明の実施例を図面に基づいて説明する。ただ
し、実施例ではリチウム−塩化チオニル系の扁平形密閉
電池について説明するが、本発明はその場合のみに限ら
れるものではない。
C Embodiment] Next, an embodiment of the present invention will be described based on the drawings. However, although a lithium-thionyl chloride flat sealed battery will be described in the Examples, the present invention is not limited to that case.

第1図は本発明の扁平形密閉電池の一実施例を示す断面
図であり、第2図は第1図に示す電池の概略底面図であ
る。ただし、電池を示す断面図においては、断面より背
面側に位置する部分の外形線で、図示すると図面を繁雑
化させるおそれがあるものについては図示を省略してい
る。第3図は第1図に示す電池に使用された封止板を拡
大して示すもので、第3図(a)はその平面図、第3図
(b)は第3図(a)のA−A線断面図、第3図(C)
は第3図(a)のB−B線断面図、第3図(d)は底面
図である。
FIG. 1 is a sectional view showing an embodiment of the flat sealed battery of the present invention, and FIG. 2 is a schematic bottom view of the battery shown in FIG. 1. However, in the cross-sectional view of the battery, outline lines of portions located on the back side of the cross section, which may make the drawings complicated if shown, are omitted. Figure 3 shows an enlarged view of the sealing plate used in the battery shown in Figure 1. Figure 3 (a) is its top view, and Figure 3 (b) is the same as that of Figure 3 (a). A-A line sectional view, Figure 3 (C)
3(a) is a sectional view taken along line BB in FIG. 3(a), and FIG. 3(d) is a bottom view.

まず、電池の構成について概略的に説明すると、(+1
はリチウムからなる負極、(2)は炭素多孔質成形体か
らなる正極で、(3)はガラス繊維不繊布からなるセパ
レータであり、上記負極(1)と正極(2)とを隔fa
t、ティる。(4)は電解液で、(5)はステンレス鋼
製の電池容器、(6)は電池蓋であり、この電池蓋(6
)は環状でステンレス鋼製のボディ(7)とガラスから
なる絶縁層(8)とステンレス鋼製の正極側の端子(9
)とからなり、上記ボディ(7)の外周部は電池容器(
5)の開口端部と溶接されている。Oωは正極側の集電
体であり、ステンレス鋼製網からなり、正極側の端子(
9)の下部にスポット溶接されている。0()はガラス
繊維不織布からなる絶縁体で、正極(2)および正極集
電体0ωと電池蓋(6)のボディ(7)との間を絶縁し
ている。(12)は電解液注入口であり、この電解液注
入口(12)は電池容器(5)の底部(5a)の中央部
に設けられているが、本実施例のものは先端部を電池内
部側に存する円筒状に形成されていて、電解液注入後に
ステンレス鋼球からなる封止栓0■が圧入されている。
First, to roughly explain the structure of the battery, (+1
is a negative electrode made of lithium, (2) is a positive electrode made of a porous carbon molded body, and (3) is a separator made of glass fiber nonwoven fabric, which separates the negative electrode (1) and the positive electrode (2).
t, tiru. (4) is an electrolyte, (5) is a stainless steel battery container, and (6) is a battery lid.
) is an annular stainless steel body (7), an insulating layer (8) made of glass, and a stainless steel positive terminal (9).
), and the outer periphery of the body (7) is a battery container (
It is welded to the open end of 5). Oω is the current collector on the positive electrode side, which is made of stainless steel mesh, and the terminal on the positive electrode side (
9) is spot welded at the bottom. 0() is an insulator made of glass fiber nonwoven fabric, which insulates between the positive electrode (2) and the positive electrode current collector 0ω and the body (7) of the battery lid (6). (12) is an electrolyte injection port, and this electrolyte injection port (12) is provided at the center of the bottom (5a) of the battery container (5), but in this example, the tip is connected to the battery. It is formed into a cylindrical shape that exists on the inside, and a sealing plug 0 made of a stainless steel ball is press-fitted after the electrolyte is injected.

041はステンレス鋼製の封止板で、その中央部で電解
液注入口(121の基端部側の開口部を覆い、外周部が
電池容器(5)の底部(5a)に溶接されている。
041 is a sealing plate made of stainless steel, the central part of which covers the opening on the base end side of the electrolyte inlet (121), and the outer peripheral part is welded to the bottom (5a) of the battery container (5). .

そして、この封止板側には後に詳述するように防爆用の
薄肉部aつが十字状に設けられている。この電池は、外
径33−園、電池総高6.5+111の円板状をした扁
平形電池である。
Further, on this sealing plate side, as will be described in detail later, two thin-walled parts for explosion-proofing are provided in a cross shape. This battery is a disk-shaped flat battery with an outer diameter of 33mm and a total height of 6.5+111mm.

つぎに、主要構成部材について詳しく説明していくと、
負1)はリング状に打抜いたリチウムシートを電池容器
(5)の底部内面に圧着したものであって、負極活物質
のリチウムのみで構成され、正極(2)はアセチレンブ
ラックを主成分とし、これに黒鉛とポリテトラフルオロ
エチレンを添加した炭素質を主材とする材料の多孔質成
形体、いわゆる炭素多孔質成形体からなるものである。
Next, we will explain the main components in detail.
Negative 1) is a lithium sheet punched into a ring shape and crimped onto the bottom inner surface of the battery container (5), and is composed only of lithium as the negative electrode active material, while the positive electrode (2) is mainly composed of acetylene black. , a porous molded body made of a material mainly composed of carbonaceous material to which graphite and polytetrafluoroethylene are added, a so-called carbon porous molded body.

電解液(4)は塩化チオニルに四塩化アルミニウムリチ
ウムを1、Omol/j!溶解した塩化チオニル溶液か
らなり、塩化チオニルは上記のように電解液溶媒である
とともに正極活物質でもある。このように塩化チオニル
が正極活物質として用いられていることからもわかるよ
うに、上記正極(2)はそれ自身が反応するものではな
く、正極活物質の塩化チオニルと負極(1)からイオン
化して溶出してきたリチウムイオンとの反応場所を提供
するものである。
Electrolyte solution (4) is 1 lithium aluminum tetrachloride in thionyl chloride, Omol/j! It consists of a dissolved thionyl chloride solution, and thionyl chloride is both the electrolyte solvent and the positive electrode active material as described above. As can be seen from the fact that thionyl chloride is used as the positive electrode active material, the positive electrode (2) itself does not react, but is ionized from the positive electrode active material thionyl chloride and the negative electrode (1). This provides a site for reaction with lithium ions that have been eluted.

電池容器(5)は厚さ0.5ffimのステンレス鋼板
で直径331、高さ6ffi11の容器状に形成され、
その底部(5a)の中央部を電池内部側に向けて凸出さ
せ(電池の底部外面からは電池内部側に凹んだ状態にさ
せている)、その凸出した部分の中央に内径2.11I
I11で電池内部側に先端部を有する高さ約1.51の
円筒状の電解液注入口(+21が設けられている。なお
、円筒状の電解液注入口(121とは、電解液の注入に
際し、電解液の通過し得る空隙が円筒によって形成され
たものであることを意味している。
The battery container (5) is made of a stainless steel plate with a thickness of 0.5ffim and is formed into a container shape with a diameter of 331 cm and a height of 6ffi11,
The central part of the bottom (5a) is made to protrude toward the inside of the battery (from the outside of the bottom of the battery, it is recessed towards the inside of the battery), and the center of the protruding part has an inner diameter of 2.11I.
At I11, a cylindrical electrolyte injection port (+21) with a height of about 1.51 with a tip on the inside of the battery is provided. This means that the gap through which the electrolytic solution can pass is formed by a cylinder.

電池蓋(6)は前記のようにステンレス鋼製のボディ(
7)とガラスからなる環状の絶縁層(8)とステンレス
鋼製の正極側の端子(9)とからなり、上記ガラスから
なる絶縁層(8)はその外周面でステンレス鋼製のボデ
ィ(7)の内周面に溶着し、その内周面でステンレス鋼
製の正極側の端子(9)の外周面に溶着していて、いわ
ゆるメタル−ガラス−メタルのハーメチックシールを持
ち、また、前記のように電池蓋(6)のボディ(7)は
電池容器(5)の開口端部に溶接されていて、この電池
はいわゆる完全密閉構造となり得るように構成されてい
る。
As mentioned above, the battery cover (6) has a stainless steel body (
7), an annular insulating layer (8) made of glass, and a positive terminal (9) made of stainless steel. ), and the inner circumferential surface is welded to the outer circumferential surface of the stainless steel positive terminal (9), and has a so-called metal-glass-metal hermetic seal. As such, the body (7) of the battery cover (6) is welded to the open end of the battery container (5), and this battery is configured to have a so-called completely sealed structure.

封止栓0■は直径2.3n+n+のステンレス鋼球から
なり、この封止栓側の直径は前記電解液注入口(121
の内径より若干大きく、電解液注入後の電解液注入口(
12)に圧入されている。そのため、この封止栓面には
その周囲から電解液注入口(12)の反撥応力がかかり
、両者の密接度が高くなって、電解液注入口Q2)は少
なくとも封止板(ロ)の封止溶接が終了するまでの間、
上記封止栓0湯によって封止される。したがって、少な
くとも封止板(ロ)の外周部を電池容器(5)の底部(
5a)に溶接しおわるまでの間は、電解液の気化物が溶
接部分に出てくることがないので、溶接が妨げられるこ
となくスムーズに行うことができ、またピンホールを生
じることがない、封止板θaは厚さ0.3mm、直径5
+*mのステンレス鋼板がらなり、その中央部で電解液
注入口07Jの基端部側の開口部を覆い、その外周部が
電池容器(5)の底部(5a)に炭酸ガスレーザーで溶
接され(溶接条件は出カニ  400W、溶接速度: 
20mm/5ec) 、それによって上記電解液注入口
θ′!Jは完全に封止される。
The sealing plug 0■ consists of a stainless steel ball with a diameter of 2.3n+n+, and the diameter of this sealing plug side is the same as that of the electrolyte injection port (121
It is slightly larger than the inner diameter of the electrolyte injection port (
12). Therefore, the repulsive stress of the electrolyte inlet (12) is applied to this sealing plug surface from the surrounding area, and the closeness between the two increases, so that the electrolyte inlet Q2) is at least sealed by the sealing plate (b). Until the stop welding is completed,
It is sealed with the above-mentioned sealing plug. Therefore, at least the outer periphery of the sealing plate (b) is connected to the bottom (5) of the battery container (5).
Until the welding is completed in 5a), the vaporized substance of the electrolyte does not come out to the welding part, so welding can be performed smoothly without being hindered, and pinholes do not occur. The sealing plate θa has a thickness of 0.3 mm and a diameter of 5
+*m stainless steel plate, its central part covers the proximal opening of the electrolyte inlet 07J, and its outer periphery is welded to the bottom (5a) of the battery container (5) using a carbon dioxide laser. (Welding conditions are Dekani 400W, welding speed:
20mm/5ec), thereby the electrolyte injection port θ'! J is completely sealed.

そして、上記封止板OIOには、第3図に詳しく示され
ているように、防爆用の薄肉部0ωが十字状に設けられ
ている。この薄肉部05)は、例えばプレス加工により
、第4図(この第4図は第3図(a)のC−C線におけ
る断面の要部を拡大したものである)に示すように、断
面が台形状(ただし、凸形状)の溝00を形成すること
によって設けられたものであり、ここでは、薄肉部05
)の厚さtは0.07m5で、薄肉部cつの幅Wは0.
15mm、溝0ωの形成角度θは60’にしている。
As shown in detail in FIG. 3, the sealing plate OIO is provided with a cross-shaped thin part 0ω for explosion protection. This thin-walled portion 05) is formed by, for example, press working into a cross-sectional shape as shown in FIG. is provided by forming a trapezoidal (but convex) groove 00, and here, the thin wall portion 05
) has a thickness t of 0.07 m5, and a width W of the thin portion c of 0.07 m5.
15 mm, and the forming angle θ of the groove 0ω is 60′.

本実施例の電池は上記のように構成されるので、もし、
この電池が高温加熱下にさらされたり、高電圧で充電さ
れるなど、異常事態に遭遇して、電池内部の圧力が異常
に上昇しはじめたときは、その圧力上昇によって、電解
液注入口0りに圧入されている封止栓03)が押し戻さ
れ、封止栓α4に当接して封止板(ロ)を押圧する。そ
の結果、封止板側の薄肉部0りが高圧になるまえの安全
性の確保できる範囲内の圧力で破壊(薄肉部051の端
部が開裂する)して、高圧下での電池破裂、つまり爆発
が防止される。
The battery of this example is constructed as described above, so if
If this battery encounters an abnormal situation, such as being exposed to high temperature heating or being charged at a high voltage, and the pressure inside the battery begins to rise abnormally, the pressure increase may cause the electrolyte inlet to close. The sealing plug 03) that has been press-fitted is pushed back, comes into contact with the sealing plug α4, and presses the sealing plate (b). As a result, the thin wall part 051 on the sealing plate side breaks under pressure within the range that can ensure safety before the pressure becomes high (the end of the thin wall part 051 ruptures), and the battery ruptures under high pressure. In other words, explosions are prevented.

第5図は本発明の扁平形密閉電池の他の実施例を示す断
面図であり、第6図は第5図に示す電池の概略底面図で
ある。
FIG. 5 is a sectional view showing another embodiment of the flat sealed battery of the present invention, and FIG. 6 is a schematic bottom view of the battery shown in FIG. 5.

この第5図に示す電池では、電解液注入口(12+をテ
ーパ筒状にしている点やそれに伴って封止板(ロ)の直
径が6−−と大きくなっている点などが、前記第1図に
示す電池と異なっているが、それらを除いては前記第1
図に示す電池とほぼ同様に構成されている。なお、電解
液注入口(121がテーパ筒状をしているとは、電解液
の注入に際し、電解液の通過し得る空隙がテーパ筒によ
って形成されたちのであることを意味している。
In the battery shown in FIG. 5, the electrolyte injection port (12+) has a tapered cylindrical shape, and the diameter of the sealing plate (B) has increased to 6--, etc. It is different from the battery shown in Figure 1, except for the battery shown in Figure 1 above.
The structure is almost the same as the battery shown in the figure. Note that the electrolyte injection port (121) having a tapered cylindrical shape means that the tapered tube forms a gap through which the electrolyte can pass when the electrolyte is injected.

この第5図に示す電池においても、電池容器(5)の底
部(5a)の中央部に電解液注入口(12)が設けられ
(ただし、電池容器(5)の底部(5a)の中央部を電
池内部側に凸出させ、その凸出した部分の中央に電解液
注入口θりを設けていて、その電解液注入口(+2)は
テーパ状をしている)、その電解液注入口(12)の先
端部の最も内径の小さいところの内径は2.1mmであ
り、封止栓Q3)のステンレス鋼球の直径は2.3ff
lImであって、封止栓031の直径は電解液注入口0
りの上記内径より若干大きく、電解液注入口(121に
封止栓03)が圧入されている。そして、上記電解液注
入口0りの基端部側の開口部は防爆用の薄肉部0!IO
を十字状に設けた封止板04)で覆われ、該封止板(1
4)の外周部は電池容器(5)の底部(5a) (ただ
し、中央部の凸出させた部分)に炭酸ガスレーザーによ
り溶接されている。上記封止板04)は直径6 mm、
厚さ0.31111のステンレス鋼板からなり、その十
字状に設けられた薄肉部05)の厚みは前記第1図に示
す電池の場合と同様に0.07+ueである。
In the battery shown in FIG. 5 as well, the electrolyte inlet (12) is provided at the center of the bottom (5a) of the battery container (5) (however, the electrolyte inlet (12) is provided at the center of the bottom (5a) of the battery container (5). The electrolyte inlet (+2) has a tapered shape, and the electrolyte inlet (+2) is tapered. The inner diameter of the tip of (12) with the smallest inner diameter is 2.1 mm, and the diameter of the stainless steel ball of the sealing plug Q3) is 2.3 ff.
lIm, and the diameter of the sealing plug 031 is the electrolyte injection port 0.
The electrolyte injection port (sealing plug 03 in 121) is press-fitted into the electrolyte injection port (121). The opening on the base end side of the electrolyte inlet 0 is an explosion-proof thin wall part 0! IO
The sealing plate (1) is covered with a sealing plate (04) provided in a cross shape.
The outer periphery of 4) is welded to the bottom (5a) of the battery container (5) (the protruding central portion) using a carbon dioxide laser. The above sealing plate 04) has a diameter of 6 mm,
It is made of a stainless steel plate with a thickness of 0.31111 mm, and the thickness of the cross-shaped thin wall portion 05) is 0.07+ue as in the case of the battery shown in FIG. 1.

したがって、この電池も、高温加熱下にさらされたり、
高電圧で充電されるなど、電池が異常事態に遭遇して、
電池の内部圧力が異常上昇しはじめたときは、その内圧
上昇によって、電解液注入口QZに圧入されている封止
栓03が押し戻され、封止板04)に当接して封止板0
4)を押圧するので、封止板041の薄肉部qつが安全
性の確保できる範囲内の圧力で破壊して、電池の高圧下
での破裂、つまり爆発を防止する。
Therefore, this battery is also exposed to high temperature heating,
If the battery encounters an abnormal situation, such as being charged at a high voltage,
When the internal pressure of the battery begins to rise abnormally, the sealing plug 03 press-fitted into the electrolyte injection port QZ is pushed back due to the internal pressure rise, and comes into contact with the sealing plate 04), causing the sealing plate 0 to close.
4), the q thin-walled portions of the sealing plate 041 are destroyed under pressure within a safe range, thereby preventing the battery from bursting under high pressure, that is, from exploding.

つぎに、上記第1図に示す実施例の電池および第5図に
示す実施例の電池について高温加熱試験を行い、薄肉部
0ωの破壊による防爆機能の作動状況を副べた結果を第
1表に示す、第1表においては、第1図に示す実施例の
電池を電池A、第5図に示す実施例の電池を電池Bで示
すが、高温加熱試験にあたっては、両電池とも10個ず
つ用意し、電気マツフル炉中に電池を入れ、昇温速度3
0℃/分で加熱し、そのときの防爆機能の作動状況を調
べた。なお、第1表中の「防爆機能の作動状況」を表す
欄の数値の分母は試験に供した電池個数を示し、分子は
薄肉部05)が破壊して防爆機能が作動した電池個数を
示している。
Next, high-temperature heating tests were conducted on the battery of the example shown in Figure 1 above and the battery of the example shown in Figure 5, and Table 1 shows the results of the operation status of the explosion-proof function due to the destruction of the thin wall part 0ω. In Table 1, the battery according to the example shown in Figure 1 is designated as battery A, and the battery according to the example shown in Figure 5 is designated as battery B. In the high temperature heating test, 10 pieces of each of both batteries were prepared. Then, put the battery in an electric Matsufuru furnace, and increase the heating rate to 3.
It was heated at 0°C/min and the operating status of the explosion-proof function at that time was investigated. In addition, the denominator of the numerical value in the column representing "operation status of explosion-proof function" in Table 1 indicates the number of batteries subjected to the test, and the numerator indicates the number of batteries in which the thin wall part 05) was destroyed and the explosion-proof function was activated. ing.

第    1 表 上記第1表に示すように、本発明の電池は、電池A、電
池Bとも、170〜230 ’Cの温度領域ですべての
電池の防爆機能が作動し、高温加熱下にさらされた場合
などには、電池温度が高温になりすぎないうちに、つま
り、電池内部の圧力が高くなりすぎないうちに、薄肉部
051の破壊による防爆機能が作動した。ちなみに、同
様の構造をとり、封圧板に防爆用の薄肉部を設けていな
い電池では、上記高温加熱試験で、250〜290°C
の温度領域で電池容器の底部が破壊して、いわゆる電池
爆発を生じた。
Table 1 As shown in Table 1 above, the batteries of the present invention, for both Battery A and Battery B, operate in the temperature range of 170-230'C, and are not exposed to high-temperature heating. In such a case, the explosion-proof function due to the destruction of the thin wall portion 051 was activated before the battery temperature became too high, that is, before the pressure inside the battery became too high. By the way, a battery with a similar structure but without an explosion-proof thin section on the sealing pressure plate was tested at a temperature of 250 to 290°C in the high-temperature heating test mentioned above.
The bottom of the battery container broke in the temperature range of 200 to 3000, causing a so-called battery explosion.

つぎに、前記高温加熱試験の場合のように実装電池にせ
ず、第1図に示す電池の電池容器(5)および第5図に
示す電池の電池容器(5)に、頁捲などの発電要素をま
ったく充填せず、それらの電池容器(5)の電解液注入
口(12)にそれぞれ前記と同様の封止栓03)を圧入
し、その電解液注入口Q21の基端部側の開口部を防爆
用の薄肉部0ωを十字状に設けた封圧板04で覆い、該
封止板側の外周部を電池容器(5)の底部(5a)に炭
酸ガスレーザーで溶接して、電解液注入口(12)を封
止し、これらの電池容器(5)を加圧治具に接続し、水
圧で加圧して、防爆用の薄肉部θつの破壊圧力を調べ、
その結果を第2表に示した。
Next, instead of mounting the battery as in the case of the high-temperature heating test, a power generating element such as a page-turning element was placed in the battery container (5) of the battery shown in FIG. 1 and the battery container (5) of the battery shown in FIG. The same sealing plugs 03) as described above are press-fitted into the electrolyte injection ports (12) of these battery containers (5) without filling them at all, and the opening on the proximal end side of the electrolyte injection ports Q21 is press-fitted. is covered with a sealing plate 04 having a cross-shaped thin wall portion 0ω for explosion protection, and the outer periphery of the sealing plate is welded to the bottom (5a) of the battery container (5) using a carbon dioxide laser, and the electrolyte is injected. The inlet (12) is sealed, these battery containers (5) are connected to a pressurizing jig, pressurized with water pressure, and the burst pressure of the thin-walled parts θ for explosion protection is checked.
The results are shown in Table 2.

なお、試験にあたっては、電池Aの電池容器(5)、電
池Bの電池容器(5)とも、10個ずつ用いた。
In the test, 10 battery containers (5) for battery A and 10 battery containers (5) for battery B were used.

第    2    表 上記第2表に示すように、電池A0)電池容器(5)、
電池Bの電池容器(5)とも、その封止板側の薄肉部0
5)が80〜110 kg/cdで破壊したが、比較の
ため、それぞれの電池(電池Aおよび電池B)の電池容
器に防爆用の薄肉部0つを設けていない封止板041を
溶接して同様の加圧試験を行った場合は、両者とも40
0kg/dで電池容器が破壊して、大きな破裂音を伴っ
た。
Table 2 As shown in Table 2 above, battery A0) battery container (5),
The battery container (5) of battery B also has a thin wall part 0 on its sealing plate side.
5) was destroyed at 80 to 110 kg/cd, but for comparison, welded a sealing plate 041 without any thin-walled parts for explosion protection to the battery container of each battery (Battery A and Battery B). When a similar pressure test was conducted with
At 0 kg/d, the battery container broke, accompanied by a loud bursting sound.

上記高温加熱試験および加圧試験の結果からも明らかな
ように、本発明の実施例の電池では、電池が高温加熱下
にさらされたり、高電圧で充電されるなど、異常事態に
遭遇して、電池の内部圧力が異常上昇しはじめたときに
は、封止板04に設けた防爆用の薄肉部0ωが安全性の
確保できる範囲内の圧力で破壊して、電池の高圧下での
破裂、つまり爆発を防止することができる。
As is clear from the results of the high-temperature heating test and pressurization test, the batteries of the examples of the present invention do not encounter abnormal situations such as being exposed to high-temperature heating or being charged at high voltage. When the internal pressure of the battery begins to rise abnormally, the explosion-proof thin wall part 0ω provided on the sealing plate 04 will break under pressure within a safe range, causing the battery to burst under high pressure, i.e. Explosion can be prevented.

上記実施例では、封止栓いとしてステンレス鋼製のもの
を用いたが、ステンレス鋼以外にも、ニッケル製のもの
などであってもよい。
In the above embodiment, the sealing stopper is made of stainless steel, but it may be made of nickel or the like instead of stainless steel.

また、実施例では、封止板側が電池容器(5)の底面か
ら電池外部側に飛び出さないように、電池容器(5)の
底部(5a)の中央部を電池内部側に凸出させ、その凸
出した部分に電解液注入口(12)を設けたが、そのよ
うに電池容器(5)の底部(5a)の中央部を凸出させ
ることなく、電解液注入口(121を設けてもよい。
In addition, in the embodiment, in order to prevent the sealing plate from protruding from the bottom of the battery container (5) to the outside of the battery, the center portion of the bottom (5a) of the battery container (5) is made to protrude toward the inside of the battery. The electrolyte inlet (12) was provided in the protruding part, but the electrolyte inlet (121) was provided without protruding the center part of the bottom (5a) of the battery container (5). Good too.

さらに、実施例では、絶縁層(8)をガラスで構成した
が、ガラスに代えて、セラミックスで絶縁層(8)を構
成してもよい。そして、実施例では、負極活物質として
リチウムを用い、正極活物質として塩化チオニルを用い
たリチウム−塩化チオニル電池について説明したが、負
極活物質としてはナトリウム、カリウムなどのリチウム
以外のアルカリ金属であってもよいし、正極活物質も塩
化チオニル以外に塩化スルフリル、塩化ホスホリルなど
の常温(25°C)で液体のオキシハロゲン化物(オキ
シハライド)であってもよい。
Further, in the embodiment, the insulating layer (8) is made of glass, but the insulating layer (8) may be made of ceramic instead of glass. In the example, a lithium-thionyl chloride battery was described in which lithium was used as the negative electrode active material and thionyl chloride was used as the positive electrode active material. However, the negative electrode active material may be an alkali metal other than lithium such as sodium or potassium. Alternatively, the positive electrode active material may also be an oxyhalide that is liquid at room temperature (25° C.), such as sulfuryl chloride or phosphoryl chloride, in addition to thionyl chloride.

なお、本発明において、電解液注入口0りの形状を円筒
状またはテーパ筒状と説明したが、本発明は電池総高が
高々10+on程度の扁平形電池を対象としている関係
で、それらの高さは実施例でも示したように、]、、5
mm程度のものであって、高さの高いものではない。
In addition, in the present invention, the shape of the electrolyte inlet is described as being cylindrical or tapered, but since the present invention is intended for flat batteries with a total battery height of about 10+ on, the shape of the electrolyte injection port is not limited to those heights. As shown in the example, ], 5
It is about mm in height and is not very tall.

また、封止板0aの電池容器(5)の底部(5a)に溶
接する部分をその外周部と表現したが、溶接する部分は
、電解液注入口0りの基端部側の開口部の周囲でさえあ
ればよく、電解液注入口(12+の基端部側の開口部を
覆っている部分を中央部と表現した場合に対応する表現
であって、封止板Q41が大きい直径のものである場合
にその外周端近くの一部のみを指すものではない。
In addition, the part of the sealing plate 0a to be welded to the bottom (5a) of the battery container (5) was expressed as its outer periphery, but the part to be welded is the opening on the base end side of the electrolyte injection port 0. It only needs to be around the periphery, and this expression corresponds to the expression that the part covering the opening on the proximal end side of the electrolyte inlet (12+) is the central part, and the sealing plate Q41 has a large diameter. , it does not refer only to a part near the outer peripheral edge.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、電池容器(5)の底
部(5a)の中央部に円筒状またはテーバ筒状の電解液
注入口qりを設け、電解液注入後、上記電解液注入口0
りに金属球からなる封止栓θりを圧入し、上記電解液注
入口0′IJの基端部側の開口部を、防爆用の薄肉部G
つを十字状に設けた封止板04で覆い、該封止板(14
)の外周部を電池容器(5)の底部(5a)に溶接して
、電解液注入口(12)を封止することにより、オキシ
ハロゲン化物を正極活物質として用い、ハーメチックシ
ールを採用して高い密閉性を保持しながら、高圧下での
電池破裂、つまり電池爆発を防止することができる安全
性の高い扁平形密閉電池を提供することができた。
As explained above, in the present invention, a cylindrical or tapered cylindrical electrolyte inlet q is provided in the center of the bottom (5a) of the battery container (5), and after the electrolyte is injected, the electrolyte inlet 0
A sealing plug θ made of a metal ball is press-fitted into the hole, and the opening on the proximal end side of the electrolyte inlet 0'IJ is connected to the explosion-proof thin wall G.
The sealing plate (14) is covered with a sealing plate 04 provided in a cross shape.
) is welded to the bottom (5a) of the battery container (5) and the electrolyte inlet (12) is sealed, thereby using an oxyhalide as the positive electrode active material and adopting a hermetic seal. It was possible to provide a highly safe flat sealed battery that can prevent battery rupture under high pressure, that is, battery explosion, while maintaining high sealing performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の扁平形密閉電池の一実施例を示す断面
図であり、第2図は第1図に示す電池の概略底面図であ
る。第3図は封止板を拡大して示すもので、第3図(a
)はその平面図、第3図(ハ)は第3図(a)のA−A
線断面図、第3図(C)は第3図(a) (7)B−B
線断面図、第3図(d)は底面図である。第4図は封止
板に設けた薄肉部とその周辺の拡大断面図である。第5
図は本発明の扁平形密閉電池の他の実施例を示す断面図
であり、第6図は第5図に示す電池の概略底面図である
。 (1)・・・負極、 (2)・・・王権、 (3)・・
・セパレータ、(4)・・・電解液、 (5)・・・電
池容器、 (5a)・・・底部、(6)・・・電池蓋、
 (7)・・・ボディ、 (8)・・・絶縁層、(9)
・・・端子、 (12)・・・電解液注入口、 q■・
・・封止栓、04・・・封止板、 09・・・薄肉部第 図 14・・・封止板 15・・・薄肉部 第 図
FIG. 1 is a sectional view showing an embodiment of the flat sealed battery of the present invention, and FIG. 2 is a schematic bottom view of the battery shown in FIG. 1. Figure 3 shows an enlarged view of the sealing plate.
) is the plan view, and Fig. 3 (c) is the A-A of Fig. 3 (a).
Line sectional view, Figure 3 (C) is Figure 3 (a) (7) B-B
A line sectional view, and FIG. 3(d) is a bottom view. FIG. 4 is an enlarged sectional view of the thin wall portion provided on the sealing plate and its surroundings. Fifth
The figure is a sectional view showing another embodiment of the flat sealed battery of the present invention, and FIG. 6 is a schematic bottom view of the battery shown in FIG. 5. (1)...Negative pole, (2)...Kingship, (3)...
・Separator, (4)... Electrolyte, (5)... Battery container, (5a)... Bottom, (6)... Battery lid,
(7)...Body, (8)...Insulating layer, (9)
...terminal, (12)...electrolyte inlet, q■・
...Sealing plug, 04...Sealing plate, 09...Thin wall part Fig. 14...Sealing plate 15...Thin wall part Fig.

Claims (1)

【特許請求の範囲】[Claims] (1)負極活物質としてリチウム、ナトリウム、カリウ
ムなどのアルカリ金属を用い、正極活物質として塩化チ
オニル、塩化スルフリル、塩化ホスホリルなどの常温で
液体のオキシハロゲン化物を用い、上記負極活物質およ
び正極活物質を含む発電要素を電池容器(5)と電池蓋
(6)とで密閉する扁平形密閉電池であって、上記電池
蓋(6)は金属製で環状のボディ(7)と上記環状のボ
ディ(7)の内周側に位置しガラスまたはセラミックス
からなる環状の絶縁層(8)と上記環状の絶縁層(8)
の中心部に位置する一方の電極の端子(9)とからなり
、該電池蓋(6)のボディ(7)の外周部は前記電池容
器(5)の開口端部に溶接され、電池容器(5)の底部
(5a)の中央部には電池内部側に先端部を有する円筒
状またはテーパ筒状の電解液注入口(12)が設けられ
、電解液注入後に該電解液注入口(12)に金属球から
なる封止栓(13)を圧入し、上記電解液注入口(12
)の基端部側の開口部を防爆用の薄肉部(15)を十字
状に設けた金属製の封止板(14)で覆い、該封止板(
14)の外周部を電池容器(5)の底部(5a)に溶接
してなることを特徴とする扁平形密閉電池。
(1) An alkali metal such as lithium, sodium, or potassium is used as the negative electrode active material, and an oxyhalide that is liquid at room temperature such as thionyl chloride, sulfuryl chloride, or phosphoryl chloride is used as the positive electrode active material. A flat sealed battery in which a power generation element containing a substance is sealed between a battery container (5) and a battery lid (6), wherein the battery lid (6) is made of metal and includes a metal annular body (7) and the annular body. (7) An annular insulating layer (8) made of glass or ceramics located on the inner circumference side and the annular insulating layer (8)
The outer periphery of the body (7) of the battery lid (6) is welded to the open end of the battery container (5). A cylindrical or tapered cylindrical electrolyte injection port (12) having a tip on the inside of the battery is provided in the center of the bottom (5a) of 5), and after the electrolyte injection, the electrolyte injection port (12) A sealing plug (13) made of a metal ball is press-fitted into the electrolyte injection port (12).
) is covered with a metal sealing plate (14) having a cross-shaped explosion-proof thin walled part (15), and the sealing plate (
14) A flat sealed battery characterized in that the outer periphery of the battery container (5) is welded to the bottom (5a) of the battery container (5).
JP63214578A 1988-08-29 1988-08-29 Flat sealed battery Pending JPH0265052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63214578A JPH0265052A (en) 1988-08-29 1988-08-29 Flat sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63214578A JPH0265052A (en) 1988-08-29 1988-08-29 Flat sealed battery

Publications (1)

Publication Number Publication Date
JPH0265052A true JPH0265052A (en) 1990-03-05

Family

ID=16658037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63214578A Pending JPH0265052A (en) 1988-08-29 1988-08-29 Flat sealed battery

Country Status (1)

Country Link
JP (1) JPH0265052A (en)

Similar Documents

Publication Publication Date Title
KR100324863B1 (en) Explosion-proof seal plate for enclosed type cell and production method thereof
EP0360039B1 (en) A flat typed sealed battery with hermetic sealing structure
US3939011A (en) Lithium cell with internal automatic safety controls
CN111755633B (en) Button cell
JP2006093136A (en) Secondary battery
EP1763098B1 (en) Liquid action substance battery
US5702840A (en) Vent cap for a lithium battery
EP0798793A2 (en) Battery equipped with diaphragm safety relief valve
JPH0290455A (en) Cylindrical sealed battery
JPH0265052A (en) Flat sealed battery
JPH0737568A (en) Safety valve for nonaqueous electrolyte secondary battery
JPH0265055A (en) Flat sealed battery
JPH0265053A (en) Flat sealed battery
JPH0644025Y2 (en) Safety valve device for organic electrolyte battery
JPH0265048A (en) Flat sealed battery
JPH0290457A (en) Flat sealed battery
JPS60198051A (en) Sealed battery
JPH0265054A (en) Flat sealed battery
JPH0512929Y2 (en)
JPH0648766Y2 (en) Airtight terminal
KR100858797B1 (en) Cap assembly and secondary battery applying the same
JPS59228357A (en) Enclosed type lithium battery
JPH0584026U (en) Organic electrolyte battery
JPH0793129B2 (en) Flat sealed battery
JPH0581940U (en) Organic electrolyte battery