JPH0265054A - Flat sealed battery - Google Patents
Flat sealed batteryInfo
- Publication number
- JPH0265054A JPH0265054A JP63214580A JP21458088A JPH0265054A JP H0265054 A JPH0265054 A JP H0265054A JP 63214580 A JP63214580 A JP 63214580A JP 21458088 A JP21458088 A JP 21458088A JP H0265054 A JPH0265054 A JP H0265054A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- explosion
- battery container
- sealed
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003792 electrolyte Substances 0.000 claims description 36
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 claims description 16
- 238000002347 injection Methods 0.000 claims description 14
- 239000007924 injection Substances 0.000 claims description 14
- 239000011521 glass Substances 0.000 claims description 10
- 239000007774 positive electrode material Substances 0.000 claims description 9
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 7
- 229910052744 lithium Inorganic materials 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 3
- 239000007773 negative electrode material Substances 0.000 claims description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 2
- 229910052783 alkali metal Inorganic materials 0.000 claims description 2
- 150000001340 alkali metals Chemical class 0.000 claims description 2
- 239000000919 ceramic Substances 0.000 claims description 2
- 229910052700 potassium Inorganic materials 0.000 claims description 2
- 239000011591 potassium Substances 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical compound ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 claims description 2
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 claims 2
- 238000010248 power generation Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 238000004880 explosion Methods 0.000 abstract description 9
- 230000009172 bursting Effects 0.000 abstract description 6
- 238000007789 sealing Methods 0.000 description 27
- 230000006870 function Effects 0.000 description 23
- 229910001220 stainless steel Inorganic materials 0.000 description 10
- 239000010935 stainless steel Substances 0.000 description 10
- 238000003466 welding Methods 0.000 description 9
- 230000002159 abnormal effect Effects 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- SOZVEOGRIFZGRO-UHFFFAOYSA-N [Li].ClS(Cl)=O Chemical compound [Li].ClS(Cl)=O SOZVEOGRIFZGRO-UHFFFAOYSA-N 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- -1 polytetrafluoroethylene Polymers 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- KPZGRMZPZLOPBS-UHFFFAOYSA-N 1,3-dichloro-2,2-bis(chloromethyl)propane Chemical compound ClCC(CCl)(CCl)CCl KPZGRMZPZLOPBS-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/172—Arrangements of electric connectors penetrating the casing
- H01M50/174—Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/60—Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
- H01M50/609—Arrangements or processes for filling with liquid, e.g. electrolytes
- H01M50/627—Filling ports
- H01M50/636—Closing or sealing filling ports, e.g. using lids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/30—Arrangements for facilitating escape of gases
- H01M50/342—Non-re-sealable arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/30—Arrangements for facilitating escape of gases
- H01M50/342—Non-re-sealable arrangements
- H01M50/3425—Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Gas Exhaust Devices For Batteries (AREA)
- Primary Cells (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は防爆機能を備えた扁平形密閉電池に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a flat sealed battery with an explosion-proof function.
近年、電子機器の発達に伴い、自己放電が小さく、長寿
命のリチウム電池が多く使用されるようになってきた。In recent years, with the development of electronic devices, lithium batteries with low self-discharge and long life have come into widespread use.
そこで、CMOS R’AMのメモリバックアップ用
電源として筒形で電池蓋にメタル−ガラス−メタルのハ
ーメチックシールを採用したリチウム−塩化チオニル電
池が開発され(例えば、特開昭59−51458号公報
)、これらは密閉性が高<10年間以上にわたって使用
できることがら急、速に需要が伸びている。Therefore, as a memory backup power source for CMOS R'AM, a cylindrical lithium-thionyl chloride battery with a metal-glass-metal hermetic seal on the battery lid was developed (e.g., Japanese Patent Laid-Open No. 59-51458). Demand for these products is rapidly increasing because they have a high sealing performance and can be used for more than 10 years.
しかし、市場においては、上記のような筒形のバンクア
ップ用電池のみならず、ICの消費電流の低減から1、
あるいは機器の小形、軽量化に伴う要請から、より小形
、薄形のメモリバンクアンプ用電池が求められている。However, in the market, there are not only cylindrical bank-up batteries as mentioned above, but also 1.
Furthermore, due to the demand for smaller and lighter equipment, smaller and thinner batteries for memory bank amplifiers are required.
そこで、そのような要望に応えるべく、扁平形電池の開
発が試みられているが、扁平形電池の場合、筒形電池で
採用されているような電池蓋の端子部分に電解液注入口
を設けることは、その溶接封止時の熱によってガラス層
をt員傷することになるので、採用することができない
。すなわち、筒形電池の場合は、形状が大きく、電池総
高が少なくとも25+s−以上あるため、電池蓋の中央
部に位置する端子部分に電解液注入口を設けても、電解
液注入口の封止位置を電池蓋のガラス層から高さ方向に
距離を置いたところに設定することができるので、その
溶接封止時の熱によってガラス層が損傷をうけることは
ないが、電池総高が高々10mn+程度の扁平形電池で
は、電池蓋の端子部分に電解液注入口を設けた場合、そ
の溶接封止部分とガラス層との距離が短いために、溶接
封止時の熱によってガラス層が破壊して使用に耐えなく
なるのである。Therefore, attempts have been made to develop flat batteries in order to meet such demands, but in the case of flat batteries, an electrolyte inlet is provided at the terminal part of the battery lid, as is used for cylindrical batteries. This cannot be used because the heat generated during welding and sealing would damage the glass layer. In other words, in the case of a cylindrical battery, the shape is large and the total height of the battery is at least 25 + s-, so even if the electrolyte inlet is provided in the terminal part located in the center of the battery lid, the electrolyte inlet cannot be sealed. Since the stop position can be set at a distance in the height direction from the glass layer of the battery cover, the glass layer will not be damaged by the heat during welding and sealing, but the total height of the battery will increase. For flat batteries of about 10mm+, when an electrolyte inlet is provided at the terminal part of the battery lid, the glass layer may be destroyed by the heat during welding and sealing because the distance between the welded sealing part and the glass layer is short. This makes it unusable.
そのため、オキシハロゲン化物を正極活物質に用い、ハ
ーメチックシールを採用した密閉性の高い扁平形密閉電
池が市場から要請されているにもかかわらず、商品化さ
れていないのが実状であった。For this reason, despite the market demand for flat sealed batteries that use oxyhalides as positive electrode active materials and employ hermetic seals, they have not been commercialized.
そこで、本発明者らは、そのような要請に応えるべく検
討を重ね、電池容器の底部の中央部に電解液注入口を設
けることによって液状のオキシハロゲン化物を正極活物
質として用い、ハーメチックシールを採用した密閉性の
高い扁平形密閉電池を開発してきた。Therefore, the inventors of the present invention have conducted repeated studies in response to such requests, and have created a hermetic seal by using a liquid oxyhalide as a positive electrode active material by providing an electrolyte injection port in the center of the bottom of the battery container. We have developed a flat sealed battery with high airtightness.
[発明が解決しようとする課題]
しかしながら、上記のようなハーメチックシールを採用
した電池は、密閉性が高く、貯蔵性に優れているという
長所を有するものの、その反面、密閉性が高いために、
高温加熱下にさらされたり、あるいは高電圧で充電され
るなどの異常事態に遭遇したときに、電池の内部圧力が
異常に上昇して電池が高圧下で破裂し、いわゆる電池爆
発が生じ、大きな破裂音が発生すると共に、電池内容物
が周囲に飛び散って電池使用機器を汚損することになる
。[Problems to be Solved by the Invention] However, although batteries employing the above-mentioned hermetic seal have the advantages of high sealing performance and excellent storage performance, on the other hand, due to the high sealability,
When a battery encounters an abnormal situation such as being exposed to high temperature heating or being charged at high voltage, the internal pressure of the battery increases abnormally and the battery ruptures under high pressure, resulting in a so-called battery explosion. A popping sound is generated, and the contents of the battery are scattered around, contaminating the equipment using the battery.
そのため、筒形電池では、電池容器の底部の中央部に薄
肉部を十字状に設け、電池の内部圧力が異常上昇をしは
じめたときに、上記薄肉部が高圧になりすぎない安全性
の確保できる範囲内の圧力で破壊して、電池の高圧下で
の破裂、いわゆる爆発を防止するようにしているが、扁
平形電池では、前述したように、電池容器の底部中央部
に電解液注入口を設ける関係で、防爆用の薄肉部を電池
容器の底部の中央部に設けることができないという事情
がある。Therefore, in cylindrical batteries, a thin-walled section is provided in the shape of a cross at the center of the bottom of the battery container to ensure safety that the thin-walled section does not become too high pressure when the internal pressure of the battery begins to rise abnormally. This is done to prevent the battery from bursting under high pressure, or so-called explosion, by applying as much pressure as possible, but flat batteries have an electrolyte inlet in the center of the bottom of the battery container, as mentioned above. There is a situation in which a thin walled part for explosion protection cannot be provided at the center of the bottom of the battery container due to the provision of the battery case.
本発明は、電池容器の底部に環状の薄肉部を、該環状の
薄肉部の直径が電池容器の外径の19〜87%の範囲に
なるように設けることによって、オキシハロゲン化物を
正極活物質として用い、ハーメチックシールを採用して
高い密閉性を有し、しかも安全性の高い防爆機能を備え
た扁平形密閉電池を提供したものである。The present invention provides an annular thin-walled portion at the bottom of the battery container so that the diameter of the annular thin-walled portion is in the range of 19 to 87% of the outer diameter of the battery container, thereby dissolving the oxyhalide into the positive electrode active material. The present invention provides a flat sealed battery that uses a hermetic seal to provide high airtightness and is highly safe and explosion-proof.
〔実施例]
つぎに本発明の実施例を図面に基づいて説明する。ただ
し、実施例ではリチウム−塩化チオニル系の扁平形密閉
電池について説明するが、本発明はその場合のみに限ら
れるものではない。[Example] Next, an example of the present invention will be described based on the drawings. However, although a lithium-thionyl chloride flat sealed battery will be described in the Examples, the present invention is not limited to that case.
第1図は本発明の扁平形密閉電池の一実施例を示す断面
図であり、第2図は第1図に示す電池の概略底面図であ
る。ただし、断面図においては、断面より背面側に位置
する部分の外形線で、図示すると図面を繁雑化させるお
それがあるものについては図示を省略している。FIG. 1 is a sectional view showing an embodiment of the flat sealed battery of the present invention, and FIG. 2 is a schematic bottom view of the battery shown in FIG. 1. However, in the cross-sectional views, outline lines of portions located on the back side of the cross-section, which may make the drawings complicated if shown, are omitted.
まず、電池の構成について概略的に説明すると、(1)
はリチウムからなる負極、(2)は炭素多孔質成形体か
らなる正極、(3)はガラス繊維不織布からなるセパレ
ータであり、上記負極(1)と正極(2)とを隔離して
いる。(4)は電解液で、(5)はステンレス鋼製の電
池容器、(6)は電池蓋であり、この電池蓋(6)は環
状でステンレス鋼製のボディ(7)とガラスからなる環
状の絶縁層(8)とステンレス鋼製の正極側の端子(9
)とからなり、上記ボディ(7)の外周部は電池容器(
5)の開口端部に?6接されている。00)は正極側の
集電体であり、ステンレス鋼製網からなり、正極側の端
子(9)の下部にスポット?8接されている。θ1)は
ガラス繊維不織布からなる絶縁体で、正極(2)および
正極集電体0ωと電池蓋(6)のボディ(7)との間を
絶縁している。07Jは電解液注入口であり、この電解
液注入口021は電池容器(5)の底部(5a)の中央
部に設けられているが、本実施例のものは先端部を電池
内部側に存する円筒状に形成されていて、電解液注入後
にポリテトラフルオロエチレン球からなる封止栓0ωが
圧入されている。側はステンレス鋼製の封止板で、その
中央部で電解液注入口0りの基端部側の開口部を覆い、
外周部が電池容器(5)の底部(5a)に溶接されてい
る。そして、この電池は、外径33mm、電池総高6.
5mm+の円板状をした扁平形電池である。First, to roughly explain the structure of the battery, (1)
is a negative electrode made of lithium, (2) is a positive electrode made of a carbon porous molded body, and (3) is a separator made of glass fiber nonwoven fabric, which separates the negative electrode (1) and the positive electrode (2). (4) is an electrolytic solution, (5) is a battery container made of stainless steel, and (6) is a battery lid. This battery lid (6) is annular and is made of a stainless steel body (7) and glass. insulation layer (8) and stainless steel positive terminal (9)
), and the outer periphery of the body (7) is a battery container (
5) At the open end? 6 is connected. 00) is the current collector on the positive electrode side, which is made of stainless steel mesh and has a spot at the bottom of the terminal (9) on the positive electrode side. 8 is connected. θ1) is an insulator made of glass fiber nonwoven fabric, which insulates between the positive electrode (2) and the positive electrode current collector 0ω and the body (7) of the battery lid (6). 07J is an electrolyte injection port, and this electrolyte injection port 021 is provided at the center of the bottom (5a) of the battery container (5), but in this example, the tip is located inside the battery. It is formed into a cylindrical shape, and a sealing plug 0ω made of a polytetrafluoroethylene ball is press-fitted after the electrolyte is injected. The side is a stainless steel sealing plate that covers the opening on the proximal side of the electrolyte inlet in the center.
The outer periphery is welded to the bottom (5a) of the battery container (5). This battery has an outer diameter of 33 mm and a total height of 6.
It is a flat battery with a disc shape of 5mm+.
つぎに、主要構成部材について詳しく説明していくと、
負極(1)はリング状に打抜いたリチウムシートを電池
容器(5)の底部内面に圧着したものであって、頁捲活
物質のリチウムのみで構成され、正極(2)はアセチレ
ンブラックを主成分とし、これにfi[%鉛とポリテト
ラフルオロエチレンを添加した炭素質を主材とする材料
の多孔質成形体、いわゆる炭素多孔質成形体からなるも
のである。電解液(4)は塩化チオニルに四塩化アルミ
ニウムリチウムを1.0mol /l溶解した塩化チオ
ニル溶液からなり、塩化チオニルは上記のように電解液
溶媒であるとともに正極活物質でもある。このように塩
化チオニルが正極活物質として用いられていることから
も明らかであるように、上記正極(2)はそれ自身が反
応するものではなく、正極活物質の塩化チオニルと負極
(1)からイオン化して溶出してきたリチウムイオンと
の反応場所を提供するものである。Next, we will explain the main components in detail.
The negative electrode (1) is a lithium sheet punched into a ring shape and crimped onto the bottom inner surface of the battery container (5), and is composed only of lithium, which is the active material for page turning, and the positive electrode (2) is composed mainly of acetylene black. It consists of a porous molded body made of a material whose main material is carbonaceous material, to which fi[% lead and polytetrafluoroethylene are added, so-called carbon porous molded body. The electrolytic solution (4) consists of a thionyl chloride solution in which 1.0 mol/l of lithium aluminum tetrachloride is dissolved in thionyl chloride, and thionyl chloride is not only the electrolytic solution solvent but also the positive electrode active material as described above. As is clear from the fact that thionyl chloride is used as the positive electrode active material, the positive electrode (2) itself does not react, but rather reacts with the positive electrode active material thionyl chloride and the negative electrode (1). This provides a site for reaction with ionized and eluted lithium ions.
電池容器(5)は厚さ0 、5111mのステンレス鋼
板で外径33mm、高さ6Iの容器状に形成され、その
底部(5a)の中央部には内径2.1mmで電池内部側
に先端部を有する高さ約1.5mmの円筒状の電解液注
入口0りが設けられている。なお、円筒状の電解液注入
口02)とは、電解液の注入に際し、電解液の通過し得
る空隙が円筒によって形成されたものであることを意味
している。The battery container (5) is made of a stainless steel plate with a thickness of 0 mm and 5111 m, and is shaped like a container with an outer diameter of 33 mm and a height of 6 I. The center of the bottom (5a) has an inner diameter of 2.1 mm and a tip on the inside of the battery. A cylindrical electrolyte inlet having a height of approximately 1.5 mm is provided. Note that the cylindrical electrolyte injection port 02) means that a cylinder forms a gap through which the electrolyte can pass during injection of the electrolyte.
電池蓋(6)は前記のようにステンレス鋼製のボディ(
7)とガラスからなる環状の絶縁層(8)とステンレス
鋼製の正極側の端子(9)とからなり、上記ガラスから
なる絶縁層(8)はその外周面でステンレス鋼製のボデ
ィ(7)の内周面に溶着し、その内周面でステンレス鋼
製の正極側の端子(9)の外周面に溶着していて、いわ
ゆるメタル−ガラス−メタルのハーメチックシールを有
し、また、前記のように電池蓋(6)のボディ(7)は
電池容器(5)の開口端部に溶接されていて、この電池
はいわゆる完全密閉構造になり得るように構成されてい
る。As mentioned above, the battery cover (6) has a stainless steel body (
7), an annular insulating layer (8) made of glass, and a positive terminal (9) made of stainless steel. ), and the inner circumferential surface is welded to the outer circumferential surface of the positive terminal (9) made of stainless steel, and has a so-called metal-glass-metal hermetic seal. As shown in the figure, the body (7) of the battery cover (6) is welded to the open end of the battery container (5), and this battery is configured to have a so-called completely sealed structure.
封止栓03)は、本実施例では直径2.3ma+のポリ
テトラフルオロエチレン球からなり、この封止栓側の直
径は前記電解液注入口θりの内径より若干大きく、電解
液注入後の電解液注入口θりに圧入されている。そのた
め、この封止栓q■にはその周囲から電解液注入口02
1の反撥応力がかかり、両者の密接度が高くなって、電
解液注入口Ozは少なくとも封止板04の溶接が完了す
るまでの間、上記封止栓0″5によって封止されている
。いわば、電解液注入口Qカはこの封止栓(+3)によ
って仮封止され、封止板010の外周部の電池容器(5
)の底部(5a)への溶接によって完全に封止される。In this example, the sealing plug 03) is made of a polytetrafluoroethylene bulb with a diameter of 2.3 ma+, and the diameter on the side of this sealing plug is slightly larger than the inner diameter of the electrolyte injection port θ, and after the electrolyte is injected. It is press-fitted into the electrolyte inlet θ. Therefore, the electrolyte inlet 02 is connected to this sealing plug q■ from its surroundings.
1 is applied, the closeness between the two becomes high, and the electrolyte inlet Oz is sealed by the sealing plug 0''5 at least until welding of the sealing plate 04 is completed. So to speak, the electrolyte inlet Q is temporarily sealed by this sealing plug (+3), and the battery container (5) on the outer periphery of the sealing plate 010 is closed.
) is completely sealed by welding to the bottom (5a).
封止板04は厚さ0.3−転直径0.45mmのステン
レス鋼板からなり、その中央部で電解液注入口021の
基端部側の開口部を覆い、その外周部が電池容器(5)
の底部(5a)に炭酸ガスレーザーで出力400W、溶
接速度20IIIl/secで溶接されている。The sealing plate 04 is made of a stainless steel plate with a thickness of 0.3 mm and a rolled diameter of 0.45 mm, and its central part covers the proximal opening of the electrolyte inlet 021, and its outer periphery covers the battery container (5 mm). )
Welding is performed on the bottom part (5a) using a carbon dioxide laser at an output of 400 W and a welding speed of 20 III/sec.
そして、電池容器(5)の底部(5a)には防爆用の薄
肉部(15)が環状に設けられており、この薄肉部(1
5+の厚みは0.07m−であり、薄肉部(15)の直
径(ただし、薄肉部の中心部間の直径である。第2図中
の参照符号のB参照)は電池容器(5)の底部(5a)
の外径の19〜87%になるようにされている。The bottom (5a) of the battery container (5) is provided with an annular explosion-proof thin wall (15).
The thickness of the battery case (5) is 0.07 m-, and the diameter of the thin wall part (15) (this is the diameter between the centers of the thin wall parts, see reference numeral B in Figure 2) is the same as that of the battery container (5). Bottom (5a)
It is made to be 19% to 87% of the outer diameter of.
上記のように薄肉部0ωの直径を電池容器(5)の底部
(5a〉の外径の19〜87%にするということは、次
の実験から求められたものである。The fact that the diameter of the thin wall portion 0ω is 19 to 87% of the outer diameter of the bottom (5a) of the battery container (5) as described above was determined from the following experiment.
まず、第3図に示すように、底部(5a)の中央部に電
解液注入口021を設け、かつ薄肉部0ωを環状に設け
た電池容器(5)を用意する。なお、実験にあたっては
、電池容器(5)の底部(5a)の外径A(第2図参照
)は3:3gn+と一定にし、薄肉部09の直径B (
第2図参照)の寸法を変化させて、B/Aの値が0(こ
れは薄肉部を設けていないことを示す)、0.09.0
.19.0.31.0.47.0.62.0.78.0
.87および0.93となるように、多種類の電池容器
(5)を用意する。First, as shown in FIG. 3, a battery container (5) is prepared in which an electrolyte inlet 021 is provided in the center of the bottom (5a) and a thin wall portion 0ω is provided in an annular shape. In addition, in the experiment, the outer diameter A (see Fig. 2) of the bottom part (5a) of the battery container (5) was kept constant at 3:3gn+, and the diameter B (
(see Figure 2), the value of B/A is 0 (this indicates that no thin part is provided), 0.09.0
.. 19.0.31.0.47.0.62.0.78.0
.. 87 and 0.93, various types of battery containers (5) are prepared.
薄肉部05)は電池容器(5)の底部(5a)に、例え
ばプレス加工により、第4図に示すように、断面が台形
状(ただし、凸形状)の溝06)を形成することによっ
て設けられたものであり、ここでは、薄肉部0ωの厚み
tは0.07mmで、薄肉部面の幅Wは0.15mm。The thin wall portion 05) is provided by forming a groove 06) having a trapezoidal (but convex) cross section in the bottom portion (5a) of the battery container (5), for example, by press working, as shown in FIG. Here, the thickness t of the thin portion 0ω is 0.07 mm, and the width W of the thin portion surface is 0.15 mm.
溝0ωの形成角度θは60°にしている。The forming angle θ of the groove 0ω is set to 60°.
そして、これらの電池容器(5)には、内部に電解液な
どをまったく入れないで、封正板圓でその電解液注入口
0zの基端部側の開口部を覆い、封止板04)の外周部
を電池容器(5)の底部(5a)に炭酸ガスレーザーで
溶接して封止する。Then, without putting any electrolyte or the like inside these battery containers (5), the opening on the base end side of the electrolyte injection port 0z is covered with a sealing plate round, and the sealing plate 04) The outer periphery of the battery container (5) is sealed by welding to the bottom (5a) of the battery container (5) using a carbon dioxide laser.
このようにして電解液注入口0のを封止した電池容器(
5)を加圧治具に取り付け、水圧で電池容器(5)を加
圧して薄肉部09の破壊(薄肉部面の端部が開裂する)
が生じる圧力を調べ、その結果を第1表に示した。The battery container with the electrolyte injection port 0 sealed in this way (
5) is attached to a pressurizing jig and pressurizes the battery container (5) with water pressure to destroy the thin wall part 09 (the end of the thin wall part surface ruptures).
The pressure generated was investigated and the results are shown in Table 1.
ただし、B/Aの値がOのときは薄肉部0ωを設けてい
ないので、電池容器(5)の底部(5a)の破裂になる
。However, when the value of B/A is O, the bottom (5a) of the battery container (5) will burst because the thin wall portion 0ω is not provided.
第 1 表
薄肉部05)の破壊が生じ、防爆機能が作動して、電池
破裂を防止する圧力をいくらに設定するかが問題になる
が、第1表に示すように、薄肉部00を設けていない場
合(つまり、B/A=eの場合)に電池容器の底部が破
裂する圧力が400kg/cJであることから、防爆機
能の作動圧力としては上限を180kg/cd程度に設
定しておくのが好ましいと考えられる。また、通常の使
用条件下では電池の内部圧力が10 kg / cd以
上に上昇することはほとんどなく、多少のバラツキや長
期間にわたる貯蔵中の薄肉部05)の腐食による破壊圧
力の低下を考慮しても、防爆機能が30kg/c4以上
で作動するように設定しておけば、特に異常事態でもな
いときに防爆機能が作動するようなことはないと考えら
れる。The problem is how much pressure should be set to prevent the explosion-proof function from rupturing when the thin-walled part 05) in Table 1 is destroyed, and the explosion-proof function is activated, but as shown in Table 1, the thin-walled part 00 is Since the pressure at which the bottom of the battery container bursts when it is not installed (that is, when B/A=e) is 400 kg/cJ, the upper limit for the activation pressure of the explosion-proof function should be set at about 180 kg/cd. is considered preferable. In addition, under normal usage conditions, the internal pressure of the battery rarely rises above 10 kg/cd, taking into account the drop in burst pressure due to slight variations and corrosion of the thin wall part 05) during long-term storage. However, if the explosion-proof function is set to operate at a pressure of 30 kg/c4 or more, it is unlikely that the explosion-proof function will operate even when there is no abnormal situation.
そのような観点から、B/Aの値は0.19〜0.93
、すなわち電池容器(5)の底部(5a)の外径に対す
る薄肉部05)の直径は19〜93%に設定しておくこ
とが好ましいといえる。From this perspective, the value of B/A is 0.19 to 0.93.
That is, it can be said that it is preferable to set the diameter of the thin wall portion 05) to 19 to 93% of the outer diameter of the bottom portion (5a) of the battery container (5).
つぎに、第1図に示す構造で、B/A値を0.0.09
.0.19.0.31.0.62.0.78.0.87
および0.93に設定した電池を作製し、高温加熱試験
を行い、薄肉部09の破壊による防爆機能の作動状況を
調べた。高温加熱試験にあたっては、各B/A値の電池
を10個ずつ用意し、電気マツフル炉中に電池を入れ、
昇温温度30°C/分で加熱し、そのときの防爆機能の
作動状況を調べ、その結果を第2表に示した。なお、第
2表中の「防爆機能の作動状況」を表す数値の分母は試
験に供した電池個数を示し、分子は薄肉部(15)が破
壊して防爆機能が作動した電池個数を示している。Next, with the structure shown in Figure 1, the B/A value is 0.0.09.
.. 0.19.0.31.0.62.0.78.0.87
and 0.93, and a high temperature heating test was conducted to examine the operation status of the explosion-proof function due to destruction of the thin-walled portion 09. For the high temperature heating test, 10 batteries of each B/A value were prepared, and the batteries were placed in an electric Matsufuru furnace.
Heating was performed at a heating rate of 30°C/min, and the operating status of the explosion-proof function at that time was investigated, and the results are shown in Table 2. In addition, the denominator of the numerical value representing "operation status of explosion-proof function" in Table 2 indicates the number of batteries subjected to the test, and the numerator indicates the number of batteries in which the thin wall part (15) was destroyed and the explosion-proof function was activated. There is.
第 2 表
第2表に示すように、B /A =0.09の場合は、
10個の電池のうち7個の電池は防爆機能が作動したが
、残り3個の電池は防爆機能が作動せず、電池容器の底
部が破裂した。そして、B/Aが0.19以上になると
、試験に供した電池はいずれも防爆機能が作動するよう
になり、それらの作動温度はB/A=O,19〜0.8
7では160〜230 ’Cであるが、B/A=0.9
3では140°Cで作動するものがあった。Table 2 As shown in Table 2, when B /A = 0.09,
The explosion-proof function of seven of the ten batteries was activated, but the explosion-proof function of the remaining three batteries was not activated, and the bottom of the battery container burst. When B/A becomes 0.19 or more, the explosion-proof function of all the batteries tested becomes activated, and their operating temperature is B/A=O, 19 to 0.8.
7 is 160-230'C, but B/A=0.9
3, there was one that operated at 140°C.
通常の使用温度で電池温度が120°C程度になる場合
があることを考慮すると、B/A=0.93のものは異
常事態でない通常使用時に防爆機能が作動することがあ
ると考えられる。したがって、B/A=0.19〜0.
87の範囲、すなわち防爆用の薄肉部(15)の直径を
電池容器(5)の底部(5a)の外径の19〜87%に
すれば、安全性の確保できる範囲内の圧力で薄肉部0ω
が破壊して防爆機能が作動し、高圧下での電池破裂、い
わゆる爆発が防止され、また、異常事態でないときに防
爆機能が作動して電池機能を喪失することがないといえ
る。Considering that the battery temperature may reach about 120° C. under normal operating temperature, it is considered that the explosion-proof function of a battery with B/A=0.93 may operate during normal use without abnormal conditions. Therefore, B/A=0.19-0.
87, that is, if the diameter of the explosion-proof thin-walled part (15) is 19 to 87% of the outer diameter of the bottom (5a) of the battery container (5), the thin-walled part can be sealed at a pressure within the range that ensures safety. 0ω
It can be said that the explosion-proof function is activated when the explosion-proof function is activated, preventing the battery from bursting under high pressure, or so-called explosion, and the explosion-proof function is not activated and the battery function is not lost in normal situations.
第5図は本発明の扁平形密閉電池の他の実施例を示す断
面図であり、第6図は第5図に示す電池の概略底面図で
ある。FIG. 5 is a sectional view showing another embodiment of the flat sealed battery of the present invention, and FIG. 6 is a schematic bottom view of the battery shown in FIG. 5.
この第5図に示す電池では、電解液注入口02)をテー
パ筒状にし、それに伴って封止板θ4の直径を若干大き
く51にしているほかは前記第1図に示す電池とほぼ同
様に構成されている。なお、電解液注入口θカがテーパ
筒状をしているとは、電解液の注入に際し、電解液の通
過し得る空隙がテーパ筒で形成されていることを意味し
ている。The battery shown in FIG. 5 is almost the same as the battery shown in FIG. 1 above, except that the electrolyte injection port 02) is made into a tapered cylindrical shape, and the diameter of the sealing plate θ4 is slightly increased to 51. It is configured. Note that the electrolyte injection port θ has a tapered cylindrical shape, which means that the tapered cylinder forms a gap through which the electrolyte can pass during injection of the electrolyte.
つまり、この第5図に示す電池においても、電池容器(
5)の底部(5a)に防爆用の薄肉部(15)が環状に
設けられ、該薄肉部(15)の直径は電池容器(5)の
底部(5a)の外径の19〜87%に設定されている。In other words, even in the battery shown in FIG. 5, the battery container (
5) is provided with an annular explosion-proof thin wall portion (15) on the bottom portion (5a), and the diameter of the thin wall portion (15) is 19 to 87% of the outer diameter of the bottom portion (5a) of the battery container (5). It is set.
その結果、この電池は高温加熱下にさらされたり、高電
圧で充電されるなど、異常事態に遭遇して、電池の内部
圧力が異常上昇しはじめたときには、上記薄肉部051
が安全性の確保できる範囲内の圧力で破壊して防爆機能
が作動し、電池の高圧下での破裂、つまり爆発を防止す
ることができ、かつ異常事態でないときに防爆機能が作
動して電池機能を喪失しないように構成されている。As a result, when this battery encounters an abnormal situation such as being exposed to high temperature heating or being charged at a high voltage, and the internal pressure of the battery begins to rise abnormally, the thin part 051
The explosion-proof function activates when the battery is destroyed under pressure within a safe range, preventing the battery from bursting under high pressure, that is, exploding, and when there is no abnormal situation, the explosion-proof function activates and Constructed to prevent loss of functionality.
第7図は本発明の扁平形密閉電池のさらに他の実施例を
示す断面図であり、第8図は第7図に示す電池の概略底
面図である。FIG. 7 is a sectional view showing still another embodiment of the flat sealed battery of the present invention, and FIG. 8 is a schematic bottom view of the battery shown in FIG. 7.
この第7図に示す電池では、11記第1図に示す電池に
おける封止栓側と封止板070とが一体化したような封
止体θ刀が用いられていて、上記封止体0力の軸部(1
7a)が電解液注入口02+に圧入され、封止体θ′7
)の頭部(17b)の外周部が電池容器(5)の底部(
5a)に炭酸ガスレーザーで溶接されている。つまり、
電解液注入口02)は封止体07)の軸部(17a)の
圧入によって仮封止され、封止体Q7)の頭部(17b
)の外周部の電池容器(5)の底部(5a)への溶接に
よって完全に封止されている。上記の点を除いては、こ
の第7図に示す電池は前記第1図に示す電池とほぼ同様
に構成されている。The battery shown in FIG. 7 uses a sealing body 070 in which the sealing plug side and the sealing plate 070 of the battery shown in FIG. Axis of force (1
7a) is press-fitted into the electrolyte injection port 02+, and the sealing body θ'7
) is connected to the bottom (5) of the battery container (5).
5a) is welded with a carbon dioxide laser. In other words,
The electrolyte inlet 02) is temporarily sealed by press-fitting the shaft (17a) of the sealing body 07), and the head (17b) of the sealing body Q7) is temporarily sealed.
) is completely sealed by welding the outer periphery of the battery container (5) to the bottom (5a) of the battery container (5). Except for the above points, the battery shown in FIG. 7 is constructed almost the same as the battery shown in FIG. 1.
したがって、この第7図に示す電池においても、電池容
器(5)の底部(5a)に防爆用の薄肉部05)が環状
に設けられ、該薄肉部(15)の直径は電池容i!5(
5)の底部(5a)の外径の19〜87%に設定されて
いる。Therefore, in the battery shown in FIG. 7 as well, an explosion-proof thin wall portion 05) is provided in an annular shape at the bottom (5a) of the battery container (5), and the diameter of the thin wall portion (15) is equal to the battery capacity i! 5(
5) is set to 19 to 87% of the outer diameter of the bottom (5a).
そのため、この電池は、高温加熱下にさらされたり、高
電圧で充電されるなど、異常事態に遭遇して、電池の内
部圧力が異常上昇しはじめたときには、上記薄肉部0ω
が安全性の確保できる範囲内の圧力で破壊して防爆機能
が作動し、電池の高圧下での破裂、つまり爆発を防止す
ることができ、かつ異常事態でないときに防爆機能が作
動して電池機能を喪失しないように構成されている。Therefore, when this battery encounters an abnormal situation such as being exposed to high-temperature heating or being charged at a high voltage, and the internal pressure of the battery begins to rise abnormally, the thin wall portion 0ω
The explosion-proof function activates when the battery is destroyed under pressure within a safe range, preventing the battery from bursting under high pressure, that is, exploding, and when there is no abnormal situation, the explosion-proof function activates and Constructed to prevent loss of functionality.
上記実施例では、絶縁層(8)をガラスで構成したが、
ガラスに代えてセラミンクスで絶縁層(8)を構成して
もよい。また、実施例では、負極活物質としてリチウム
を用い、正極活物質として塩化チオニルを用いたりチウ
ム−塩化チオニル電池について説明したが、負極活物質
としてはナトリウム、カリウムなどのリチウム以外のア
ルカリ金属であってもよいし、正極活物質も塩化チオニ
ル以外に塩化スルフリル、塩化ホスボリルなどの常/l
!1(25’C)で液体のオキシハロゲン化物(オキシ
ハライド)であってもよい。In the above embodiment, the insulating layer (8) was made of glass, but
The insulating layer (8) may be made of ceramic instead of glass. In addition, in the examples, lithium was used as the negative electrode active material and thionyl chloride was used as the positive electrode active material, and a lithium-thionyl chloride battery was described, but the negative electrode active material may be an alkali metal other than lithium such as sodium or potassium. In addition to thionyl chloride, the positive electrode active material may also include sulfuryl chloride, phosboryl chloride, etc.
! It may be a liquid oxyhalide at 1 (25'C).
以上説明したように、本発明は、ハーメチックシールを
採用した電池において、電池容器(5)の底部(5a)
に防爆用の環状の薄肉部θ0を、電池容器(5)の底部
(5a)の外径に対して19〜87%の直径を有するよ
うに設けることにより、電池の内部圧力が異常上昇しは
じめたときに、上記薄肉部a9が安全性の確保できる範
囲内の圧力で破壊して、高圧下での電池破裂、いわゆる
爆発を防止できるようにして、安全性を高め、高い密閉
性を有し、しかも安全性の高い防爆機能を備えた扁平形
密閉電池を提供することができた。As explained above, in a battery employing a hermetic seal, the bottom (5a) of the battery container (5)
By providing an annular thin-walled part θ0 for explosion protection in the battery container (5) so that the diameter thereof is 19 to 87% of the outer diameter of the bottom (5a), the internal pressure of the battery begins to rise abnormally. When the thin wall part a9 breaks under a pressure within a range that can ensure safety, it is possible to prevent the battery from bursting under high pressure, so-called explosion, thereby increasing safety and providing high sealing performance. Moreover, we were able to provide a flat sealed battery with a highly safe explosion-proof function.
第1図は本発明の扁平形密閉電池の一実施例を示す断面
図であり、第2図は第1図に示す電池の概略底面図であ
る。第3図は第1図に示す電池に使用された電池容器を
封止板で封止した状態で示す断面図であり、第4図は電
池容器の底部に設けた薄肉部とその周辺の拡大断面図で
ある。第5図は本発明の扁平形密閉電池の他の実施例を
示す断面図であり、第6図は第5図に示す電池の概略底
面図である。第7図は本発明の扁平形密閉電池のさらに
他の実施例を示す断面図であり、第8図は第7図に示す
電池の概略底面図である。
(1)・・・負極、 (2)・・・工種、 (3)・・
・セパレータ、(4)・・・電解液、 (5)・・・電
池容器、 (5a)・・・底部、(6)・・・電池蓋、
<7)・・・ボディ、 (8)・・・絶縁層、(9)
・・・端子、 Q2)・・・電解液注入口、 00・・
・環状の薄肉部
三艮只す
7 /。
第 3 図
部
第4図
5a
底
部
第
ヌ1
第
図FIG. 1 is a sectional view showing an embodiment of the flat sealed battery of the present invention, and FIG. 2 is a schematic bottom view of the battery shown in FIG. 1. Fig. 3 is a cross-sectional view showing the battery container used in the battery shown in Fig. 1 sealed with a sealing plate, and Fig. 4 is an enlarged view of the thin section provided at the bottom of the battery container and its surroundings. FIG. FIG. 5 is a sectional view showing another embodiment of the flat sealed battery of the present invention, and FIG. 6 is a schematic bottom view of the battery shown in FIG. 5. FIG. 7 is a sectional view showing still another embodiment of the flat sealed battery of the present invention, and FIG. 8 is a schematic bottom view of the battery shown in FIG. 7. (1)... Negative electrode, (2)... Type of work, (3)...
・Separator, (4)... Electrolyte, (5)... Battery container, (5a)... Bottom, (6)... Battery lid,
<7)...Body, (8)...Insulating layer, (9)
...terminal, Q2)...electrolyte inlet, 00...
・Annular thin-walled part 7/. Fig. 3 Part Fig. 4 5a Bottom No. 1 Fig.
Claims (1)
ムなどのアルカリ金属を用い、正極活物質として塩化チ
オニル、塩化スルフリル、塩化ホスホリルなどの常温で
液体のオキシハロゲン化物を用い、上記負極活物質およ
び正極活物質を含む発電要素を電池容器(5)と電池蓋
(6)とで密閉する扁平形密閉電池であって、上記電池
蓋(6)は金属製で環状のボディ(7)と上記環状のボ
ディ(7)の内周側に位置しガラスまたはセラミックス
からなる環状の絶縁層(8)と上記環状の絶縁層(8)
の中心部に位置する一方の電極の端子(9)とからなり
、該電池蓋(6)のボディ(7)の外周部は前記電池容
器(5)の開口端部に溶接され、電池容器(5)の底部
(5a)の中央部には電解液注入口(12)が設けられ
、該電解液注入口(12)は電解液注入後に封止され、
かつ上記電池容器(5)の底部(5a)には防爆用の環
状の薄肉部(15)が設けられ、該環状の薄肉部(15
)の直径が電池容器(5)の底部(5a)の外径の19
〜87%であることを特徴とする扁平形密閉電池。(1) An alkali metal such as lithium, sodium, or potassium is used as the negative electrode active material, and an oxyhalide that is liquid at room temperature such as thionyl chloride, sulfuryl chloride, or phosphoryl chloride is used as the positive electrode active material. A flat sealed battery in which a power generation element containing a substance is sealed between a battery container (5) and a battery lid (6), wherein the battery lid (6) is made of metal and includes a metal annular body (7) and the annular body. (7) An annular insulating layer (8) made of glass or ceramics located on the inner circumference side and the annular insulating layer (8)
The outer periphery of the body (7) of the battery lid (6) is welded to the open end of the battery container (5). An electrolyte injection port (12) is provided in the center of the bottom (5a) of 5), and the electrolyte injection port (12) is sealed after the electrolyte is injected;
Moreover, an annular thin-walled part (15) for explosion-proofing is provided at the bottom (5a) of the battery container (5), and the annular thin-walled part (15)
) has a diameter of 19 times the outer diameter of the bottom (5a) of the battery container (5).
A flat sealed battery characterized in that the battery is 87%.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63214580A JPH07107838B2 (en) | 1988-08-29 | 1988-08-29 | Flat sealed battery |
US07/400,165 US5004656A (en) | 1988-08-29 | 1989-08-28 | Flat type sealed battery with hermetic sealing structure |
EP89115884A EP0360039B1 (en) | 1988-08-29 | 1989-08-29 | A flat typed sealed battery with hermetic sealing structure |
DE89115884T DE68907391T2 (en) | 1988-08-29 | 1989-08-29 | Tightly sealed flat battery with hermetic seal. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63214580A JPH07107838B2 (en) | 1988-08-29 | 1988-08-29 | Flat sealed battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0265054A true JPH0265054A (en) | 1990-03-05 |
JPH07107838B2 JPH07107838B2 (en) | 1995-11-15 |
Family
ID=16658071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63214580A Expired - Lifetime JPH07107838B2 (en) | 1988-08-29 | 1988-08-29 | Flat sealed battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07107838B2 (en) |
-
1988
- 1988-08-29 JP JP63214580A patent/JPH07107838B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07107838B2 (en) | 1995-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111755633B (en) | Button cell | |
CN100454629C (en) | Liquid action substance battery | |
US5702840A (en) | Vent cap for a lithium battery | |
JP2007265656A (en) | Square battery case and square battery | |
JPH0265054A (en) | Flat sealed battery | |
JPH0265055A (en) | Flat sealed battery | |
JP2004103369A (en) | Flat square battery and its manufacturing method | |
JP2002175789A (en) | Flat battery and manufacturing method of the same | |
JPH0265053A (en) | Flat sealed battery | |
JPH0290455A (en) | Cylindrical sealed battery | |
JPH04349342A (en) | Sealed-type battery | |
JPS60165040A (en) | Sealed type battery | |
JPH0265052A (en) | Flat sealed battery | |
JPH0644025Y2 (en) | Safety valve device for organic electrolyte battery | |
JPS59228357A (en) | Enclosed type lithium battery | |
JPH0641338Y2 (en) | Cylindrical battery | |
JPS60249241A (en) | Sealed battery | |
JP2722315B2 (en) | Square sealed battery | |
JPH0290457A (en) | Flat sealed battery | |
JPH07183012A (en) | Square sealed battery | |
JPH0584024U (en) | Organic electrolyte battery | |
JPH04366545A (en) | Sealed battery | |
JPH06260161A (en) | Safety valve for secondary battery with non-aqueous electrolyte | |
JPH0265048A (en) | Flat sealed battery | |
JPH0793129B2 (en) | Flat sealed battery |