JPH0466805B2 - - Google Patents

Info

Publication number
JPH0466805B2
JPH0466805B2 JP7598587A JP7598587A JPH0466805B2 JP H0466805 B2 JPH0466805 B2 JP H0466805B2 JP 7598587 A JP7598587 A JP 7598587A JP 7598587 A JP7598587 A JP 7598587A JP H0466805 B2 JPH0466805 B2 JP H0466805B2
Authority
JP
Japan
Prior art keywords
aluminum nitride
pressure
temperature
alumina
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7598587A
Other languages
Japanese (ja)
Other versions
JPS63242909A (en
Inventor
Hachiro Ichikawa
Masanori Kokuni
Akira Murase
Kazuo Horiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP62075985A priority Critical patent/JPS63242909A/en
Priority to CA000553960A priority patent/CA1276775C/en
Priority to GB8729138A priority patent/GB2200101B/en
Priority to KR1019870014359A priority patent/KR900004489B1/en
Priority to AU82599/87A priority patent/AU596882B2/en
Priority to FR878717592A priority patent/FR2608146B1/en
Priority to DE19873742667 priority patent/DE3742667A1/en
Priority to US07/133,827 priority patent/US4851207A/en
Publication of JPS63242909A publication Critical patent/JPS63242909A/en
Publication of JPH0466805B2 publication Critical patent/JPH0466805B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は、新規な窒化アルミニウムの製造方法
に関し、詳しくは陽イオン不純物の含有率が極め
て少ない窒化アルミニウム粉体の製造方法に関す
るものである。 <従来の技術> 従来の窒化アルミニウム粉体の製造方法として
は、例えば特開昭59−50008号に開示されている
ようなアルミナ粉末とカーボン粉末との混合組成
物と窒素を含む雰囲気中で焼成する方法や、例え
ば特開昭60−161314号に開示されているようなア
ルミニウムと窒素ガスとを接触させて窒化反応を
行わせる方法等が知られている。 <発明が解決しようとする問題点> しかしながら、前記引例のような方法において
は、製造した窒化アルミニウム中に、前者ではナ
トリウム、鉄、ケイ素など、後者ではケイ素、
鉄、マグネシウムなどの陽イオン不純物が残存し
易く、かくして得られた窒化アルミニウム粉体
は、放熱性基板のような高純度を要する製品の原
料として使用するためには、純度上の問題点を有
する。本発明者らは、既にアルミナとカーボンと
の混合物と窒素ガスを反応させて、窒化アルミニ
ウムを製造する方法において、反応が開始する
1250℃以上の温度域において該混合物を常圧より
も高い圧力下で接触させる工程と、常圧よりも低
い圧力下で接触させる工程を含ませることで窒化
アルミニウム粉体に含有する未反応アルミナ量を
ゼロないしは極く少量に抑制する製造方法、或い
は同様に該混合物を常圧より低い、好ましくは
0.2〜0.8気圧の圧力で接触させ窒化アルミニウム
中の全酸素含有率が極めて少なくなる製造方法等
を発明し特許出願している。本発明者らは、さら
に製造された窒化アルミニウム粉体中の、鉄、ケ
イ素、ナトリウム、マグネシウム、カルシウムな
どの陽イオン不純物含有量が極めて少なくなり、
高熱伝導率焼結体製造上好ましい高純度粉体が得
られる方法を鋭意研究し、本発明を完成するに至
つた。 <問題点を解決するための手段および作用> 即ち、本発明に係る窒化アルミニウム粉体の製
造方法は、アルミナとカーボンとの混合物と窒素
ガスを反応させて窒化アルミニウム粉体を製造す
る方法において、窒化アルミニウムの生成反応の
開始に先立ち前記混合物に窒素含有不活性ガスを
1000℃以上1400℃以下の温度、0.1気圧以下の圧
力下で接触せしめることを特徴とするものであ
る。 本発明において使用するアルミナおよびカーボ
ンは、それぞれの粉体若しくは両者の粉体混合物
を例えば粒状に成形したものでもよいが、通常は
それぞれの微粒粉体が使用される。 本発明において使用する窒素含有不活性ガスと
は、窒素ガスを含有し、かつ、例えば酸素、炭酸
ガス、水蒸気等の高温で酸化性を有するガスを可
及的に含まないガスである。ただし、反応生成物
である一酸化炭素を不可避的に含むことは差支え
ない。 さて、アルミナとカーボンとの混合物は、窒素
含有不活性ガス雰囲気中で1400℃以上の高温に加
熱された場合、式(1)により窒化アルミニウムと一
酸化炭素に変換することが知られている。 Al2O3+3C+N2=2AlN+3CO (1) 式(1)の反応と並行して原料のアルミナないしは
カーボンに含まれる陽イオン不純物、即ちナトリ
ウム、ケイ素、鉄、マグネシウム、カルシウムな
どの不純物も窒化物、あるいは炭化物に変換し窒
化アルミニウム中に残留する。 本発明者らは、窒化アルミニウム粉体中の陽イ
オン不純物の含有率をできるだけ少なくする方法
を研究した結果、かかる目的を達成するために
は、温度が1000〜1400℃、圧力が0.1気圧より低
い窒素含有不活性ガスを窒化アルミニウム生成反
応に先立つて、原料混合物に接触させる工程を含
ませることが必要であることを見出した。 本発明でいう0.1気圧よりも低い圧力工程のと
きの雰囲気温度は1000〜1400℃の範囲である。ま
た窒素含有不活性ガスの圧力を0.1気圧より低く
保持する時間は前記温度域でアルミナないしはカ
ーボン混合物中の陽イオン不純物が実質的に除去
される時間であるばよく、0.5時間以上行えばよ
い。 このように窒素含有不活性ガスの圧力を0.1気
圧より低くすると、上記の如く窒化アルミニウム
粉体の陽イオン不純物含有率が極めて少なくなる
理由は明確ではないが、原料のアルミナないしカ
ーボンに含有される陽イオン不純物は通常、酸化
物の状態で存在しており、高温に加熱されること
で熱解離することが知られている。例えば、ナト
リウム、ケイ素、マグネシウムは以下の式(2)から
(4)に示すような反応式に従い解離する。 Na2O(s)=2Na(g)+1/2O2(g) (2) SiO2(s)=SiO(g)+1/2O2(g) (3) MgO (s)=Mg(g)+1/2O2(g) (4) 各蒸気種の平衡分圧は温度と密接に関係するも
のの、アルミナとの比較において、 Na2O>SiO2>MgO>Al2O3 の順序で蒸気圧は低くなつている。鉄はFe2O3
形で存在し、蒸気圧はSiO2よりも高く、またカ
ルシウムはCaOで存在し、MgOより低く、Al2O3
よりも高いと思われる。窒素含有不活性ガスの圧
力を0.1気圧よりも低くするとともに、アルミナ
ないしカーボン原料に含有される陽イオン不純物
が上記の如くそれぞれの陽イオン不純物の持つ蒸
気圧に従つて蒸発し、系外に除去されるものとも
考えられる。 本発明において、陽イオン不純物除去のため
に、0.1気圧よりも低い圧力に保持するときの温
度は1000℃〜1400℃の範囲で、1000℃未満では陽
イオン不純物の蒸気圧が極めて低く、殆ど効果が
認められない。一方、1400℃を超える温度では陽
イオン不純物の蒸気圧は高くなるものの、製造さ
れた窒化アルミニウム粉体の粒径が大きくなる問
題を生ずる場合がある。 また、窒素含有不活性ガスの圧力を0.1気圧よ
りも低く、かつ1000〜1400℃に保持する時間は、
式(1)の反応の始まる前であることが必要である。
式(1)の反応が始まつた後の時間は陽イオン不純物
の除去効果に対し、あまり寄与しない。 これは、アルミナとカーボン混合物中の陽イオ
ン不純物は、例えばSiO2を例にとると、次の式
(5),(6)のように、 SiO2+3C=SiC+2CO (5) 3SiO2+6C+2N2=Si3N4+6CO (6) 原料のカーボン、窒素と反応し、式(1)の反応に
先行ないしは並行して酸化物のときより、遥かに
高温で安定な炭化物、あるいは窒化物に変化する
ため、これら陽イオン不純物の窒化アルミニウム
粉体からの蒸発除去が著しく困難になるためとも
考えられる。 前記のように原料混合物を0.1気圧以下、1000
〜1400℃の範囲で加熱処理した後、窒素含有不活
性ガス雰囲気中で行なう窒化反応処理方法は公知
の方法で行なえばよい。 しかし、1250℃以上,0.2気圧以上で加熱処理
すれば窒化反応が容易に進行するので好ましい。
なお、本発明方法で処理した前記原料混合物を、
本発明者等が既に特許出願した方法である、常圧
よりも高い圧力下で原料のアルミナの反応率が少
なくとも5%になるまで接触せしめる工程を、ま
た本発明方法で処理した前記原料混合物を常圧よ
り低い、好ましくは0.2〜0.4気圧の圧力下で前記
窒素ガス含有不活性ガスに接触させる工程を、そ
れぞれ組み合わせることによつて陽イオン不純物
が極めて少ない上に、更にそれぞれの特性が加わ
つた全酸素量や未反応アルミナ量の少ない高純度
窒化アルミニウム粉体を得ることもできる。 <実施例> 以下に、実施例により本発明を具体的に説明す
る。 実施例 1〜10 第1表に示す各種不純物を含むアルミナ粉体
100gとカーボン粉体40gとをボールミルで混
合・粉砕した後、カーボン製トレー(縦210mm、
横210mm、高さ40mm)に充填した。このときの原
料混合物の厚さは30mmであつた。このトレーを、
有効寸法が縦230mm、横250mm、高さ220mmの電気
炉内に配置し、窒素ガスを流通させながら、還元
窒化反応を行わせた。この際、常温から1000℃ま
では、常圧に保ちつつ100℃/Hrの昇温速度で加
熱した。 (イ) 1000℃を超えてから所定温度に達するまでの
間は0.1気圧よりも低い種々の圧力に維持しな
がら、昇温加熱した(以下、工程(イ)という)。 (ロ) その後、種々の圧力に保ちつつ、所定温度ま
で昇温・加熱した。この際、1550℃に達した場
合は、以降、温度を一定に保持した(以下、工
程(ロ)という)。 (ハ) (ロ)において1550℃に達しないものは炉内を
種々の圧力に保持し1550℃まで昇温し、1550℃
に達したら以降、温度を一定に保持した(以
下、工程(ハ)という)。 (イ),(ロ),(ハ)の昇温速度は何れも100℃/Hrとし
た。 反応終了後、生成した窒化アルミニウム粉体の
陽イオン不純物および全酸素含有量を蛍光X線分
析(理化電機工業(株)製システム3070)で、うち、
Naのみは原子吸光分析(島津製作所(株)製AA−
646)で、それぞれ定量した。 結果を前記(イ),(ロ),(ハ)の各工程別の圧力、時間
および温度の各条件とともに第2表に示す。 表中に、(ロ),(ハ)の工程に影響される窒化アルミ
ニウムに含まれる未反応アルミナ量(α−Al2
O3)および粒子形状の大きさ(平均粒径)、全酸
素量をそれぞれ記載した。未反応アルミナ量(α
−Al2O3)の測定はX線回折で、平均粒径は光透
過式粒径分布測定器(セイシン企業(株)製
SKN1000型)で、全酸素量は陽イオン不純物の
測定と同様、蛍光X線分析で行なつた。結果を第
2表に示す。 比較例 電気炉内の圧力を常に常圧に維持したこと以外
は実施例と同様に行なつた。結果を併せて第2表
に示す。
<Industrial Application Field> The present invention relates to a novel method for producing aluminum nitride, and more particularly, to a method for producing aluminum nitride powder having an extremely low content of cationic impurities. <Conventional technology> A conventional method for producing aluminum nitride powder includes firing a mixed composition of alumina powder and carbon powder in an atmosphere containing nitrogen, as disclosed in JP-A No. 59-50008. A method of bringing aluminum into contact with nitrogen gas to cause a nitriding reaction, as disclosed in JP-A-60-161314, for example, is known. <Problems to be Solved by the Invention> However, in the method as cited above, the produced aluminum nitride contains sodium, iron, silicon, etc. in the former case, and silicon, iron, etc. in the latter case.
Cation impurities such as iron and magnesium tend to remain, and the resulting aluminum nitride powder has purity problems when used as a raw material for products that require high purity, such as heat-dissipating substrates. . The present inventors have already discovered that in a method for producing aluminum nitride by reacting a mixture of alumina and carbon with nitrogen gas, the reaction starts.
The amount of unreacted alumina contained in the aluminum nitride powder can be reduced by including a step of contacting the mixture under pressure higher than normal pressure in a temperature range of 1250°C or higher and a step of contacting it under pressure lower than normal pressure. A production method that suppresses the amount of water to zero or a very small amount, or similarly the mixture is heated to a pressure lower than normal pressure, preferably
He has invented a manufacturing method that brings the total oxygen content in aluminum nitride to an extremely low level by contacting the aluminum nitride at a pressure of 0.2 to 0.8 atmospheres, and has applied for a patent. The present inventors further found that the content of cationic impurities such as iron, silicon, sodium, magnesium, and calcium in the produced aluminum nitride powder was extremely low;
The present invention has been completed by intensive research into a method for obtaining high purity powder suitable for the production of high thermal conductivity sintered bodies. <Means and effects for solving the problems> That is, the method for producing aluminum nitride powder according to the present invention is a method for producing aluminum nitride powder by reacting a mixture of alumina and carbon with nitrogen gas, A nitrogen-containing inert gas is added to the mixture prior to the initiation of the aluminum nitride production reaction.
It is characterized by contacting at a temperature of 1000°C or more and 1400°C or less and a pressure of 0.1 atmosphere or less. The alumina and carbon used in the present invention may be powders of each or a mixture of the two powders formed into granules, but usually fine powders of each are used. The nitrogen-containing inert gas used in the present invention is a gas that contains nitrogen gas and, as much as possible, does not contain gases that are oxidizing at high temperatures, such as oxygen, carbon dioxide, and water vapor. However, it may inevitably contain carbon monoxide, which is a reaction product. Now, it is known that when a mixture of alumina and carbon is heated to a high temperature of 1400°C or higher in a nitrogen-containing inert gas atmosphere, it converts into aluminum nitride and carbon monoxide according to equation (1). Al 2 O 3 +3C+N 2 =2AlN+3CO (1) In parallel with the reaction of formula (1), cationic impurities contained in the raw material alumina or carbon, such as impurities such as sodium, silicon, iron, magnesium, and calcium, are also converted into nitrides, Alternatively, it is converted into carbide and remains in aluminum nitride. As a result of researching a method to minimize the content of cationic impurities in aluminum nitride powder, the present inventors found that in order to achieve this purpose, the temperature must be 1000 to 1400°C and the pressure must be lower than 0.1 atm. It has been found that it is necessary to include a step of bringing a nitrogen-containing inert gas into contact with the raw material mixture prior to the aluminum nitride production reaction. The ambient temperature during the pressure process lower than 0.1 atmosphere in the present invention is in the range of 1000 to 1400°C. The pressure of the nitrogen-containing inert gas may be kept lower than 0.1 atm for a period of time such that cationic impurities in the alumina or carbon mixture are substantially removed in the above temperature range, and may be maintained for 0.5 hours or more. Although it is not clear why the cation impurity content of the aluminum nitride powder becomes extremely low when the pressure of the nitrogen-containing inert gas is lowered to below 0.1 atm, as mentioned above, the cation impurities contained in the raw material alumina or carbon Cation impurities usually exist in the form of oxides, and are known to thermally dissociate when heated to high temperatures. For example, sodium, silicon, and magnesium are calculated from the following formula (2).
It dissociates according to the reaction formula shown in (4). Na 2 O (s) = 2Na (g) + 1/2O 2 (g) (2) SiO 2 (s) = SiO (g) + 1/2O 2 (g) (3) MgO (s) = Mg (g) +1/2O 2 (g) (4) Although the equilibrium partial pressure of each vapor species is closely related to temperature, in comparison with alumina, the vapor pressure increases in the order of Na 2 O > SiO 2 > MgO > Al 2 O 3 . is getting lower. Iron exists in the form of Fe 2 O 3 , with a higher vapor pressure than SiO 2 , and calcium exists in the form of CaO, lower than MgO, with a vapor pressure of Al 2 O 3
seems to be higher than that. The pressure of the nitrogen-containing inert gas is lowered to less than 0.1 atmosphere, and the cationic impurities contained in the alumina or carbon raw materials are evaporated and removed from the system according to the vapor pressure of each cationic impurity as described above. It can also be considered that In the present invention, in order to remove cationic impurities, the temperature when maintaining the pressure lower than 0.1 atm is in the range of 1000°C to 1400°C. Below 1000°C, the vapor pressure of the cationic impurities is extremely low and there is almost no effect. is not recognized. On the other hand, at temperatures exceeding 1400° C., although the vapor pressure of cationic impurities becomes high, a problem may arise in which the particle size of the produced aluminum nitride powder becomes large. In addition, the time to maintain the pressure of the nitrogen-containing inert gas lower than 0.1 atm and at 1000 to 1400°C is
It is necessary to do this before the reaction of formula (1) begins.
The time after the reaction of formula (1) starts does not contribute much to the effect of removing cationic impurities. This means that the cationic impurity in the alumina and carbon mixture, taking SiO2 as an example, is expressed by the following formula:
As shown in (5) and (6), SiO 2 +3C=SiC+2CO (5) 3SiO 2 +6C+2N 2 =Si 3 N 4 +6CO (6) Reacts with raw material carbon and nitrogen, and precedes or reacts with the reaction of formula (1). At the same time, the aluminum nitride powder transforms into a carbide or nitride, which is much more stable at high temperatures than when it is an oxide, making it extremely difficult to remove these cationic impurities by evaporation from the aluminum nitride powder. As mentioned above, the raw material mixture was heated to 0.1 atm or less,
After the heat treatment in the range of ~1400°C, the nitriding reaction treatment is carried out in a nitrogen-containing inert gas atmosphere, which may be carried out by a known method. However, heat treatment at 1250° C. or higher and 0.2 atmosphere or higher is preferable because the nitriding reaction progresses easily.
Note that the raw material mixture treated by the method of the present invention is
The process of contacting raw material alumina under pressure higher than normal pressure until the reaction rate of alumina reaches at least 5%, which is a method for which the present inventors have already applied for a patent, and the raw material mixture treated by the method of the present invention. By combining the steps of contacting with the nitrogen gas-containing inert gas under a pressure lower than normal pressure, preferably 0.2 to 0.4 atmospheres, cation impurities are extremely low, and each property is further added. It is also possible to obtain high-purity aluminum nitride powder with a small amount of total oxygen and unreacted alumina. <Examples> The present invention will be specifically explained below using examples. Examples 1 to 10 Alumina powder containing various impurities shown in Table 1
After mixing and pulverizing 100 g and 40 g of carbon powder in a ball mill, a carbon tray (height 210 mm,
210mm in width and 40mm in height). The thickness of the raw material mixture at this time was 30 mm. This tray
It was placed in an electric furnace with effective dimensions of 230 mm in length, 250 mm in width, and 220 mm in height, and a reductive nitriding reaction was carried out while nitrogen gas was flowing. At this time, heating was performed from room temperature to 1000°C at a temperature increase rate of 100°C/Hr while maintaining normal pressure. (a) The temperature was increased and heated while maintaining various pressures lower than 0.1 atm from when the temperature exceeded 1000°C until the predetermined temperature was reached (hereinafter referred to as step (a)). (b) Thereafter, the temperature was raised to a predetermined temperature while maintaining various pressures. At this time, when the temperature reached 1550°C, the temperature was kept constant from then on (hereinafter referred to as step (b)). (c) If the temperature does not reach 1550℃ in (b), maintain the inside of the furnace at various pressures and raise the temperature to 1550℃.
After reaching the temperature, the temperature was kept constant (hereinafter referred to as step (c)). The temperature increase rate for (a), (b), and (c) was all 100°C/Hr. After the reaction was completed, the cation impurities and total oxygen content of the produced aluminum nitride powder were analyzed using fluorescent X-ray analysis (System 3070, manufactured by Rika Denki Kogyo Co., Ltd.).
For Na only, atomic absorption spectrometry (AA− manufactured by Shimadzu Corporation)
646), respectively. The results are shown in Table 2 together with the pressure, time, and temperature conditions for each step (a), (b), and (c) above. In the table, the amount of unreacted alumina (α-Al 2
O 3 ), particle size (average particle size), and total oxygen amount are each listed. Amount of unreacted alumina (α
-Al 2 O 3 ) was measured by X-ray diffraction, and the average particle size was measured using a light transmission particle size distribution analyzer (manufactured by Seishin Enterprise Co., Ltd.).
SKN1000 model), and the total oxygen content was measured using fluorescent X-ray analysis, similar to the measurement of cationic impurities. The results are shown in Table 2. Comparative Example The same procedure as in Example was carried out except that the pressure in the electric furnace was always maintained at normal pressure. The results are also shown in Table 2.

【表】【table】

【表】【table】

【表】 <発明の効果> 前記実施例から判るように、本発明方法によれ
ば、従来の技術に比べて、陽イオン不純物含有量
が極めて少ない窒化アルミニウム粉体を製造する
ことができる。 かかる窒化アルミニウム粉体は、放熱性基板等
の高純度を要求する製品の原料として好適である
から、本発明は産業の発展のため極めて有用であ
る。
[Table] <Effects of the Invention> As can be seen from the examples described above, according to the method of the present invention, aluminum nitride powder with an extremely low content of cationic impurities can be produced compared to the conventional technique. Such aluminum nitride powder is suitable as a raw material for products requiring high purity such as heat-dissipating substrates, and therefore the present invention is extremely useful for industrial development.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミナとカーボンとの混合物と窒素ガスを
反応させて窒化アルミニウム粉体を製造する方法
において、窒化アルミニウムの生成反応の開始に
先立ち前記混合物に窒素含有不活性ガスを1000℃
以上1400℃以下の温度、0.1気圧以下の圧力下で
接触せしめることを特徴とする窒化アルミニウム
粉体の製造法。
1. In a method for producing aluminum nitride powder by reacting a mixture of alumina and carbon with nitrogen gas, a nitrogen-containing inert gas is added to the mixture at 1000°C prior to the start of the aluminum nitride production reaction.
A method for producing aluminum nitride powder, characterized by contacting the powder at a temperature of 1400°C or less and a pressure of 0.1 atmosphere or less.
JP62075985A 1986-12-16 1987-03-31 Production of aluminum nitride powder Granted JPS63242909A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP62075985A JPS63242909A (en) 1987-03-31 1987-03-31 Production of aluminum nitride powder
CA000553960A CA1276775C (en) 1986-12-16 1987-12-10 Process for producing an aluminum nitride powder
GB8729138A GB2200101B (en) 1986-12-16 1987-12-14 Producing aluminium nitride powder from alumina
KR1019870014359A KR900004489B1 (en) 1986-12-16 1987-12-15 Process for producing aluminium nitride powder
AU82599/87A AU596882B2 (en) 1986-12-16 1987-12-16 Process for producing an aluminum nitride powder
FR878717592A FR2608146B1 (en) 1986-12-16 1987-12-16 PROCESS FOR PRODUCING ALUMINUM NITRIDE POWDER
DE19873742667 DE3742667A1 (en) 1986-12-16 1987-12-16 METHOD FOR PRODUCING ALUMINUM NITRIDE POWDER
US07/133,827 US4851207A (en) 1986-12-16 1987-12-16 Process for producing an aluminum nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62075985A JPS63242909A (en) 1987-03-31 1987-03-31 Production of aluminum nitride powder

Publications (2)

Publication Number Publication Date
JPS63242909A JPS63242909A (en) 1988-10-07
JPH0466805B2 true JPH0466805B2 (en) 1992-10-26

Family

ID=13592065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62075985A Granted JPS63242909A (en) 1986-12-16 1987-03-31 Production of aluminum nitride powder

Country Status (1)

Country Link
JP (1) JPS63242909A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2730086B2 (en) * 1988-10-05 1998-03-25 住友化学工業株式会社 Aluminum nitride powder and method for producing the same
JPH0483707A (en) * 1990-07-26 1992-03-17 Tokyo Tungsten Co Ltd Aluminum nitride power and production thereof

Also Published As

Publication number Publication date
JPS63242909A (en) 1988-10-07

Similar Documents

Publication Publication Date Title
US4387079A (en) Method of manufacturing high-purity silicon nitride powder
US4264565A (en) Method for producing powder of α-silicon nitride
NO894770L (en) PROCEDURE FOR THE PREPARATION OF ALUMINUM NITRID.
US3350166A (en) Synthesis of aluminum borate whiskers
JPH0466805B2 (en)
JP3438928B2 (en) Method for producing silicon nitride powder
US4851207A (en) Process for producing an aluminum nitride powder
US4798714A (en) Process for the preparation of silicon nitride low in carbon content
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JPS62100403A (en) Production of fine powder of hexagonal boron nitride having high purity
JPH0446889B2 (en)
JPH0460049B2 (en)
JPS63151605A (en) Production of aluminum nitride powder
Szabó et al. The role of magnesia and alumina in promoting the nitridation of magnesium and aluminium
Kasai et al. Synthesis of Si3N4 powder by thermal decomposition of Si (NH) 2 and sintering properties
JPS62500298A (en) Nitriding method of heat-resistant oxide
JPH01160812A (en) Production of aluminum nitride powder
JP2646228B2 (en) Method for producing silicon nitride powder
JPH08283008A (en) Production of low pressure phase boron nitride powder
Braun et al. Thermal analysis of the direct nitridation of silicon to Si 3 N 4
Myhre et al. Kinetics of the Nitridation of Silicon
JPH04175210A (en) Method for removing impurity of aluminum nitride
JPH03174310A (en) Aluminum nitride powder and production thereof
JPH0465002B2 (en)
JPS6259049B2 (en)