JPH0446889B2 - - Google Patents

Info

Publication number
JPH0446889B2
JPH0446889B2 JP24851486A JP24851486A JPH0446889B2 JP H0446889 B2 JPH0446889 B2 JP H0446889B2 JP 24851486 A JP24851486 A JP 24851486A JP 24851486 A JP24851486 A JP 24851486A JP H0446889 B2 JPH0446889 B2 JP H0446889B2
Authority
JP
Japan
Prior art keywords
alumina
pressure
aluminum nitride
nitrogen
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24851486A
Other languages
Japanese (ja)
Other versions
JPS63103806A (en
Inventor
Hachiro Ichikawa
Masanori Kokuni
Akira Murase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP24851486A priority Critical patent/JPS63103806A/en
Publication of JPS63103806A publication Critical patent/JPS63103806A/en
Publication of JPH0446889B2 publication Critical patent/JPH0446889B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0726Preparation by carboreductive nitridation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、新規な窒化アルミニウム製造方法に
関し、詳しくは未反応アルミナ含有率が極めて少
ない窒化アルミニウム粉末の製造方法に関するも
のである。 従来の技術 従来の窒化アルミニウム粉末の製造方法として
は、例えば特開昭59−50008号に開示されている
ようなアルミナ粉末とカーボン粉末との混合組成
物を窒素を含む雰囲気中で焼成する方法や、例え
ば特開昭60−161314号に開示されているようなア
ルミニウムと窒素ガスとを接触させて窒化反応を
行わせる方法等が知られている。 発明が解決しようとする問題点 しかしながら、前記引例のような方法において
は、製造した窒化アルミニウム中に、前者では未
反応のアルミナが、後者では未反応のアルミニウ
ムが残存し易く、かくして得られた窒化アルミニ
ウム粉末は、放熱性基板のような高純度を要する
製品の原料として使用するためには、純度上の問
題点を有する。本発明者らは、前記問題点を解決
するため、アルミナとカーボンとの混合物と窒素
ガスとを反応させて窒化アルミニウム粉末を製造
する方法において、製造された窒化アルミニウム
粉末の未反応アルミナ含有量が極めて少なくなる
ような方法を鋭意研究し、本発明を完成するに至
つた。 問題点を解決するための手段 すなわち、本発明は、アルミナとカーボンとの
混合物と窒素ガスを反応させて窒化アルミニウム
粉末を製造する方法において、前記混合物に窒素
含有不活性ガスを1250℃以上の温度で、常圧より
も高い圧力下で接触せしめる工程と、ついで、か
く処理された混合物を1250℃以上の温度で、常圧
よりも低い圧力の窒素含有不活性雰囲気中で保持
する工程とから成る二段処理をすることを特徴と
する窒化アルミニウム粉末の製造方法を提供する
ものである。 本発明において使用するアルミナおよびカーボ
ンは、それぞれの粉末若しくは両者の粉末の混合
物を例えば粒状に成形したものでもよいが、通常
はそれぞれの微粉末が使用される。 本発明において使用する窒素含有不活性ガスと
は、窒素ガスを含有し、かつ、例えば酸素,炭酸
ガス,水蒸気等の高温で酸化性を有するガスを可
及的に含まないガスである。ただし、反応生成物
である一酸化炭素を不可避的に含むことは差支え
ない。 さて、アルミナとカーボンとの混合物は、窒素
含有不活性ガス雰囲気中で高温に加熱された場
合、式(1)により窒化アルミニウムと一酸化炭素に
変換することが知られている。 Al2O3+3C+N2=2AlN+3CO (1) ただし、反応の初期段階においては、式(1)の反
応と並行して未反応のアルミナの粒子成長が起こ
る。かかるアルミナの粒子成長が著しい場合に
は、その後の長時間の反応によつても式(1)による
変換が十分に進行せず、製造された窒化アルミニ
ウム中に未反応のアルミナが、通常はアルフア・
アルミナの形態で残留することとなる。又アルミ
ナの粒子成長が発生すると生成する窒化アルミニ
ウム粉末の粒径が大きなものとなつてしまうので
好ましくない。 まず、本発明者らは、上記式(1)の反応初期段階
において、アルミナ粒子の成長速度を小さくする
方法を研究した結果、1250℃以上の温度域におい
ては、窒素含有不活性ガスの圧力が高い程アルミ
ナの粒子の成長速度は小さくなり、前記のアルミ
ナの粒子の成長を効果的に抑制できることが判明
した。本発明で言う常圧よりも高い圧力とは、1
気圧を超える圧力ならばよいが、好ましくは1.1
〜10気圧,最も好ましくは1.2〜2.0気圧の圧力範
囲である。10気圧を超えると、反応炉の気密性の
保持や耐圧に問題を生ずる場合がある。なお、
1250℃未満の温度域においては、アルミナの粒子
成長は何れにしても顕著でないので、窒素含有不
活性ガスの圧力は製造された窒化アルミニウムの
品質に殆ど影響を及ぼさない。また、窒素含有不
活性ガスを常圧よりも高く保持する時間は、アル
ミナ粒子の表面が実質的に窒化アルミニウムに変
化する時間であればよく、保持温度にも依存する
が、例えば1550℃の温度で保持する場合1〜5時
間程度が好適である。 しかしながら、上記の如き常圧よりも高い圧力
下で窒素含有不活性ガスをアルミナとカーボンと
の混合物に接触せしめる工程を終了した段階で
は、アルミナ粒の表面が窒化アルミニウム化し、
その粒内では、まだ多量の未反応のアルミナが残
存しているので、更に式(1)の反応を効率よく継続
する必要がある。 そこで、本発明者らは、上記式(1)の反応の終期
段階において未反応アルミナの残留量をできるだ
け少なくする方法を研究した結果、製造された窒
化アルミニウム粉末中の未反応アルミナが実質的
に無くなるか、または極めて少なくなるために
は、前記雰囲気の圧力は常圧よりも低いことが必
要であり、特に0.2〜0.4気圧が好ましいことが判
明した。0.2気圧未満では製造された窒化アルミ
ニウム粉末の粒径が若干大きくなる恐れがある。
また、窒素含有不活性ガスを常圧よりも低く保持
する時間は、保持温度などのその他の反応条件に
も依存するが、通常は5〜100時間程度が好適で
ある。 雰囲気の圧力を常圧よりも低くすると上記の如
き好ましい効果が得られる理由は明確ではない
が、前記式(1)の反応の自由エネルギーが下記式(2)
で示されることから判るように、雰囲気の全圧を
低下させると、化学平衡が前記式(1)の反応が進み
易い方向に移行するためとも考えられる。 ΔG=ΔG0+RTln(Pco)3/PPN2 (2) 上記の如く、本発明の特徴は、(イ)アルミナとカ
ーボンとの混合物に窒素含有不活性ガスを常圧よ
りも高い圧力下で接触せしめる工程と、(ロ)つい
で、かく処理された混合物を常圧よりも低い圧力
の窒素含有不活性ガス雰囲気中で保持する工程と
を組合わせることにあるが、前記(イ)および(ロ)の工
程を通じて温度は1250℃以上、好ましくは1250〜
1700℃の範囲である。1250未満では前記式(1)の反
応が遅過ぎて不適当であり、一方、1700℃を超え
ると製造される窒化アルミニウム粉末の粒径が大
きくなる恐れがある。 なお、アルミナとカーボンとの混合物と窒素含
有不活性ガスを1250℃以上の温度で反応させる場
合には、前記ガスの圧力を終始常圧以上に保つと
か、または終始常圧以下に保つとかの圧力条件を
採用しても窒化アルミニウム粉末の製造は可能で
あるが、かかる反応条件においては、前記の如き
理由により、製造された窒化アルミニウム中の未
反応アルミナ残留量を、本発明の製造方法による
ほどには減少できない。 実施例 以下に、実施例により本発明を具体的に説明す
る。 実施例 1〜3 電子顕微鏡で測定した平均粒径1.0μmのアルミ
ナ粉末100gと同平均粒径0.05μmのカーボン粉末
40gとをボールミルで混合・粉砕した後、カーボ
ン製トレー(縦210mm,横210mm,高さ40mm)に充
填した。このときの原料混合物の厚さは30mmであ
つた。このトレーを、有効寸法が縦230mm,横250
mm,高さ220mmの電気炉内に配置し、窒素ガスを
流通させながら、還元窒化反応を行わせた。この
際の温度条件としては、昇温速度100℃/hrで
1550℃になるまで加熱し、その後1550℃で24時間
維持した。その間の電気炉内の圧力は、常温から
1250℃までは常圧とし、(イ)1250℃を超え1550℃ま
での昇温過程および1550℃の温度維持の最初の2
時間において常圧よりも高い種々の圧力に保ち、
(ロ)1550℃の温度維持の残りの時間を常圧よりも低
い種々の圧力に維持した。反応終了後、生成した
窒化アルミニウム粉末中のα−Al2O3(アルフ
ア・アルミナ)残留量をX線回折により定量し
た。結果を第1表に示す。 比較例 1 電気炉中の圧力を常に常圧に維持したこと以外
は実施例と同様に行なつた。結果を併せて第1表
に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a novel method for producing aluminum nitride, and more particularly, to a method for producing aluminum nitride powder with extremely low unreacted alumina content. BACKGROUND ART Conventional methods for producing aluminum nitride powder include, for example, a method of firing a mixed composition of alumina powder and carbon powder in an atmosphere containing nitrogen, as disclosed in JP-A No. 59-50008; For example, a method is known in which a nitriding reaction is carried out by bringing aluminum into contact with nitrogen gas, as disclosed in JP-A-60-161314. Problems to be Solved by the Invention However, in the method as cited above, unreacted alumina tends to remain in the produced aluminum nitride, and unreacted aluminum tends to remain in the latter, and the resulting nitride Aluminum powder has purity problems when used as a raw material for products that require high purity, such as heat-dissipating substrates. In order to solve the above problems, the present inventors have developed a method for producing aluminum nitride powder by reacting a mixture of alumina and carbon with nitrogen gas, in which the unreacted alumina content of the produced aluminum nitride powder is reduced. The present invention was completed after intensive research into a method that would reduce the amount of waste to an extremely low level. Means for Solving the Problems That is, the present invention provides a method for producing aluminum nitride powder by reacting a mixture of alumina and carbon with nitrogen gas, in which a nitrogen-containing inert gas is added to the mixture at a temperature of 1250°C or higher. and then holding the thus treated mixture at a temperature above 1250°C in a nitrogen-containing inert atmosphere at a pressure below normal pressure. The present invention provides a method for producing aluminum nitride powder, which is characterized by a two-stage treatment. The alumina and carbon used in the present invention may be powders of each or a mixture of the two powders formed into granules, but usually fine powders of each are used. The nitrogen-containing inert gas used in the present invention is a gas that contains nitrogen gas and does not contain gases that are oxidizing at high temperatures, such as oxygen, carbon dioxide, and water vapor as much as possible. However, it may inevitably contain carbon monoxide, which is a reaction product. Now, it is known that when a mixture of alumina and carbon is heated to a high temperature in a nitrogen-containing inert gas atmosphere, it converts into aluminum nitride and carbon monoxide according to equation (1). Al 2 O 3 +3C+N 2 =2AlN+3CO (1) However, in the initial stage of the reaction, unreacted alumina particles grow in parallel with the reaction of formula (1). If such alumina particles grow significantly, the conversion according to formula (1) will not proceed sufficiently even during the subsequent long-term reaction, and unreacted alumina will usually remain in the produced aluminum nitride.・
It will remain in the form of alumina. Furthermore, if alumina particle growth occurs, the particle size of the produced aluminum nitride powder becomes large, which is undesirable. First, the present inventors researched a method to reduce the growth rate of alumina particles in the initial stage of the reaction in equation (1) above, and found that in a temperature range of 1250°C or higher, the pressure of the nitrogen-containing inert gas is It was found that the higher the value, the lower the growth rate of alumina particles, and that the growth of alumina particles can be effectively suppressed. In the present invention, pressure higher than normal pressure means 1
The pressure may be greater than atmospheric pressure, but preferably 1.1
The pressure range is ~10 atmospheres, most preferably 1.2-2.0 atmospheres. If the pressure exceeds 10 atmospheres, problems may arise in maintaining the airtightness of the reactor and in pressure resistance. In addition,
In the temperature range below 1250° C., alumina particle growth is not noticeable in any case, so the pressure of the nitrogen-containing inert gas has little effect on the quality of the aluminum nitride produced. In addition, the time for holding the nitrogen-containing inert gas higher than normal pressure is sufficient as long as the surface of the alumina particles is substantially transformed into aluminum nitride, and depends on the holding temperature, for example, at a temperature of 1550°C. When holding at a temperature of about 1 to 5 hours, it is suitable. However, at the end of the step of bringing the nitrogen-containing inert gas into contact with the mixture of alumina and carbon under a pressure higher than normal pressure as described above, the surface of the alumina grains becomes aluminum nitride,
Since a large amount of unreacted alumina still remains within the grains, it is necessary to continue the reaction of formula (1) efficiently. Therefore, the present inventors researched a method to minimize the amount of unreacted alumina remaining in the final stage of the reaction of formula (1) above, and found that the unreacted alumina in the produced aluminum nitride powder was substantially reduced. It has been found that the pressure of the atmosphere needs to be lower than normal pressure in order for it to disappear or become extremely low, and that 0.2 to 0.4 atmospheres is particularly preferable. If the pressure is less than 0.2 atm, the particle size of the produced aluminum nitride powder may become slightly larger.
Further, the time period for which the nitrogen-containing inert gas is maintained at a pressure lower than normal pressure depends on other reaction conditions such as the holding temperature, but is usually preferably about 5 to 100 hours. It is not clear why the above favorable effects are obtained when the pressure of the atmosphere is lower than normal pressure, but the free energy of the reaction of the above formula (1) is expressed by the following formula (2).
As can be seen from the equation (1), it is thought that when the total pressure of the atmosphere is lowered, the chemical equilibrium shifts to a direction in which the reaction of the above formula (1) tends to proceed. ΔG=ΔG 0 +RTln(Pco) 3 /PP N2 (2) As mentioned above, the characteristics of the present invention are (a) contacting the mixture of alumina and carbon with a nitrogen-containing inert gas under a pressure higher than normal pressure; and (b) the step of holding the thus treated mixture in a nitrogen-containing inert gas atmosphere at a pressure lower than normal pressure. The temperature throughout the process is above 1250℃, preferably 1250~
It is in the range of 1700℃. If the temperature is less than 1250°C, the reaction of formula (1) is too slow and unsuitable, while if it exceeds 1700°C, the particle size of the aluminum nitride powder produced may increase. In addition, when reacting a mixture of alumina and carbon with a nitrogen-containing inert gas at a temperature of 1250°C or higher, the pressure of the gas must be kept above normal pressure from beginning to end, or below normal pressure throughout. Although it is possible to produce aluminum nitride powder even if the reaction conditions are adopted, for the reasons mentioned above, under such reaction conditions, the amount of unreacted alumina remaining in the produced aluminum nitride is less than the amount by the production method of the present invention. cannot be decreased. EXAMPLES The present invention will be specifically explained below using examples. Examples 1 to 3 100 g of alumina powder with an average particle size of 1.0 μm and carbon powder with the same average particle size of 0.05 μm measured with an electron microscope
After mixing and pulverizing 40 g with a ball mill, the mixture was filled into a carbon tray (length 210 mm, width 210 mm, height 40 mm). The thickness of the raw material mixture at this time was 30 mm. The effective dimensions of this tray are 230mm long and 250mm wide.
It was placed in an electric furnace with a diameter of 220 mm and a height of 220 mm, and a reductive nitriding reaction was carried out while nitrogen gas was flowing through it. The temperature conditions at this time are a heating rate of 100℃/hr.
It was heated to 1550°C and then maintained at 1550°C for 24 hours. During that time, the pressure inside the electric furnace varies from room temperature to
Normal pressure is used up to 1250℃, and (a) the temperature rise process from 1250℃ to 1550℃ and the first two stages of maintaining the temperature at 1550℃
maintained at various pressures higher than normal pressure for a period of time,
(b) The remaining time of maintaining the temperature at 1550°C was maintained at various pressures lower than normal pressure. After the reaction was completed, the amount of α-Al 2 O 3 (alpha alumina) remaining in the produced aluminum nitride powder was determined by X-ray diffraction. The results are shown in Table 1. Comparative Example 1 The same procedure as in Example was carried out except that the pressure in the electric furnace was always maintained at normal pressure. The results are also shown in Table 1.

【表】 発明の効果 上記実施例から判るように、本発明の製造方法
によれば、従来の技術に比べて、未反応のアルミ
ナを実質的に含まないか、または極めて少量しか
含まない窒化アルミニウム粉末を製造することが
できる。かかる窒化アルミニウム粉末は、放熱性
基板等の高純度を要求する製品の原料として好適
であるから、本発明は産業の発展のため極めて有
用である。
[Table] Effects of the Invention As can be seen from the above examples, the production method of the present invention produces aluminum nitride that does not substantially contain unreacted alumina or contains only a very small amount of unreacted alumina, compared to the conventional technology. A powder can be produced. Such aluminum nitride powder is suitable as a raw material for products requiring high purity such as heat-dissipating substrates, so the present invention is extremely useful for industrial development.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミナとカーボンとの混合物と窒素ガスを
反応させて窒化アルミニウム粉末を製造する方法
において、前記混合物に窒素含有不活性ガスを
1250℃以上の温度で、常圧よりも高い圧力下で接
触せしめる工程と、ついで、かく処理された混合
物を1250℃以上の温度で、常圧よりも低い圧力の
窒素含有不活性雰囲気中で保持する工程とから成
る二段処理をすることを特徴とする窒化アルミニ
ウム粉末の製造方法。
1 In a method for producing aluminum nitride powder by reacting a mixture of alumina and carbon with nitrogen gas, a nitrogen-containing inert gas is added to the mixture.
contacting at a temperature above 1250°C and a pressure above normal pressure, and then holding the so-treated mixture in a nitrogen-containing inert atmosphere at a temperature above 1250°C and a pressure below normal pressure. A method for producing aluminum nitride powder, which comprises a two-stage process comprising steps of:
JP24851486A 1986-10-21 1986-10-21 Production of aluminum nitride powder Granted JPS63103806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24851486A JPS63103806A (en) 1986-10-21 1986-10-21 Production of aluminum nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24851486A JPS63103806A (en) 1986-10-21 1986-10-21 Production of aluminum nitride powder

Publications (2)

Publication Number Publication Date
JPS63103806A JPS63103806A (en) 1988-05-09
JPH0446889B2 true JPH0446889B2 (en) 1992-07-31

Family

ID=17179315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24851486A Granted JPS63103806A (en) 1986-10-21 1986-10-21 Production of aluminum nitride powder

Country Status (1)

Country Link
JP (1) JPS63103806A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151605A (en) * 1986-12-16 1988-06-24 Nippon Light Metal Co Ltd Production of aluminum nitride powder
JPS63151606A (en) * 1986-12-16 1988-06-24 Nippon Light Metal Co Ltd Production of aluminum nitride powder

Also Published As

Publication number Publication date
JPS63103806A (en) 1988-05-09

Similar Documents

Publication Publication Date Title
US4428916A (en) Method of making α-silicon nitride powder
US4145224A (en) Method for enhancing the crystallization rate of high purity amorphous Si3 N4 powder, powders produced thereby and products therefrom
JPS6112844B2 (en)
US4346068A (en) Process for preparing high-purity α-type silicon nitride
US4208215A (en) Method for enhancing the crystallization rate of high purity amorphous Si3 N2 powder by intimate contact with a titanium containing material
US4530825A (en) Process for the production of silicon nitride
JPH0446889B2 (en)
JPH0476924B2 (en)
JPS6111886B2 (en)
EP0385096B1 (en) Process for producing sinterable crystalline aluminum nitride powder
JPS5839764B2 (en) Method for producing aluminum nitride powder
JPH0460049B2 (en)
JPH0460048B2 (en)
CA1276775C (en) Process for producing an aluminum nitride powder
JPS6111885B2 (en)
JPS62100403A (en) Production of fine powder of hexagonal boron nitride having high purity
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JPH058123B2 (en)
JPH01201012A (en) Production of silicon nitride powder
JPH0466805B2 (en)
JPH04114907A (en) Production of alpha type silicon nitride powder
JP2646228B2 (en) Method for producing silicon nitride powder
JPH0541561B2 (en)
JPH0733412A (en) Production of aluminum nitride powder
JPH02255510A (en) Fine powder of low-oxygen high-beta type silicon nitride and production thereof