JPH0466650A - Sealing alloy for hard glass - Google Patents

Sealing alloy for hard glass

Info

Publication number
JPH0466650A
JPH0466650A JP17832490A JP17832490A JPH0466650A JP H0466650 A JPH0466650 A JP H0466650A JP 17832490 A JP17832490 A JP 17832490A JP 17832490 A JP17832490 A JP 17832490A JP H0466650 A JPH0466650 A JP H0466650A
Authority
JP
Japan
Prior art keywords
alloy
hard glass
thermal expansion
coefficient
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17832490A
Other languages
Japanese (ja)
Other versions
JP3002241B2 (en
Inventor
Yutaka Kawai
川合 裕
Takashi Komatsu
高 小松
Hirohisa Kato
浩久 加藤
Katsunori Babasono
勝典 馬場園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16046494&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0466650(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2178324A priority Critical patent/JP3002241B2/en
Publication of JPH0466650A publication Critical patent/JPH0466650A/en
Application granted granted Critical
Publication of JP3002241B2 publication Critical patent/JP3002241B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sealed part having good conformity with hard glass and excellent in airtightness by balancing the content of each component in an Fe-Ni-Co ternary system, and furthermore reducing the Co content. CONSTITUTION:The compsn. of a sealing alloy for hard glass is formed of, by weight, 31 to 42% Ni, 1 to 15% Co as well as 38 to 46% Ni+Co and the balance Fe with inevitable impurities. In this ternary system alloy, the average thermal expansion coefficient at 30 to 400 deg.C is regulated to 4.5X10<-6> to 6.0X10<-6>/ deg.C. This value is equal to that of hard glass. At the time of melting and refining this alloy, according to necessary, desulfurizing and deoxidizing elements such as Si, Mn and Al are added. In this way, the sealing alloy for hard glass excellent in airtightness and sealability can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、気密封止性に優れた硬質ガラス用封着合金に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a sealing alloy for hard glass that has excellent hermetic sealing properties.

[従来の技術1 硬質ガラスは、粘度が4X10”ボイズであるときの温
度、すなわち歪点が約430℃にある。
[Prior Art 1] Hard glass has a temperature at which the viscosity is 4×10”, that is, a strain point is about 430° C.

この歪点以下に維持された硬質ガラスは、粘性流動を起
こさず、また如何なる急冷によっても永久歪を残留させ
ることがない。そして、室温から歪点までの温度領域に
おける平均熱膨張係数は、約5.3X10−’/’Cで
ある。
Hard glass maintained below this strain point will not undergo viscous flow and will not retain any permanent deformation even after rapid cooling. The average coefficient of thermal expansion in the temperature range from room temperature to the strain point is approximately 5.3X10-'/'C.

硬質ガラスは歪点よりも高い温度に加熱されて封着合金
と封着される。封着後の冷却過程において、歪点以上の
温度域においては、硬質ガラスと封着合金との熱膨張に
基づく応力は、ガラスの粘性流動により緩和される。し
かし、歪点以下の温度域においては、熱膨張差に基づく
応力が緩和されず、この応力差が大きいと硬質ガラスの
破壊あるいは硬質ガラスと封着合金との界面にて剥離が
生じ、気密が保たれなくなる。そのため、硬質ガラスに
封着される金属材料としては、硬質ガラスに対する熱膨
張特性の整合性をもたせることから、常温〜430℃の
温度領域において硬質ガラスとほぼ同等の熱膨張係数を
もつことが要求される。この点で、Fe−29Ni−1
7Co合金が、従来から代表的な封着合金として使用さ
れている。
Hard glass is heated to a temperature higher than its strain point and sealed with a sealing alloy. In the cooling process after sealing, stress due to thermal expansion between the hard glass and the sealing alloy is alleviated by the viscous flow of the glass in a temperature range equal to or higher than the strain point. However, in the temperature range below the strain point, stress due to the difference in thermal expansion is not relaxed, and if this stress difference is large, the hard glass may break or peeling may occur at the interface between the hard glass and the sealing alloy, resulting in airtightness. It will no longer be maintained. Therefore, the metal material sealed to hard glass is required to have a coefficient of thermal expansion almost equivalent to that of hard glass in the temperature range from room temperature to 430°C in order to have consistent thermal expansion characteristics with hard glass. be done. In this respect, Fe-29Ni-1
7Co alloy has traditionally been used as a typical sealing alloy.

しかし、Fe−29Ni−17Co合金は、多量のCo
を含有するため、高価な材料である。そのため、用途に
制約を受け、広く使用されるまでには至っていない。そ
こで、Fe−29Ni−17Co合金に代わる安価な封
着合金が代用されている。
However, Fe-29Ni-17Co alloy contains a large amount of Co.
It is an expensive material because it contains Therefore, it is limited in its uses and has not been widely used. Therefore, inexpensive sealing alloys have been substituted for the Fe-29Ni-17Co alloy.

このような安価な封着合金として、Fe−42Ni合金
が知られている。この合金は、高価なCoを含有してい
ないため、比較的安価な材料として取扱われる。しかも
、30〜300℃における熱膨張係数は、約5xiO−
’/’Cで、硬質ガラスの熱膨張係数に近いものである
Fe-42Ni alloy is known as such an inexpensive sealing alloy. Since this alloy does not contain expensive Co, it is treated as a relatively inexpensive material. Moreover, the thermal expansion coefficient at 30 to 300°C is approximately 5xiO-
'/'C, which is close to the coefficient of thermal expansion of hard glass.

[発明が解決しようとする課題] しかし、Fe−42Ni合金は、変移点が330℃と低
い。この温度330℃を境として、単位温度当りで熱膨
張係数の変移量が急激に変化し、熱膨張曲線に屈曲点が
みもれる。しかも、30〜400’C(7)熱膨張係数
が6’、 4 X 10−’/’Cト比較的大きい。そ
のため、Fe−42Ni合金を使用して硬質ガラスを封
着したとき、Fe−29Ni−17co合金に比べて低
い気密性をもった封止部が得られる。
[Problems to be Solved by the Invention] However, the Fe-42Ni alloy has a low transition point of 330°C. At this temperature of 330° C., the amount of change in the coefficient of thermal expansion changes rapidly per unit temperature, and a bending point is seen in the thermal expansion curve. Moreover, the coefficient of thermal expansion of 30 to 400'C (7) is relatively large at 6', 4 x 10-'/'C. Therefore, when hard glass is sealed using the Fe-42Ni alloy, a sealed portion having lower airtightness than the Fe-29Ni-17co alloy is obtained.

この気密性は、封着合金に要求される最も重要な特性の
一つである。そのため、気密性に劣るFe−42Ni合
金は。信顛性を要求される部品に使用されていないのが
現状である。
This airtightness is one of the most important properties required of a sealing alloy. Therefore, Fe-42Ni alloy has poor airtightness. Currently, it is not used in parts that require reliability.

本発明は、このような問題を解消すべ(案出されたもの
であり、Fe−29Ni−17Co合金よりCo含有量
が少なく、しかもFe−29Ni−1000合金と同等
の熱膨張特性を有する安価な硬質ガラス用封着合金を提
供することを目的とする。
The present invention has been devised to solve these problems, and is an inexpensive material that has a lower Co content than the Fe-29Ni-17Co alloy and has thermal expansion characteristics equivalent to the Fe-29Ni-1000 alloy. The purpose of the present invention is to provide a sealing alloy for hard glass.

[課題を解決するための手段] 本発明の封着合金は、その目的を達成するために、Ni
:31〜42重量%、Coal〜15%重量、且つNi
+Co量が38〜46重量%で、残部Fe及び不可避的
不純物からなり、30〜400℃における平均熱膨張係
数が4.5X10−’/℃〜6. OX 10−5/℃
であることを特徴とする。
[Means for Solving the Problems] In order to achieve the object, the sealing alloy of the present invention has Ni
:31 to 42% by weight, Coal to 15% by weight, and Ni
The amount of +Co is 38 to 46% by weight, the balance is Fe and unavoidable impurities, and the average coefficient of thermal expansion at 30 to 400°C is 4.5X10-'/°C to 6. OX 10-5/℃
It is characterized by

[作用] 本発明者等は、封着合金のもつ問題点を解決すべく、F
e−Ni−Co系合金の熱膨張特性を詳細に調べた。そ
の結果、Ni31〜42重量%。
[Function] In order to solve the problems of sealing alloys, the present inventors have developed F
The thermal expansion characteristics of the e-Ni-Co alloy were investigated in detail. As a result, Ni was 31 to 42% by weight.

001〜15重量%、且つNi+Co量が38〜46重
量%で、残部Fe及び不可避的不純物からなる合金で、
30〜400℃の平均熱膨張係数が硬質ガラスと同等の
4.5xlO−6/℃〜6.OX 10−5/℃を有す
る合金が得られることを見い出し、本発明に至ったもの
である。
001 to 15% by weight, and the amount of Ni + Co is 38 to 46% by weight, with the balance consisting of Fe and inevitable impurities,
The average coefficient of thermal expansion from 30 to 400°C is 4.5xlO-6/°C to 6.0, which is equivalent to hard glass. It was discovered that an alloy having OX 10-5/°C can be obtained, leading to the present invention.

Fe−Ni合金は、第1図に見られるように、Ni量の
増加に伴って熱膨張係数が小さ(なる。
As seen in FIG. 1, the Fe-Ni alloy has a smaller coefficient of thermal expansion as the amount of Ni increases.

しかし、Ni38重量%前後を境として、熱膨張係数が
増加する傾向がみられる。このため、Fe−Ni2元系
においては、熱膨張係数を6.0×10−5/℃以下に
することはできない。
However, there is a tendency for the coefficient of thermal expansion to increase when Ni reaches around 38% by weight. For this reason, in the Fe-Ni binary system, the thermal expansion coefficient cannot be lower than 6.0 x 10-5/°C.

このFe−Ni二元系合金にCoを添加するとき、熱膨
張係数は、第2図に示すように急激に小さくなる。しか
し、Coの添加も、ある含有量を境として、多量のCo
含有によって逆に熱膨張係数を大きくする傾向を示す。
When Co is added to this Fe--Ni binary alloy, the coefficient of thermal expansion decreases rapidly as shown in FIG. However, with the addition of Co, a large amount of Co
Contrary to this, the content tends to increase the coefficient of thermal expansion.

すなわち、熱膨張特性は、Ni含有量とCo含有量との
バランスに応じて定まる。そして、第2図に示すように
、Fe−32%Ni系ではCo7〜15%、Fe−35
%Ni系ではC04〜12%、Fe−38%Ni系では
001〜8%の範囲で熱膨張係数が最も小さ(なる。こ
の範囲でFe−Ni−Co合金の熱膨張係数は、硬質ガ
ラスの熱膨張係数と同等の4.5xlO−5/℃〜6.
OX I Q−’/’Cとなり、これらを外れるco量
では熱膨張係数が大きくなり過ぎる。
That is, the thermal expansion characteristics are determined depending on the balance between Ni content and Co content. As shown in Figure 2, in the Fe-32%Ni system, Co7-15%, Fe-35
The coefficient of thermal expansion of the Fe-Ni-Co alloy is the smallest in the range of 001 to 8% for the %Ni system and 001 to 8% for the Fe-38%Ni system. 4.5xlO-5/℃~6. equivalent to the thermal expansion coefficient.
OX I Q-'/'C, and if the amount of co falls outside of these values, the coefficient of thermal expansion becomes too large.

したがって、本発明においては、硬質ガラスの熱膨張係
数と同等の値を得ることを条件に、成分範囲を第3図の
如く選定し、N i +Co量を38〜46%とした。
Therefore, in the present invention, on the condition that a value equivalent to the coefficient of thermal expansion of hard glass be obtained, the component range was selected as shown in FIG. 3, and the amount of Ni + Co was set to 38 to 46%.

なお、Fe−Ni−Co合金を溶解・精製する際、Si
、Mn、Aβ等の脱硫脱酸元素が添加されることがある
。本発明の封着合金は、これら元素を若干量含有しても
よいことは勿論である。
Note that when melting and refining Fe-Ni-Co alloy, Si
, Mn, Aβ, and other desulfurizing and deoxidizing elements may be added. It goes without saying that the sealing alloy of the present invention may contain some amount of these elements.

(実 施 例〕 以下、実施例によって、本発明を具体的に説明する。(Example〕 Hereinafter, the present invention will be specifically explained with reference to Examples.

真空誘導溶解炉で、第1表に成分・組成を示した22種
類の合金を12Kg溶解し、鍛造、熱間圧延して厚さ3
mmの板材に仕上げた。この板材から試験片を切出し、
850℃で5分の焼鈍を施した後、30〜400℃の温
度範囲における熱膨張係数を測定した。その結果を、第
1表に併せて示す。
In a vacuum induction melting furnace, 12 kg of 22 types of alloys whose components and compositions are shown in Table 1 are melted, forged and hot rolled to a thickness of 3.
Finished in a plate material of mm. A test piece was cut out from this plate material,
After annealing at 850°C for 5 minutes, the coefficient of thermal expansion was measured in a temperature range of 30 to 400°C. The results are also shown in Table 1.

第1表から明らかなように、本発明の合金は、従来の合
金のFe−29Ni−17Coと同等の熱膨張係数もっ
ている。そこで、この合金を使用して硬質ガラスを封着
したところ、硬質ガラスとの整合性も良好で、気密性に
優れた封止部が得られた。
As is clear from Table 1, the alloy of the present invention has a coefficient of thermal expansion equivalent to that of the conventional alloy Fe-29Ni-17Co. Therefore, when hard glass was sealed using this alloy, a sealed portion with good compatibility with the hard glass and excellent airtightness was obtained.

(以下、このページ余白) [発明の効果] 以上に説明したように、本発明は、Fe−N1−C〇三
元系において、各成分の含有量をバランスさせることに
よって、30〜400℃の温度領域における平均熱膨張
係数が硬質ガラスと同等の値を示す合金を得ている。こ
の合金は、その熱膨張特性のために、硬質ガラスに対す
る良好な整合性を呈し、気密性に優れた封止部を得るこ
とができる。しかも、Co含有量が少ないため、比較的
安価な封着材料として使用される。
(Hereinafter, the margins of this page) [Effects of the invention] As explained above, the present invention has the advantage of balancing the content of each component in the Fe-N1-C〇 ternary system. We have obtained an alloy whose average coefficient of thermal expansion in the temperature range is equivalent to that of hard glass. Due to its thermal expansion properties, this alloy exhibits good compatibility with hard glass and can provide a hermetic seal. Furthermore, since the Co content is low, it is used as a relatively inexpensive sealing material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はFe−Nf二元系合金の30〜40゜℃におけ
るNi含有量と熱膨張係数との関係を示し、第2図は3
0〜400℃の熱膨張係数に及ぼすNi含有量及びCo
含有量の影響を示し、第3図はFe−Ni−Co三元図
に30〜400℃の熱膨張係数を整理して示したもので
ある。
Figure 1 shows the relationship between Ni content and thermal expansion coefficient at 30 to 40°C for Fe-Nf binary alloy, and Figure 2 shows the relationship between the Ni content and the thermal expansion coefficient at 30 to 40°C.
Effect of Ni content and Co on thermal expansion coefficient from 0 to 400°C
The influence of the content is shown in FIG. 3, which shows the Fe-Ni-Co ternary diagram in which the thermal expansion coefficients from 30 to 400°C are arranged.

Claims (1)

【特許請求の範囲】[Claims] (1)Ni:31〜42重量% Co:1〜15重量% 且つNi+Co量が38〜46重量%で、 残部Fe及び不可避的不純物からなり、30〜400℃
における平均熱膨張係数が4.5×10^−^6/℃〜
6.0×10^−^5/℃であることを特徴とする硬質
ガラス用封着合金。
(1) Ni: 31 to 42% by weight, Co: 1 to 15% by weight, and the amount of Ni+Co is 38 to 46% by weight, with the balance consisting of Fe and inevitable impurities, and the temperature is 30 to 400°C.
The average coefficient of thermal expansion is 4.5 x 10^-^6/℃~
A sealing alloy for hard glass characterized by a temperature of 6.0×10^-^5/°C.
JP2178324A 1990-07-05 1990-07-05 Sealing alloy for hard glass Expired - Lifetime JP3002241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2178324A JP3002241B2 (en) 1990-07-05 1990-07-05 Sealing alloy for hard glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2178324A JP3002241B2 (en) 1990-07-05 1990-07-05 Sealing alloy for hard glass

Publications (2)

Publication Number Publication Date
JPH0466650A true JPH0466650A (en) 1992-03-03
JP3002241B2 JP3002241B2 (en) 2000-01-24

Family

ID=16046494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2178324A Expired - Lifetime JP3002241B2 (en) 1990-07-05 1990-07-05 Sealing alloy for hard glass

Country Status (1)

Country Link
JP (1) JP3002241B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1995756A1 (en) * 2007-03-27 2008-11-26 Matsushita Electric Industrial Co., Ltd. Plasma display panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1995756A1 (en) * 2007-03-27 2008-11-26 Matsushita Electric Industrial Co., Ltd. Plasma display panel
EP1995756A4 (en) * 2007-03-27 2009-05-27 Panasonic Corp Plasma display panel

Also Published As

Publication number Publication date
JP3002241B2 (en) 2000-01-24

Similar Documents

Publication Publication Date Title
US4430376A (en) Glass-to-metal compression sealed lead-in structure
US2672414A (en) Chromium-titanium steel adapted for sealing to glass
JPH0466650A (en) Sealing alloy for hard glass
JP2003505594A (en) Creep-resistant iron-nickel alloy with low coefficient of thermal expansion
US5675883A (en) Method of manufacturing a copper-nickel-silicon alloy casing
US3737308A (en) Chromium-iron alloy
US1942260A (en) Alloy
US2745738A (en) Steel alloy blanks for glass-to-metal seal
US2022686A (en) Aluminum alloy casting and method of making the same
US2394919A (en) Metal-glass seal and sealing alloy
US3330653A (en) Copper-zirconium-vanadium alloys
JPS58174556A (en) Alloy for sealing soft glass
JPS62139850A (en) Iron alloy having satisfactory resistance to stress corrosion cracking
US3340028A (en) High-tin titanium welding wire
US2811439A (en) Aluminum casting alloys
US2491787A (en) Alloy for glass to metal seal
JPH02104638A (en) Low expansion nonmagnetic alloy
JPS5914539B2 (en) Alloy for soft glass sealing
JPS6247457A (en) Low thermal expansion alloy
US3138454A (en) Glass sealing
US3579329A (en) Oxidation resistant iron-chromium-aluminum alloys
US1920249A (en) Aluminum base alloy containing copper, nickel, and silicon
JPH02159351A (en) Low-expansion fe-ni alloy with high strength and its production
JPS62287047A (en) Ferrous alloy for semiconductor device lead
JPS626743B2 (en)