JPH0465660A - Automatic flaw detecting device - Google Patents

Automatic flaw detecting device

Info

Publication number
JPH0465660A
JPH0465660A JP17689390A JP17689390A JPH0465660A JP H0465660 A JPH0465660 A JP H0465660A JP 17689390 A JP17689390 A JP 17689390A JP 17689390 A JP17689390 A JP 17689390A JP H0465660 A JPH0465660 A JP H0465660A
Authority
JP
Japan
Prior art keywords
detected
scanning mirror
image
speed
automatic flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17689390A
Other languages
Japanese (ja)
Inventor
Masashi Mizuno
正志 水野
Toshio Endo
敏夫 遠藤
Mitsuaki Utsuno
宇津野 光朗
Kaoru Nakamura
薫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP17689390A priority Critical patent/JPH0465660A/en
Publication of JPH0465660A publication Critical patent/JPH0465660A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE:To accurately detect a surface image even when a body to be detected is transported at a high speed and to improve the flaw detection accuracy by projecting a surface image of the body to be detected which travels on a rotatable scanning mirror and detecting the image by a telecamera. CONSTITUTION:The automatic flaw detecting device 10 consists of the scanning mirror 18 which is provided rotatably within a specific angle range opposite the surface of the body 11 to be detected such as a steel piece, a control means 20 which controls the rotating speed of the scanning mirror 18 corresponding to the transporting speed of the body 11 to be detected, and the telecamera 16 which has an image receiving lens 16a for detecting the surface state of the body 11 to be detected with the reflected light from the scanning mirror. This automatic flaw detecting device 10 rotates the scanning mirror 18 following up the body 11 to be detected according to the transporting speed and detects the surface image projected on the scanning mirror 18 by the telecamera 16, so the surface image of the body to be detected can be captured as a still image and the surface state of the body 11 to be detected can accurately be inspected.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、蛍光磁粉探傷法における鋼片等の表面状況を
画像に映して表面疵を検知する自動探傷装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an automatic flaw detection device that detects surface flaws by projecting the surface condition of a steel piece or the like on an image in a fluorescent magnetic particle flaw detection method.

(従来の技術) 従来、磁粉探傷方法を用いた鋼片の自動探傷装置は、例
えば第6図に示すように、磁化した鋼片1の表面に蛍光
磁粉を散布し、鋼片1を一定の速で移送しながら紫外線
ランプ2の照射によって励起する磁粉の模様を、鋼片l
の所定の近傍位置に固定したテレビカメラ3で画像検出
しこの画像を処理することにより表面疵を検知している
。この場合、テレビカメラ3による画像検出は、鋼片l
の走行中に周期的に行なわれ、鋼片1が一定距離を走行
する毎に、例えば図示の領域a ls a 2の範囲で
順に検査される。
(Prior Art) Conventionally, an automatic steel billet flaw detection device using a magnetic particle detection method scatters fluorescent magnetic particles on the surface of a magnetized steel billet 1, as shown in FIG. While transporting at high speed, the pattern of the magnetic particles excited by the irradiation of the ultraviolet lamp 2 is observed on the steel piece l.
Surface flaws are detected by detecting an image with a television camera 3 fixed at a predetermined nearby position and processing this image. In this case, the image detection by the television camera 3 is based on the steel piece l.
The inspection is carried out periodically during the traveling of the steel billet 1, and each time the steel billet 1 travels a certain distance, it is sequentially inspected, for example, within the illustrated area als a 2.

(発明が解決しようとする課題) しかしながら、従来の自動探傷装置によると、走行して
いる鋼片表面の画像を鋼片表面に対向して固定したテレ
ビカメラで画像検出するため、鋼片の移送速度が高速に
なると、テレビカメラに蓄積される光量が減少し、例え
ば第7図に示すように表面疵に対応する輝度が低下し、
表面疵の検出性能が低下する。
(Problem to be Solved by the Invention) However, according to the conventional automatic flaw detection equipment, the image of the surface of the moving steel billet is detected using a television camera fixed opposite to the surface of the steel billet, so the transfer of the steel billet is difficult. As the speed increases, the amount of light accumulated in the television camera decreases, and the brightness corresponding to surface flaws decreases, for example, as shown in FIG.
The detection performance of surface flaws deteriorates.

また、例えば第8図に示すように、鋼片の移送速度を速
めていくと、カメラの走査原理から、表面疵を検出しに
くくなり、移送速度が最も速い(d)の場合、鋼片の移
送方向に長い表面疵Ktは検出できるが、移送方向に短
い表面疵Ksは消失してしまうことがあり検出されにく
いという問題がある。
Furthermore, as shown in Fig. 8, for example, as the transfer speed of the steel billet increases, it becomes difficult to detect surface flaws due to the scanning principle of the camera. Although surface flaws Kt that are long in the transfer direction can be detected, surface flaws Ks that are short in the transfer direction may disappear and are difficult to detect.

本発明はくのよう′な問題点を解決するためになされた
もので、高速走行する鋼片の表面像を確実に検出可能で
かつ微小価を高い検出性能で検知可能な自動探傷装置を
提供することを目的とする。
The present invention was made in order to solve the above problems, and provides an automatic flaw detection device that can reliably detect the surface image of a steel billet traveling at high speed and can detect minute defects with high detection performance. The purpose is to

(課題を解決するための手段) そのために、本発明の自動探傷装置は、−片等の被検出
体の表面に対向して所定角度の範囲内で回動自在に設け
られる走査ミラーと、−被検出体の移送速度に応じて前
記走査ミラーの回動速度を制御する制御手段と、前記走
査ミラーからの反射光により前記被検出体の表面状況を
検出する受像レンズをもつテレビカメラとから構成され
ることを特徴とする。
(Means for Solving the Problems) To achieve this, the automatic flaw detection apparatus of the present invention includes: - a scanning mirror that is rotatably provided within a predetermined angle range facing the surface of an object to be detected, such as a piece; Consisting of a control means for controlling the rotating speed of the scanning mirror according to the transport speed of the object to be detected, and a television camera having an image receiving lens for detecting the surface condition of the object to be detected by the light reflected from the scanning mirror. It is characterized by being

(作用) 本発明の自動探傷装置によると、被検出体の表面像を移
送速度に応じて被検出体を追従するように走査ミラーを
回動し、走査ミラーに映される表面像をテレビカメラに
よって画像検出するので、被検出体の表面像を静止画像
として捉えられ、被検出体の表面状況を精度よく検査す
ることができる。
(Function) According to the automatic flaw detection device of the present invention, the scanning mirror is rotated so that the surface image of the object to be detected follows the object according to the transport speed, and the surface image reflected on the scanning mirror is captured by the television camera. Since the image is detected by , the surface image of the object to be detected can be captured as a still image, and the surface condition of the object to be detected can be inspected with high accuracy.

(実施例) 以下、本発明の実施例を図面にもとづいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図に示すように、断面が長方形の長尺状の鋼片から
なる被検出体11は図示しない駆動手段により矢印C方
向に移送する。そして自動探傷装置lOの従動ローラ1
2が軸14を中心に回転するとともに、その回転数がエ
ンコーダ13にて検出される。
As shown in FIG. 1, a detection object 11 made of a long piece of steel with a rectangular cross section is transported in the direction of arrow C by a driving means (not shown). And the driven roller 1 of the automatic flaw detection device IO
2 rotates around a shaft 14, and the number of rotations thereof is detected by an encoder 13.

また、被検出体11の進行方向後方側には、被検出体1
1の表面をコイル等により磁化する磁化装置(図示せず
)、および磁化した被検出体11の表面に磁粉を散布す
る磁粉散布装置(図示せず)が設けられている。そして
、磁化装置および磁粉散布装置を作動して被検出体11
を移送すると、被検出体11の表面には、磁粉模様を生
じた検査面11aが送られる。
Further, on the rear side in the traveling direction of the detected object 11, the detected object 1
A magnetization device (not shown) that magnetizes the surface of the object 11 with a coil or the like, and a magnetic powder scattering device (not shown) that spreads magnetic powder onto the magnetized surface of the detected object 11 are provided. Then, the magnetization device and the magnetic powder scattering device are activated to
When the test surface 11a is transferred, an inspection surface 11a having a magnetic particle pattern is sent to the surface of the object 11 to be detected.

磁化装置および磁粉散布装置から被検出体11の進行方
向前方側には、平板状の走査ミラー18およびテレビカ
メラ16が設けられている=走査ミラー18は、検査面
11aの像を鏡面18aに映すように支持軸17に取り
付けられており、検査面11aとその鏡面18aとのな
す角が45゜となる位置を中心にして所定の角度範囲で
回動可能になっている。またテレビカメラ16は、この
鏡面18aに映る被検出体11の表面像を捉えるように
その受像レンズ16aを鏡面18aに向けつつ検査面1
1aに対してほぼ平行にして固定されている。このとき
テレビカメラ16の光軸は支持軸17に交わるようにし
ている。
A flat scanning mirror 18 and a television camera 16 are provided on the forward side of the magnetization device and magnetic powder dispersion device in the direction of movement of the detected object 11 = The scanning mirror 18 reflects the image of the inspection surface 11a on a mirror surface 18a. It is attached to the support shaft 17 so that it can rotate within a predetermined angular range around a position where the angle between the inspection surface 11a and its mirror surface 18a is 45 degrees. Further, the television camera 16 directs the inspection surface 16 while directing its image receiving lens 16a toward the mirror surface 18a so as to capture the surface image of the object 11 to be detected reflected on the mirror surface 18a.
It is fixed substantially parallel to 1a. At this time, the optical axis of the television camera 16 is made to intersect with the support axis 17.

このため、第2図に示すように、検査面11aと鏡面1
8aとの成す角が45°となる基準位置M0に走査ミラ
ー18があるとき、検査面11aから鏡面18aに反射
して受像レンズ16aに至るテレビカメラ16の光軸ば
、その入射角と反射角がともに45″の角度になり、検
査面11aがら鏡面18aまでの距離を最短距離とする
起点N。に当たる。そして、走査ミラー18が基準位置
M0を中心に角度θ/2の範囲で第2図に示す反時計方
向および時計方向に回動してそれぞれM+およびM2の
位置に達すると、光軸は検査面1工a上の起点N0から
角度θ分だけズした角度の延長上の位置N、およびN2
に移動する。
Therefore, as shown in FIG. 2, the inspection surface 11a and the mirror surface 1
When the scanning mirror 18 is located at the reference position M0 where the angle with the mirror surface 8a is 45°, the optical axis of the television camera 16 that is reflected from the inspection surface 11a to the mirror surface 18a and reaches the image receiving lens 16a is the angle of incidence and angle of reflection. Both form an angle of 45'', which corresponds to the starting point N where the distance from the inspection surface 11a to the mirror surface 18a is the shortest distance.Then, the scanning mirror 18 moves within the range of angle θ/2 around the reference position M0 as shown in FIG. When the optical axis reaches the positions M+ and M2 by rotating counterclockwise and clockwise, respectively, as shown in FIG. and N2
Move to.

また、走査ミラー18を支持する支持軸17には、サー
ボモータ19が取り付けられ、前述した所定の回転角度
の範囲で走査ミラー18を反復させるようになっている
。サーボモータ19はケーブル21によりドライバユニ
ット20に接続され、さらにケーブル22およびケーブ
ル23によりそれぞれフレームメモリ15およびエンコ
ーダ13に電気的に接続され、被検出体11の移送速度
に応じて走査ミラー18の反復速度を制御するようにな
っている。すなわち、エンコーダ13がら被検出体11
の移送速度に応じた回転数の電気信号がフレームメモリ
15を通してドライバユニット20に送られ、ドライバ
ユニット20からサーボモータ19に送られた制御信号
により走査ミラー18の反復速度が被検体11の移送速
度に応じて調節される。
Further, a servo motor 19 is attached to the support shaft 17 that supports the scanning mirror 18, so that the scanning mirror 18 is repeatedly rotated within the above-mentioned predetermined rotation angle range. The servo motor 19 is connected to a driver unit 20 by a cable 21 and electrically connected to a frame memory 15 and an encoder 13 by a cable 22 and a cable 23, respectively, and repeats the scanning mirror 18 according to the transport speed of the detected object 11. The speed is controlled. In other words, the detected object 11 while the encoder 13
An electrical signal with a rotational speed corresponding to the transfer speed of the object 11 is sent to the driver unit 20 through the frame memory 15, and a control signal sent from the driver unit 20 to the servo motor 19 causes the repetition speed of the scanning mirror 18 to match the transfer speed of the object 11. adjusted accordingly.

サーボモータ19により制御される走査ミラー18の反
復速度は、第3図に示すように調節される。つまりテレ
ビカメラ16の光軸が検査面11aと接する起点が被検
出体11の速度に等しくなるように制御される。したが
って被検出体11が矢印C方向に進む場合1、例えば走
査ミラー18の起点を第2図に示すN、の位置からNo
の位置へ移動すると、N1とNoとの距離X1と被検出
体11が移動する距離X2がほぼ同等なものとなる。
The repetition rate of scanning mirror 18, controlled by servo motor 19, is adjusted as shown in FIG. In other words, control is performed so that the starting point where the optical axis of the television camera 16 contacts the inspection surface 11a is equal to the speed of the detected object 11. Therefore, when the detected object 11 moves in the direction of the arrow C, for example, the starting point of the scanning mirror 18 is moved from the position N shown in FIG.
When moving to the position, the distance X1 between N1 and No and the distance X2 that the detected object 11 moves becomes approximately equal.

ここで被検出体11の移送速度なV、走査ミラー18の
支持軸17と検査面11aとの距離をし、走査ミラー1
8の回動速度をω(rad/5ec)とすると、移送速
度を■は次式で表わされる。
Here, V is the transport speed of the detected object 11, the distance between the support shaft 17 of the scanning mirror 18 and the inspection surface 11a, and the scanning mirror 1
If the rotating speed of 8 is ω (rad/5ec), then the transfer speed is expressed by the following equation.

V=Ltan  [(360/2π) ω]フレームメ
モリ15はケーブル24によりテレビカメラ16に接続
されケーブル25により図示しないモニタまたはプリン
タに電気的に接続されている。そしてドライバユニット
20によるサーボモータの制御位置から検査面11aと
鏡面18aのなす角が45°になるミラーの位置を判断
しこのときの画像信号をモニタまたはプリンタに表示す
るようになっている。
V=Ltan [(360/2π) ω] The frame memory 15 is connected to the television camera 16 by a cable 24 and electrically connected to a monitor or printer (not shown) by a cable 25. Then, the position of the mirror where the angle between the inspection surface 11a and the mirror surface 18a is 45 degrees is determined from the control position of the servo motor by the driver unit 20, and the image signal at this time is displayed on a monitor or printer.

次に、被検出体11の検査面11aとテレビカメラ16
により捉えれらる画像処理範囲りとの関係を第4図に示
す。
Next, the inspection surface 11a of the detected object 11 and the television camera 16
FIG. 4 shows the relationship between the image processing range and the image processing range.

第4図(a)に示すように、検出時、検査面11aの移
送方向Cと同方向に画像処理範囲りが移動する。この間
、画像処理範囲りで囲まれる検査面11aは静止画像と
して捉えられる。次に走査ミラー18が戻りを開始する
戻り開始時、(b)に示すように画像処理範囲りが矢印
d方向に移動を開始する。戻り動作時は、(C)に示す
ように画像処理範囲りが動き、そして画像処理範囲り上
の右端位置が検査時(a)の画像処理範囲りの検査面1
1aの左端位置にきたとき、(d)に示すように走査ミ
ラー18の戻り終了となる。次いで再び(a)に示す検
出動作に移行する。このような走査ミラーの反復動作に
より画像処理範囲りで捉えられるllaの表面像は(a
)、(b)に示すように、表面疵に1が画像処理範囲り
のほぼ一定の位置に存在する静止画像として捉えられる
ため、被検出体11の検査面11aを正確に検出しかつ
移送方向に短い表面疵をも確実に検出される。
As shown in FIG. 4(a), during detection, the image processing range moves in the same direction as the transport direction C of the inspection surface 11a. During this time, the inspection surface 11a surrounded by the image processing range is captured as a still image. Next, when the scanning mirror 18 starts returning, the image processing range starts moving in the direction of the arrow d, as shown in (b). During the return operation, the image processing range moves as shown in (C), and the right end position above the image processing range is the inspection surface 1 of the image processing range at the time of inspection (a).
When it reaches the left end position of 1a, the return of the scanning mirror 18 is completed, as shown in (d). Next, the process shifts to the detection operation shown in (a) again. The surface image of lla captured within the image processing range by such repeated operations of the scanning mirror is (a
) and (b), since the surface flaw 1 is captured as a still image existing at a substantially constant position within the image processing range, the inspection surface 11a of the object 11 to be detected can be accurately detected and the transport direction Even short surface flaws can be reliably detected.

このような画像検出を繰り返すことにより被検出体11
が高速で走行していても走査ミラー18の回動により検
査面11aは表面像を追従するため、テレビカメラ16
の表面像からの光量が減少することなく静止画像を精度
よ(検査することができる。したがって被検出体11の
移送方向に短い疵であっても確実に検出される。
By repeating such image detection, the detected object 11
Even when the television camera 16 is traveling at high speed, the inspection surface 11a follows the surface image due to the rotation of the scanning mirror 18.
A still image can be accurately inspected without reducing the amount of light from the surface image of the object 11. Therefore, even short flaws in the direction of movement of the object 11 can be reliably detected.

本実施例では、被検出体11の一面について検査する場
合を述べたが、第5図に示すように被検出体29の検査
する面に応じてテレビカメラ30と走査ミラー31、お
よびテレビカメラ32と走査ミラー33を被検出体29
の平面に対向して設置し、テレビカメラ34と走査ミラ
ー35を被検出体29のコーナーに設置してもよい。こ
の場合、同時に2つの平面およびコーナーを検査できる
In this embodiment, a case has been described in which one side of the object to be detected 11 is inspected, but as shown in FIG. and the scanning mirror 33 to the detected object 29.
The television camera 34 and the scanning mirror 35 may be installed at a corner of the detected object 29. In this case, two planes and corners can be inspected at the same time.

この場合、テレビカメラの光軸は被検出体の移送方向と
平行である。
In this case, the optical axis of the television camera is parallel to the direction of transport of the detected object.

(発明の効果) 以上説明したように本発明の自動探傷装置によれば、走
行する被検出体の表面像を回動可能な走査ミラーに映し
てテレビカメラで画像検出するため、被検出体の表面画
像を静止画像として捉えられるので、高速で被検出体を
移送しても正確に表面像を検出し、探傷精度を向上する
ことができるという効果がある。
(Effects of the Invention) As explained above, according to the automatic flaw detection apparatus of the present invention, the surface image of the moving object to be detected is reflected on the rotatable scanning mirror and the image is detected by the television camera. Since the surface image can be captured as a still image, the surface image can be accurately detected even when the object to be detected is transported at high speed, and the flaw detection accuracy can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による自動探傷装置を示す概略
斜視図、第2図は走査ミラーの回転角度と被検出体の表
面像との関係を説明するための説明図、第3図は走査ミ
ラーの回転に伴う光軸の移゛動速度と鋼片の移動速度の
関係を説明するための説明図、第4図は表面疵を画像検
出するときの作用を説明するための説明図、第5図は本
発明の他の実施例を示す概略構成図、第6図は従来の自
動探傷装置を示す概略斜視図、第7図は従来の自動探傷
装置による検出光量の輝度と探傷速度の関係を示す特性
図および第8図は検出画像と探傷速度の関係を示す特性
図である。 10  ・・・ 1 l  ・・・ 16  ・・・ 16a・・・ 18  ・・・ 19  ・・・ 20  ・・・ 自動探傷装置、 被検出体、 テレビカメラ、 受像レンズ、 走査ミラー サーボモータ(制御手段)、 ドライバユニット(制御手段)。 出願人 二 大同特殊鋼株式会社
FIG. 1 is a schematic perspective view showing an automatic flaw detection apparatus according to an embodiment of the present invention, FIG. 2 is an explanatory diagram for explaining the relationship between the rotation angle of the scanning mirror and the surface image of the object to be detected, and FIG. An explanatory diagram for explaining the relationship between the moving speed of the optical axis due to the rotation of the scanning mirror and the moving speed of the steel piece, FIG. 4 is an explanatory diagram for explaining the effect when detecting surface flaws as an image, FIG. 5 is a schematic configuration diagram showing another embodiment of the present invention, FIG. 6 is a schematic perspective view showing a conventional automatic flaw detection device, and FIG. A characteristic diagram showing the relationship and FIG. 8 is a characteristic diagram showing the relationship between the detected image and the flaw detection speed. 10 ... 1 l ... 16 ... 16a ... 18 ... 19 ... 20 ... automatic flaw detection device, object to be detected, television camera, image receiving lens, scanning mirror servo motor (control means ), driver unit (control means). Applicant 2: Daido Steel Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)鋼片等の被検出体の表面に対向して所定角度の範
囲内で回動自在に設けられる走査ミラーと、被検出体の
移送速度に応じて前記走査ミラーの回動速度を制御する
制御手段と、前記走査ミラーからの反射光により前記被
検出体の表面状況を検出する受像レンズをもつテレビカ
メラとから構成されることを特徴とする自動探傷装置。
(1) A scanning mirror that is rotatably provided within a predetermined angle range facing the surface of an object to be detected such as a piece of steel, and the rotational speed of the scanning mirror is controlled according to the transport speed of the object to be detected. and a television camera having an image receiving lens that detects the surface condition of the object to be detected using the reflected light from the scanning mirror.
JP17689390A 1990-07-04 1990-07-04 Automatic flaw detecting device Pending JPH0465660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17689390A JPH0465660A (en) 1990-07-04 1990-07-04 Automatic flaw detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17689390A JPH0465660A (en) 1990-07-04 1990-07-04 Automatic flaw detecting device

Publications (1)

Publication Number Publication Date
JPH0465660A true JPH0465660A (en) 1992-03-02

Family

ID=16021596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17689390A Pending JPH0465660A (en) 1990-07-04 1990-07-04 Automatic flaw detecting device

Country Status (1)

Country Link
JP (1) JPH0465660A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104458756A (en) * 2014-12-13 2015-03-25 华东交通大学 Belt type intelligent steel rail flaw detection method based on electromechanical and optical liquid integration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104458756A (en) * 2014-12-13 2015-03-25 华东交通大学 Belt type intelligent steel rail flaw detection method based on electromechanical and optical liquid integration
CN104458756B (en) * 2014-12-13 2017-03-22 华东交通大学 Belt type intelligent steel rail flaw detection method based on electromechanical and optical liquid integration

Similar Documents

Publication Publication Date Title
WO2020147713A1 (en) Detection device, system and method
JP5089958B2 (en) Inspection device and inspection method for tape products
US20010048523A1 (en) Wafer inspection system for distinguishing pits and particles
JP2585133B2 (en) Parts appearance sorting device
JPS62239005A (en) Surface shape inspecting instrument
EP0943088B1 (en) Wafer inspection system for distinguishing pits and particles
JP2010066023A (en) Substrate inspection apparatus and substrate inspection method
JPH0465660A (en) Automatic flaw detecting device
JP4002429B2 (en) Exposure apparatus having foreign substance inspection function and foreign substance inspection method in the apparatus
JP4429683B2 (en) Image input device
JP3191397B2 (en) Automatic flaw detector
JP2013166153A (en) Method of manufacturing square welded can
JPH06201656A (en) Automatic flaw detector of fluorescent magnetic powder type
JP2000039407A (en) X-ray foreign object inspection device
JP3056823B2 (en) Defect inspection equipment
JP2005061955A (en) Inspection system
JP2757890B2 (en) Light intensity adjustment device in optical inspection
JP2013024713A (en) Device and method for observing and evaluating sheet material end
KR100591312B1 (en) Apparatus for inspecting display panel
JPH06201613A (en) Automatic flaw detector with fluorescent magnetic powder
JPH06207926A (en) Automatic flaw detector of fluorescent magnetic powder type
JPH01145555A (en) Apparatus for optical inspection
JPH05273151A (en) Automatic flaw detecting device
JP3357317B2 (en) Surface inspection equipment for spherical objects
JPH0763537A (en) Surface defect inspecting device