JPH0465572A - Method for carrying out surface oxidation treatment of carbon fiber and treating device therefor - Google Patents
Method for carrying out surface oxidation treatment of carbon fiber and treating device thereforInfo
- Publication number
- JPH0465572A JPH0465572A JP17748890A JP17748890A JPH0465572A JP H0465572 A JPH0465572 A JP H0465572A JP 17748890 A JP17748890 A JP 17748890A JP 17748890 A JP17748890 A JP 17748890A JP H0465572 A JPH0465572 A JP H0465572A
- Authority
- JP
- Japan
- Prior art keywords
- carbon fiber
- cathode
- carbon fibers
- electrolytic solution
- oxidation treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000049 Carbon (fiber) Polymers 0.000 title claims abstract description 67
- 239000004917 carbon fiber Substances 0.000 title claims abstract description 67
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 29
- 238000010301 surface-oxidation reaction Methods 0.000 title claims abstract description 8
- 238000000034 method Methods 0.000 title claims description 16
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 24
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 19
- 230000003647 oxidation Effects 0.000 claims abstract description 16
- 239000003792 electrolyte Substances 0.000 claims description 7
- 238000005868 electrolysis reaction Methods 0.000 claims description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 abstract description 6
- 230000005611 electricity Effects 0.000 abstract description 4
- 239000007864 aqueous solution Substances 0.000 abstract description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 239000000835 fiber Substances 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000011295 pitch Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- -1 benzoic acid Chemical class 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000005711 Benzoic acid Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011437 continuous method Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 210000004177 elastic tissue Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011302 mesophase pitch Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Chemical Or Physical Treatment Of Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、炭素繊維の表面酸化処理方法およびその装置
に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method and apparatus for surface oxidation treatment of carbon fibers.
従来の技術
炭素繊維強化プラスチック(CF RP)は、その比強
度、比剛性の大きさを生かし、航空・宇宙分野をはじめ
、スポーツ・レジャー分野、一般産業分野など、様々な
分野で用いられている素材である。Conventional technology Carbon fiber reinforced plastic (CF RP) takes advantage of its high specific strength and specific stiffness and is used in a variety of fields, including the aerospace field, sports and leisure field, and general industrial field. It is the material.
このCFRPの性質は、強化材である炭素繊維の性質の
他、母材と炭素繊維との親和性に大きく左右される。そ
こで、一般には、炭素繊維を表面酸化することにより、
表面に官能基を導入し、母材と炭素繊維との親和性、接
着性を向上させることが行われる。The properties of this CFRP depend not only on the properties of the carbon fibers that are the reinforcing material, but also on the affinity between the base material and the carbon fibers. Therefore, in general, by surface oxidizing carbon fiber,
Functional groups are introduced to the surface to improve the affinity and adhesion between the base material and the carbon fibers.
表面酸化の方法としては、空気などの酸化性雰囲気中で
加熱する方法、濃硝酸などの酸化性液体に浸漬する方法
、電解液中で炭素繊維を陽極として電解酸化する方法な
どがあるが、電解酸化法が1反応制御、効率などの点で
工業的に有利であるといわれている。炭素繊維を工業的
に電解酸化するには、連続プロセスが用いられる0例え
ば、第2図または13図に示した従来の装置の概略図に
見られるように、′電極(陰極)4を備えた電解槽6中
に電解液3をいれ、電解しつつ炭素線mlを電解液中を
連続的に走行させる。炭素繊維は、電解液の外部に設け
られた通電ロール2より陽電荷を印加し、陰極との間で
電解され、表面が酸化される。Surface oxidation methods include heating in an oxidizing atmosphere such as air, immersion in an oxidizing liquid such as concentrated nitric acid, and electrolytic oxidation in an electrolytic solution using carbon fiber as an anode. It is said that the oxidation method is industrially advantageous in terms of single reaction control and efficiency. For the industrial electrolytic oxidation of carbon fibers, a continuous process is used. An electrolytic solution 3 is put into an electrolytic cell 6, and ml of carbon wire is continuously run through the electrolytic solution while being electrolyzed. A positive charge is applied to the carbon fibers from a current-carrying roll 2 provided outside the electrolytic solution, and the carbon fibers are electrolyzed between the carbon fibers and the cathode, and their surfaces are oxidized.
炭素繊維を電解酸化する場合、炭素繊維の弾性率が向上
するにつれて酸化されにくくなる。これは、弾性率が向
上するにつれて、炭素繊維の黒鉛化度が上がるためであ
るといわれている。酸化反応は、黒鉛構造のエツジで起
こり、ベース面では反応が起きにくいといわれている(
J、P、Randinand E、Yeager、 J
、Electroanal、 Chew、、 58.3
13(1975)) 、すなわち、弾性率が向上するに
つれて酸化されにくくなるのは、酸化され易いエツジが
繊維表面に少なくなるためであるといわれている。この
ため、高弾性の炭素繊維は、通常の電解酸化処理を行っ
ても、複合材料とする際に樹脂との十分な親和性を得る
ことができない。When electrolytically oxidizing carbon fibers, as the elastic modulus of carbon fibers improves, they become less likely to be oxidized. This is said to be due to the fact that as the elastic modulus improves, the degree of graphitization of the carbon fiber increases. Oxidation reactions occur at the edges of the graphite structure, and it is said that reactions are less likely to occur on the base surface (
J., P., Randinand, E., Yeager, J.
, Electroanal, Chew, 58.3
13 (1975)), that is, the reason why the fiber becomes less susceptible to oxidation as its elastic modulus improves is said to be because there are fewer edges on the fiber surface that are easily oxidized. For this reason, even if high-modulus carbon fibers are subjected to normal electrolytic oxidation treatment, they cannot obtain sufficient affinity with resins when used as composite materials.
この場合、電解の際に加える電気量(クーロン量)を増
しても、樹脂との十分な親和性を得ることができない、
炭素繊維の樹脂との親和性は、炭素繊維の表面酸素量と
密接な関係があることが知られている。これは、酸化に
より含#楽官能基が表面に導入されるためであり1通常
はESCA(X線光電子分光)により、酸素と炭素のピ
ーク面積比として測定される。高弾性炭素mJIの場合
、加える電気量を増しても表面酸素量は次第に飽和して
いき、樹脂との十分な親和性を得るために必要な表面酸
素量を得ることが困難である。また、このようにクーロ
ン量を増した場合、s#Iは劣化して繊維強度が低下す
ることが多い、そこで、高弾性の炭素繊維を効果的に酸
化するために、従来よりいくつかの方法が考案されてき
た。In this case, even if the amount of electricity (coulomb amount) applied during electrolysis is increased, sufficient affinity with the resin cannot be obtained.
It is known that the affinity of carbon fibers with resin is closely related to the amount of oxygen on the surface of the carbon fibers. This is because #-containing functional groups are introduced onto the surface by oxidation, and is usually measured as the peak area ratio of oxygen and carbon by ESCA (X-ray photoelectron spectroscopy). In the case of high elastic carbon mJI, the amount of surface oxygen gradually becomes saturated even if the amount of electricity applied is increased, making it difficult to obtain the amount of surface oxygen necessary to obtain sufficient affinity with the resin. In addition, when the amount of coulombs is increased in this way, s#I often deteriorates and the fiber strength decreases.Therefore, in order to effectively oxidize highly elastic carbon fibers, several conventional methods have been developed. has been devised.
例えば、電解液を変えて電解酸化を2度行う方法(特開
平1〜92470号公報)などがある、しかし、このよ
うな高弾性繊維専用の処理方法は、工程が複雑になる、
新たな装置を必要とするなど、工業的に不利であった。For example, there is a method of performing electrolytic oxidation twice by changing the electrolytic solution (Japanese Patent Application Laid-open No. 1992-92470). However, such a treatment method exclusively for high elastic fibers requires complicated steps.
This was disadvantageous from an industrial perspective, as it required new equipment.
発明が解決しようとする課題
本発明は、上記課題に鑑み、従来の工程と同様で、新た
な装置を用いる事なく、高弾性の炭素繊維を効果的に酸
化することができる方法及び装置を提供するものである
。Problems to be Solved by the Invention In view of the above-mentioned problems, the present invention provides a method and device that can effectively oxidize high modulus carbon fibers, similar to conventional processes and without using new equipment. It is something to do.
課題を解決するための手段
本発明は、炭素繊維を連続的に電解液中で陽極酸化する
際に、陰極の一部を電解液の上部の空気中に露出させた
状態で電解することを特徴とする炭素繊維の表面処理方
法及び、陽極酸となる炭素繊維への通電機構と、電解槽
及び陰極を備えた炭素繊維の陽極酸化装置であって、前
記陰極が電解液よりその一部を空気中に露出されて設置
されていることを特徴とする炭素繊維の表面酸化処理装
置である。Means for Solving the Problems The present invention is characterized in that when carbon fibers are continuously anodized in an electrolytic solution, electrolysis is performed with a part of the cathode exposed to the air above the electrolytic solution. A method for surface treatment of carbon fibers, a mechanism for supplying electricity to the carbon fibers to become an anodic acid, and an anodizing device for carbon fibers comprising an electrolytic cell and a cathode, wherein the cathode partially removes air from an electrolytic solution. This is a carbon fiber surface oxidation treatment device characterized by being installed so as to be exposed inside the carbon fiber.
本発明により炭素繊維を電解酸化した場合、たとえ高弾
性の炭素繊維であっても効果的に酸化することができる
。その理由については詳細は明らかではないが、電解液
と空気の誘電率が異なるため、その界面に電荷が集中し
、電位が高くなるためであると考えられる。すなわち1
本発明の場合には、高電位の電流を効果的に炭素繊維に
印加することができるため、酸化電位の高い部分が多い
高弾性繊維をも効果的に酸化できるものと考えられる。When carbon fibers are electrolytically oxidized according to the present invention, even highly elastic carbon fibers can be effectively oxidized. The reason for this is not clear in detail, but it is thought that because the dielectric constants of the electrolytic solution and air are different, charges are concentrated at the interface and the potential becomes high. i.e. 1
In the case of the present invention, since a high-potential current can be effectively applied to the carbon fibers, it is considered that even high-modulus fibers having many parts with a high oxidation potential can be effectively oxidized.
本発明を適用することにより、高弾性の炭素繊維にも特
別な処理をすることや、特別な工程を加える必要が無い
、さらには、加える通電量(クーロン量)も増大させる
必要がなく、通常の繊維とまったく同様の酸化処理を行
うだけで、高弾性の炭素繊維をも効果的に酸化すること
ができる。By applying the present invention, there is no need to perform special treatment or add a special process to highly elastic carbon fibers, and there is no need to increase the amount of current applied (coulomb amount). Highly elastic carbon fibers can be effectively oxidized by simply performing the same oxidation treatment as the fibers.
本発明に使用される炭素繊維は特に限定されるものでは
なく、各種の炭素mwbを使用することができる。4例
えばポリアクリロニトリル、ピッチ等から製造されたも
のであり、炭素繊維、黒鉛繊維の何れも使用可能である
。The carbon fiber used in the present invention is not particularly limited, and various carbon mwb can be used. 4. For example, it is manufactured from polyacrylonitrile, pitch, etc., and either carbon fiber or graphite fiber can be used.
本発明において使用される電解液は、特に限定されるも
のではなく、通常の電解処理に用いられる電解液が使用
可能である。具体的には、硫酸、硝酸、燐酸などの無機
酸、安息香酸などの有機酸、水酸化ナトリウムなどの無
機塩基、あるいは炭酸水素ナトリウムなどの塩を必須成
分とする水溶液が使用可能である。The electrolytic solution used in the present invention is not particularly limited, and any electrolytic solution used in normal electrolytic treatment can be used. Specifically, an aqueous solution containing an essential component of an inorganic acid such as sulfuric acid, nitric acid, or phosphoric acid, an organic acid such as benzoic acid, an inorganic base such as sodium hydroxide, or a salt such as sodium hydrogen carbonate can be used.
上記水溶液の濃度は、電解処理の際に濃度が低すぎて液
抵抗が大きくなり、操作電圧が大幅に上昇するような濃
度よりも高い濃度であれば特に限定されるものではない
。The concentration of the aqueous solution is not particularly limited as long as it is higher than a concentration that is too low during electrolytic treatment, resulting in large liquid resistance and a significant increase in operating voltage.
本発明の装置に用いられる通電機構は、連続的に炭素繊
維に陽電荷を印加するものであり、通常の電解酸化装置
に用いられる通電ロールなどが使用可能である。The current-carrying mechanism used in the apparatus of the present invention continuously applies a positive charge to the carbon fibers, and a current-carrying roll or the like used in a normal electrolytic oxidation apparatus can be used.
第1図は本発明の酸化処理装置の一例である。FIG. 1 shows an example of the oxidation treatment apparatus of the present invention.
炭素繊維束1は通電ロール2を通り、電解液3に浸漬さ
れる。電解液3中で炭素繊維束lはロール5を経て電解
液外に導出され、洗浄工程に回される0本発明の場゛合
、陰極4は電解液中に浸漬されるが、その一部が必ず空
気中に露出していなければならない、炭素繊維束lは通
電ロール2より陽電荷を印加され、電解液中で陰極4と
の間で通電され、この際、電解酸化反応を受ける。The carbon fiber bundle 1 passes through an energized roll 2 and is immersed in an electrolytic solution 3. In the electrolytic solution 3, the carbon fiber bundle l is led out of the electrolytic solution via a roll 5 and sent to a cleaning process.In the case of the present invention, the cathode 4 is immersed in the electrolytic solution, but a portion of The carbon fiber bundle l, which must be exposed to the air, is applied with a positive charge from the current-carrying roll 2, and is energized between it and the cathode 4 in an electrolytic solution, and undergoes an electrolytic oxidation reaction at this time.
陰極4の位置は、一部が空気中に露出しており、且つ炭
素繊維束1と接触しなければ、どのようなところにあっ
ても良いが、望ましくは、炭素繊維束lの近傍がよい、
また、陰極4の形状は、板状、円柱状など、任意の形状
でよく、炭素繊維束lの片側に配置する形、両側から挟
む形、囲にょうする形など任意の形態が可能である。ま
た、陰極4の数は、一つであっても、二つ以上の多極で
あってもよい、陰極4は、電解液と空気との界面の、電
荷が集中している部分を利用できれば大きさは任意であ
り、数1■以上、望ましくは10m1以上の部分が電解
液中に浸漬していればよい、また、陰極4のうちで、空
気中に露出している部分の大きさは任意である。陰極4
の材質は、通常の電解酸化に使用されるものであれば何
れのものでも使用可能であり、具体的には、銅、鉛など
が使用可能である。The position of the cathode 4 may be anywhere as long as a part thereof is exposed to the air and does not come into contact with the carbon fiber bundle 1, but it is preferably near the carbon fiber bundle 1. ,
Further, the shape of the cathode 4 may be any shape such as a plate or a cylinder, and any shape such as being placed on one side of the carbon fiber bundle l, being sandwiched from both sides, or being surrounded is possible. . Further, the number of cathodes 4 may be one or two or more, as long as the cathode 4 can utilize the part where electric charge is concentrated at the interface between the electrolyte and the air. The size is arbitrary, and it is sufficient that a portion of several square meters or more, preferably 10 m1 or more, is immersed in the electrolyte. Also, the size of the portion of the cathode 4 that is exposed to the air is Optional. Cathode 4
Any material can be used as long as it is used in normal electrolytic oxidation, and specifically, copper, lead, etc. can be used.
洗浄工程は、電解酸化処理後、連続的に洗浄する方法、
あるいは−旦炭素繊維を巻とった後再度連続的またはパ
ッチで洗浄する方法等筒れの方法でもよい。The cleaning process includes continuous cleaning after electrolytic oxidation treatment,
Alternatively, a continuous method such as a method of winding the carbon fibers and then washing them again continuously or in patches may be used.
以下、実施例により本発明の効果を更に具体的に説明す
る。Hereinafter, the effects of the present invention will be explained in more detail with reference to Examples.
実施例
=−ルターピッチを熱濾過してキノリンネ溶分を除去し
たピッチを水素化し、更に軽質分を留去して軟化点90
℃、トルエン不溶分4%、キノリンネ溶分痕跡のピッチ
を得た。Example = - The pitch obtained by hot filtration of Luther pitch to remove the quinolinated content is hydrogenated, and the light content is further distilled off to achieve a softening point of 90.
℃, 4% of toluene-insoluble content, and a trace of quinoline-soluble content were obtained.
これを熱処理した後、低沸点分を除きメンフェーズピッ
チを得た。前記メソフェーズピッチを、紡糸ノズルを用
いて溶融紡糸し糸径124 mのピッチamとした。After heat-treating this, the low-boiling point components were removed to obtain menphase pitch. The mesophase pitch was melt-spun using a spinning nozzle to obtain a pitch am with a yarn diameter of 124 m.
この様にして得たピッチ繊維を空気中で不融化処理を行
った後、アルゴンガス中にて、15分熱処理を施し、炭
素繊維とした。得られた炭素M&誰は、J工5−R−7
601に基づき、樹脂含浸ストランド引張試験法で、引
張弾性率を求めた。また、ESCA(X線光電子分光)
により、繊維表面の酸素量を測定した。ESCAの測定
は、具体的な装置としては島津製作所株製のESCA7
50、X線源としてAIKα1.2を用い、015ビ一
ク面積及びCISピーク面積より、表面酸素原子濃度(
01s/(Cts”0ss))を求めた。この場合、感
度補正値は炭素を 1.0.酸素を2.8として測定し
た。熱処理温度、炭素繊維の弾性率、及び原料炭素繊維
の表面の酸素量を、第1表に示す。The pitch fibers thus obtained were subjected to infusibility treatment in air, and then heat treated in argon gas for 15 minutes to obtain carbon fibers. Obtained carbon M & who is J engineering 5-R-7
601, the tensile modulus was determined by the resin-impregnated strand tensile test method. Also, ESCA (X-ray photoelectron spectroscopy)
The amount of oxygen on the fiber surface was measured. The specific device used for ESCA measurement is ESCA7 manufactured by Shimadzu Corporation.
50. Using AIKα1.2 as an X-ray source, the surface oxygen atom concentration (
01s/(Cts"0ss)). In this case, the sensitivity correction value was measured with carbon as 1.0 and oxygen as 2.8. Heat treatment temperature, elastic modulus of carbon fiber, and surface of raw carbon fiber were determined. The oxygen content is shown in Table 1.
かくして得られた原料炭素繊維束を、濃度l規定の硫酸
水溶液を満たした第1図の電解槽中に導入し、電解槽中
に設置した通電ロールにより該炭素繊維束に陽電荷を印
加し、陰極板との間に電流を流した。ここで、電解槽は
、直径260膳層、高さ400層腸0円柱状のものを用
いた。陰極は、厚さ0.2am、高さ50m■、直径5
0mmの円柱状銅板を用い、炭素繊維を囲にょうする様
に配置した。この陰極の上部10層lを空気中に露出さ
せ、残りの40層履を電解液中に浸漬した。The raw carbon fiber bundle thus obtained is introduced into the electrolytic cell shown in FIG. 1 filled with an aqueous sulfuric acid solution having a concentration of 1, and a positive charge is applied to the carbon fiber bundle by a current-carrying roll installed in the electrolytic cell. A current was passed between the cathode plate and the cathode plate. Here, the electrolytic cell used had a cylindrical shape with a diameter of 260 layers and a height of 400 layers. The cathode has a thickness of 0.2 am, a height of 50 m, and a diameter of 5
A 0 mm cylindrical copper plate was used and placed so as to surround the carbon fibers. The top 10 layers of this cathode were exposed to air, and the remaining 40 layers were immersed in the electrolyte.
この様な処理の施された炭素繊維束を連続的に水洗浴中
で水洗し、120℃の加熱炉中で乾燥させた。The carbon fiber bundles subjected to such treatment were continuously washed with water in a water washing bath and dried in a heating oven at 120°C.
かくして得られた炭素繊維束について、ESCAにより
、繊維表面の酸素量を測定した。印加する電流量を種々
変化した場合の表面酸素量を第1表に示す。Regarding the thus obtained carbon fiber bundle, the amount of oxygen on the fiber surface was measured by ESCA. Table 1 shows the amount of surface oxygen when the amount of applied current was varied.
比較例
実施例で用いた未処理の炭素繊維に、第2図の装置を用
いたほかは実施例と同様の処理を施した。第2@の装置
は、電解槽、陰極の材質、形状は実施例と同様のもので
ある。但し、陰極は電解液の液面からlO■■浸漬した
。その結果を第1表に示す。Comparative Example The untreated carbon fiber used in the example was treated in the same manner as in the example except that the apparatus shown in FIG. 2 was used. In the second @ device, the material and shape of the electrolytic cell and the cathode are similar to those in the example. However, the cathode was immersed in the electrolytic solution by 1O■■ from the liquid level. The results are shown in Table 1.
このls1表に示すように、本発明の処理装置を用いる
ことにより、高弾性の炭素繊維でも、従来と同じ電解処
理条件で、樹脂との親和性を得るに十分な表面酸素量を
得ることができる。低弾性の炭素繊維の場合は、実施例
と比較例の差が殆ど見られない、即ち、低弾性繊維の場
合は、本発明の方法を用いても、必要以上に酸化される
ことがない、従って、低弾性の炭素繊銀と、高弾性の炭
素繊維を電m酸化処理する場合に、装置の変更をする必
要が無い。As shown in this ls1 table, by using the processing apparatus of the present invention, it is possible to obtain a sufficient amount of surface oxygen to obtain affinity with the resin even for highly elastic carbon fibers under the same electrolytic treatment conditions as before. can. In the case of low-modulus carbon fibers, there is almost no difference between the example and the comparative example. In other words, in the case of low-modulus fibers, even if the method of the present invention is used, they will not be oxidized more than necessary. Therefore, there is no need to change the equipment when electro-oxidizing low-elastic carbon fibers and high-elastic carbon fibers.
(以下余白)
発明の効果
以上述べたように、本発明の特徴は、炭素繊維を連続的
に電解液中で陽極酸化する際に、陰極の一部を電解液よ
り空気中に露出させることにあり、これに従うならば、
弾性率80tan/■12といった高弾性の炭素繊維で
も、より低弾性の炭素繊維と同じ方法で表面酸化処理を
行なうことができる。これは、陰極を空気中に露出させ
ることで、空気と電解液の界面に存在する高電位部を効
率的に酸化反応に利用できるためであると考えられる。(Left below) Effects of the Invention As described above, the feature of the present invention is that when carbon fibers are continuously anodized in an electrolyte, a part of the cathode is exposed to the air from the electrolyte. Yes, if you follow this,
Even carbon fibers with a high modulus of elasticity of 80 tan/12 can be subjected to surface oxidation treatment in the same manner as carbon fibers with lower modulus. This is thought to be because by exposing the cathode to the air, the high potential portion present at the interface between the air and the electrolyte can be efficiently utilized for the oxidation reaction.
また装置としては、従来存在していた装置を若干変更す
るだけでよ〈−1新たな装置を導入する必要の無いもの
である。Moreover, as for the device, it is necessary to just slightly change the existing device (-1) and there is no need to introduce a new device.
第1図は本発明の装置の一具体例を示す模式図である。
第2図及び第3図は従来より用いられていた装置の例を
示す模式図である。
l・・・炭素繊維、2・・・通電ロール、3・・・電解
液、4・Φ・陰極、5・・・ロール、6φ・・電解槽。FIG. 1 is a schematic diagram showing a specific example of the apparatus of the present invention. FIGS. 2 and 3 are schematic diagrams showing examples of conventionally used devices. 1...Carbon fiber, 2...Electrifying roll, 3...Electrolyte solution, 4...φ cathode, 5...roll, 6φ...electrolytic cell.
Claims (2)
、陰極の一部を電解液より空気中に露出させた状態で電
解することを特徴とする炭素繊維の表面酸化処理方法。(1) A method for surface oxidation treatment of carbon fibers, which is characterized in that when carbon fibers are continuously anodized in an electrolytic solution, the electrolysis is carried out in a state where a part of the cathode is exposed to the air from the electrolytic solution.
び陰極を備えた炭素繊維の陽極酸化装置であって、前記
陰極が電解液よりその一部を空気中に露出されて設置さ
れていることを特徴とする炭素繊維の表面酸化処理装置
。(2) A carbon fiber anodic oxidation device comprising a mechanism for energizing the carbon fibers serving as the anode side, an electrolytic cell, and a cathode, wherein the cathode is installed with a portion of the cathode exposed to the air from the electrolyte. A carbon fiber surface oxidation treatment device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17748890A JPH0465572A (en) | 1990-07-06 | 1990-07-06 | Method for carrying out surface oxidation treatment of carbon fiber and treating device therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17748890A JPH0465572A (en) | 1990-07-06 | 1990-07-06 | Method for carrying out surface oxidation treatment of carbon fiber and treating device therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0465572A true JPH0465572A (en) | 1992-03-02 |
Family
ID=16031779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17748890A Pending JPH0465572A (en) | 1990-07-06 | 1990-07-06 | Method for carrying out surface oxidation treatment of carbon fiber and treating device therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0465572A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100317617B1 (en) * | 1999-05-13 | 2001-12-22 | 김충섭 | Process for the preparation of high performance carbon fibers having improved adhesive property with matrix resins |
CN110592927A (en) * | 2019-08-28 | 2019-12-20 | 大同新成新材料股份有限公司 | Surface treatment method of carbon fiber |
-
1990
- 1990-07-06 JP JP17748890A patent/JPH0465572A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100317617B1 (en) * | 1999-05-13 | 2001-12-22 | 김충섭 | Process for the preparation of high performance carbon fibers having improved adhesive property with matrix resins |
CN110592927A (en) * | 2019-08-28 | 2019-12-20 | 大同新成新材料股份有限公司 | Surface treatment method of carbon fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6262185B2 (en) | ||
JPS585288B2 (en) | Carbon fiber surface electrolytic treatment method and its electrolytic cell | |
EP0374680B1 (en) | Carbon fibers having modified surfaces and process for preparing the same | |
US4839006A (en) | Surface treatment process for carbon fibers | |
JPH0544154A (en) | Surface treatment of carbon fiber | |
JPH0465572A (en) | Method for carrying out surface oxidation treatment of carbon fiber and treating device therefor | |
US3865705A (en) | Process for modifying the surface characteristics of carbon substrates and composite articles produced from the treated substrates | |
JPH06166953A (en) | Surface-treatment of carbon fiber and treated carbon fiber | |
US5078840A (en) | Process for the surface treatment of carbon fiber strands | |
JPH0544155A (en) | Surface treatment of carbon fiber | |
JPS62149964A (en) | Production of ultrahigh strength carbon fiber | |
KR890005015B1 (en) | Surface treatment method of carbon fiber | |
JP5455408B2 (en) | Polyacrylonitrile-based carbon fiber and method for producing the same | |
JP2009242971A (en) | Carbon fiber having excellent compression strength and method for producing the same | |
JP2770038B2 (en) | Surface-modified high-elasticity carbon fiber and its manufacturing method | |
JPH02169763A (en) | Surface-improved carbon fiber and production thereof | |
JPH02269867A (en) | Method for carrying out surface electrolytic oxidation of carbon fiber tow having high elasticity | |
JPH0284527A (en) | Treatment of carbon fiber | |
JPH04289267A (en) | Surface-treatment of carbon fiber | |
JPS58115123A (en) | Surface treatment of carbon fiber | |
JP2002038368A (en) | Carbon fiber bundle and method for treating surface of carbon fiber bundle | |
JPS61275470A (en) | Surface treatment of carbon fiber | |
JPS58104222A (en) | Surface treatment of carbon fiber | |
JPH03185181A (en) | Method for treating surface of carbon fiber | |
JPS6246665B2 (en) |