JPH0465568A - Production of superfine formed product - Google Patents

Production of superfine formed product

Info

Publication number
JPH0465568A
JPH0465568A JP17428590A JP17428590A JPH0465568A JP H0465568 A JPH0465568 A JP H0465568A JP 17428590 A JP17428590 A JP 17428590A JP 17428590 A JP17428590 A JP 17428590A JP H0465568 A JPH0465568 A JP H0465568A
Authority
JP
Japan
Prior art keywords
base material
fiber
molded
heat
steric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17428590A
Other languages
Japanese (ja)
Other versions
JP2884004B2 (en
Inventor
Satoshi Ogata
智 緒方
Yoshimi Tsujiyama
辻山 義実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP17428590A priority Critical patent/JP2884004B2/en
Publication of JPH0465568A publication Critical patent/JPH0465568A/en
Application granted granted Critical
Publication of JP2884004B2 publication Critical patent/JP2884004B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently obtain a homogeneous and bulky steric formed product having excellent formability by blowing specific heat fusible type superfine fiber onto a steric formed substrate having air permeability by a melt blowing method and simultaneously fusing the fiber. CONSTITUTION:Heat fusible type conjugate superfine conjugate fiber having <=103m average fiber diameter is blown onto a steric formed substrate having air permeability by a melt blowing method and the aforementioned superfine fiber is simultaneously fused on the above-mentioned formed substrate. Thereby, the objective steric formed product is obtained. Furthermore, the aforementioned superfine fiber is preferably conjugate fiber composed of a high-melting component and a low-melting component. A formed substrate using a netlike material composed of a thermoplastic resin is preferably used as the formed substrate.

Description

【発明の詳細な説明】 [産業上の利用分野] メルトブロー法による極細繊維立体成型体の直接的製法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for directly producing a three-dimensional ultrafine fiber molded article by a melt blowing method.

[従来の技術〕 メルトブロー法による極細繊維不織布は、そのミクロポ
ーラス性、柔らかい風合い等の性質を利用し、フィルタ
ー、断熱材、ワイパー、紙おしめ等種々の用途に用いら
れている。従来このような不織布の製法として、いくつ
かの提案がなされている。
[Prior Art] Ultrafine fiber nonwoven fabrics produced by melt blowing are used in various applications such as filters, heat insulating materials, wipers, and paper diapers, taking advantage of their microporous properties and soft texture. Conventionally, several proposals have been made as methods for manufacturing such nonwoven fabrics.

特開昭55−142.757号公報には、ポリエステル
の極細繊維の製法が開示されている。また特開昭60−
99.057、特開昭60−99.058号の両公報に
は極細複合繊維からなる不織布及び該製法により得られ
た不織布を後の成型加工により立体的に成型する方法が
開示されている。
JP-A-55-142.757 discloses a method for producing ultrafine polyester fibers. Also, JP-A-60-
99.057 and JP-A No. 60-99.058 disclose a nonwoven fabric made of ultrafine conjugate fibers and a method for three-dimensionally molding the nonwoven fabric obtained by the manufacturing method by a subsequent molding process.

該後者の2件の発明は、複合繊維を構成する第1成分に
ポリエステル、第2成分にポリブロピレン等を用いてい
る。そして該両成分は並列型や芯鞘型に複合し、メルト
ブロー法により平坦な金線上に吹き付けることによりウ
ェッブとしたり、更に該ウェッブを加熱処理や金型を用
い、加熱成型することにより繊維は容易に接着し、且つ
緻!化するのでミクロポーラス性のある不織布や立体成
型体が得られる。
The latter two inventions use polyester as the first component and polypropylene as the second component of the composite fiber. Then, these two components are combined into a parallel type or core-sheath type, and are made into a web by blowing it onto a flat gold wire using a melt blowing method.Fibers can be easily made by heating the web or heat-forming it using a mold. Adhesive and dense! , so microporous nonwoven fabrics and three-dimensional molded bodies can be obtained.

[発明が解決しようとする問題点] しかしながら前記後者の2件の公開発明による立体成型
体の製法は、ウェッブを金型を用い後加工により加熱成
型する方法であるので生産性が劣る。しかも成型時に起
こる熱収縮や加圧時の圧力により成型体にシワが起きた
り、嵩高性のない成型体しか得られないという課題があ
る。
[Problems to be Solved by the Invention] However, the method for producing a three-dimensional molded body according to the latter two disclosed inventions is a method in which the web is heated and formed by post-processing using a mold, and therefore productivity is poor. Moreover, there are problems in that wrinkles occur in the molded product due to heat shrinkage that occurs during molding and pressure during pressurization, and that only a molded product that is not bulky can be obtained.

本発明者等は、前記課題を解決すべく鋭意研究を行った
。その結果、立体的にして通気性のある成型基材上(以
下単に成型基材ということがある)にメルトブロー法に
より、特定の極細繊維を吹き付けると共に該基材上に該
極細繊維を融着せしめることにより、前記課題が解決で
きることを知見し、この知見に基づいて本発明を完成し
た。
The present inventors conducted extensive research to solve the above problems. As a result, specific ultrafine fibers are blown onto a three-dimensional, breathable molded base material (hereinafter simply referred to as the molded base material) using a melt blow method, and the ultrafine fibers are fused onto the base material. The inventors have found that the above problem can be solved by doing so, and have completed the present invention based on this knowledge.

以上の記述から明らかなように、本発明の目的は前記課
題のない均一で嵩高な成型性のよい立体成型体を効率よ
く製造する方法を提供することにある。
As is clear from the above description, an object of the present invention is to provide a method for efficiently manufacturing a uniform, bulky, three-dimensional molded body with good moldability, which does not have the above-mentioned problems.

[問題を解決するための手段] (1)立体的にして通気性のある成型基材(以下単に成
型基材と称する)上にメルトブロー法で平均繊維径1O
ILIT1以下の熱融着型複合極細繊維を吹き付けると
共に該成型基材上で該複合極細繊維を融着せしめること
を特徴とする立体的成型体の製造方法。
[Means for solving the problem] (1) A three-dimensional, breathable molded base material (hereinafter simply referred to as molded base material) is coated with an average fiber diameter of 10 by melt blowing.
A method for producing a three-dimensional molded body, which comprises spraying heat-sealable composite ultrafine fibers having an ILIT of 1 or less and fusing the composite ultrafine fibers on the molding base material.

(2)熱融着型複合極細繊維が高融点成分と低融点成分
からなる熱融着型複合繊維である前記第(11項記載の
方法。
(2) The method according to item (11) above, wherein the heat-fusible composite ultrafine fiber is a heat-fusible composite fiber comprising a high melting point component and a low melting point component.

(3)成型基材として、熱可塑性樹脂からなる網状物を
用いた前記第 (1)〜(2)項記載の製造方法。
(3) The manufacturing method described in items (1) and (2) above, in which a net-like material made of a thermoplastic resin is used as the molding base material.

(4)熱融着型複合極細繊維と成型基材とを相互に熱接
着させた前記第 (1)〜(3)項記載の製造方法。
(4) The manufacturing method described in items (1) to (3) above, wherein the heat-sealable composite ultrafine fiber and the molding base material are thermally bonded to each other.

本発明によれば前記課題は、立体的にして通気性のある
成型基材上にメルトブロー法で平均繊維径10um以下
の熱融着型複合極細繊維を吹き付けると共に、成型基材
上で該極細繊維を融着することを特徴とする立体的成型
体の製造方法により達成される。
According to the present invention, the above-mentioned problem can be solved by spraying heat-sealable composite ultrafine fibers with an average fiber diameter of 10 um or less on a three-dimensional, breathable molded base material using a melt blow method, and blowing the ultrafine fibers on the molded base material. This is achieved by a method for producing a three-dimensional molded body, which is characterized by fusing.

本発明でいう成型基材の具体例としては、スチールネッ
トや熱可塑性樹脂製ネットなどの通気性のある材料を、
目的とする種々の形状に立体的に成型した物がある。よ
り具体的にはポリエステル/ポリエチレン系熱融着性複
合モノフィラメントを製織し、熱接着処理して更に金型
で立体的形状に成型した物などが例示できる。
Specific examples of the molding base material in the present invention include breathable materials such as steel nets and thermoplastic resin nets.
There are objects that are three-dimensionally molded into various desired shapes. More specifically, examples include those obtained by weaving a polyester/polyethylene heat-fusible composite monofilament, subjecting it to heat bonding treatment, and then molding it into a three-dimensional shape using a mold.

該基材は、後記のメルトブロー法による極細繊維の吹き
付は時に吸引機付きのスチールコンベア上に載置するか
、またはコンベア自体立体的に成型した物でもよい。
The base material may be placed on a steel conveyor equipped with a suction machine, or may be three-dimensionally molded on the conveyor itself, to which the ultrafine fibers are blown by the melt-blowing method described later.

次に本発明でメルトブロー法とは、後記の熱可塑性樹脂
の少なくとも2f!!を溶融し複合メルトブロー用口金
から吹き比し高速気流によって複合極細繊維を紡糸と同
時に吹き付ける方法をいう。複合メルトブロー用口金は
、並列複合繊維型芯蛸複合繊維、または海鳥複合繊維型
のいづれも用いることができる。
Next, in the present invention, the melt blowing method refers to at least 2f! of the thermoplastic resin described below! ! This is a method in which composite ultrafine fibers are melted and blown from a composite melt blowing nozzle using high-speed airflow at the same time as spinning. As the composite melt blowing die, either a parallel composite fiber type core octopus composite fiber type or a seabird composite fiber type can be used.

融点差のある2種の熱可塑性樹脂で、低融点樹脂が繊維
表面の一部を占めるような熱接着性複合繊維の紡糸は、
熱接着による成型性が向上するので特に好ましい。融点
差20℃以上あることが好ましい。また吹き付ける対象
物は前記成型基材である。
Spinning thermoadhesive composite fibers using two types of thermoplastic resins with different melting points, in which the low melting point resin occupies a part of the fiber surface,
This is particularly preferred since moldability due to thermal adhesion is improved. It is preferable that the melting point difference is 20°C or more. Moreover, the object to be sprayed is the molded base material.

該成型基材はその裏面より吸引装置で高速空気流を吸引
するので極細繊維は瞬時に基材上で熱接着され立体状に
成型される。メルトブロー用口金と成型基材との距離は
、熱可塑性樹脂の融点や高速空気流の吹き付は条件など
に誹り異なるが吹き付けた極細繊維の少なくとも一部の
繊維同志が熱接着する距離に設定する。
Since the molded base material draws a high-speed air flow from the back side thereof using a suction device, the ultrafine fibers are instantly thermally bonded onto the base material and molded into a three-dimensional shape. The distance between the melt blowing nozzle and the molding base material will vary depending on the melting point of the thermoplastic resin and the conditions of high-speed air flow, but it should be set to a distance at which at least some of the blown microfibers will thermally bond to each other. .

この距離は約30〜80cmである。この距離が長ずざ
ると未接着のウェッブとなり成型性の良いものが得られ
ない。
This distance is approximately 30-80 cm. If this distance is not long, an unbonded web will result and a product with good moldability cannot be obtained.

高速空気流としては、空気、窒素ガス等の不活性ガスが
用いられる。温度は約100〜450℃、気流速度は約
400〜90.000m/分である。紡糸する繊維の平
均径は10μm以下とする。10μm以上ではミクロポ
ーラス性や風合いが劣る。また成型体の目付けは約5〜
2110g/n”である。
As the high-speed air flow, air, an inert gas such as nitrogen gas, etc. are used. The temperature is about 100-450°C and the air velocity is about 400-90,000 m/min. The average diameter of the fibers to be spun is 10 μm or less. If it is 10 μm or more, the microporous property and texture will be poor. Also, the basis weight of the molded body is approximately 5~
2110g/n''.

また本発明では、熱可塑性樹脂としてポリアミド、ポリ
エステル、低融点ポリエステル、ポリビニリデンクロラ
イド、ポリビニルアセテート、ポリスチレン、ポリウレ
タンエラストマー、ポリエステルエラストマー、ポリプ
ロピレン、ポリエチレン、共重合ポリプロピレン等を例
示することができる。とりわけ融点または軟化点が、約
70〜290℃のものが好ましい。
In the present invention, examples of thermoplastic resins include polyamide, polyester, low melting point polyester, polyvinylidene chloride, polyvinyl acetate, polystyrene, polyurethane elastomer, polyester elastomer, polypropylene, polyethylene, copolymerized polypropylene, and the like. Particularly preferred are those having a melting point or softening point of about 70 to 290°C.

本発明の方法に係る成型体は後の熱処理無しで十分な成
型性があるが、メルトブロー法で吹き付は成型後、更に
加熱処理をし複合極細繊維の熱接着を強固にすることも
できる。また本発明では、成型基材の片面または両面に
極細繊維成型体が熱接着した成型体とすることもできる
Although the molded product according to the method of the present invention has sufficient moldability without any subsequent heat treatment, it is also possible to further heat-treat the composite ultrafine fibers after blowing with the melt blow method to strengthen the thermal adhesion of the composite microfibers. Further, in the present invention, a molded body can be formed by thermally adhering an ultrafine fiber molded body to one or both sides of a molded base material.

本発明により得られた成型体は、そのまま又は織布や他
の不織布と積層し縫製したり、あるいは他の保型材等に
はさんで目的とする種々の用途に用いられる。
The molded product obtained by the present invention can be used as it is, laminated with woven fabric or other non-woven fabric and sewn, or sandwiched between other shape-retaining materials and the like for various intended purposes.

[実施例] 次に本発明を実施例で更に具体的に説明する。[Example] Next, the present invention will be explained in more detail with reference to Examples.

なお実施例中において、成型性の評価は成型体がシワや
型くずれがな(均一に成型されており、しかも成型体を
指で強く擦っても毛羽立ちが起きないものを成型住良(
O)、シワ、型くずれ、または毛羽立ちのいずれかがあ
るものを成型性不可(×)として表した。
In addition, in the examples, the moldability was evaluated if the molded product did not wrinkle or lose its shape (it was molded uniformly, and it did not fuzz even if the molded product was strongly rubbed with a finger).
O), those with wrinkles, deformation, or fluffing were expressed as unmoldable (x).

実施例1 メルトフローレート80 f230℃、2160g/1
0分)、融点165℃のポリプロピレンを芯成分とし、
メルトフローレート124 F190℃、2160g7
10分)、融点122℃の綿状低密度ポリエチレンを鞘
成分とし、孔径0.3mm、孔数5111の芯鞘型メル
トブロー用口金を用い、複合比50/ 50、紡糸温度
を芯成分280℃、鞘成分260℃、総吐比量120g
/分の条件で紡糸し、温度350℃の空気を圧力1.2
kg/cm”で導入し口金と成型基材との距離48cm
で成型基材上に吹き付け、成型基材と不織布が未剥離の
成型体を得た(成型体a)。
Example 1 Melt flow rate 80 f230°C, 2160g/1
0 minutes), polypropylene with a melting point of 165°C as a core component,
Melt flow rate 124 F190℃, 2160g7
10 minutes), using cotton-like low density polyethylene with a melting point of 122°C as the sheath component, using a core-sheath type melt blowing nozzle with a pore diameter of 0.3 mm and 5111 holes, a composite ratio of 50/50, a spinning temperature of the core component at 280°C, Sheath component 260℃, total volume 120g
Spinning is carried out under the conditions of 1.2 min and air at a temperature of 350°C is
kg/cm" and the distance between the nozzle and the molding base material is 48 cm.
was sprayed onto the molded base material to obtain a molded body in which the molded base material and the nonwoven fabric were not separated (molded body a).

成型基材はポリエステルを芯とし、高密度ポリエチレン
を鞘とする繊度800d/fの複合モノフィラメントを
用い、経緯糸共に12本/インチの密度で製織し、更に
該織布を金型を用い、ブラジャーカップ型に成型したも
のを用いた。
The molding base material is a composite monofilament with a fineness of 800 d/f, with a polyester core and a high-density polyethylene sheath, and is woven at a density of 12 threads/inch for both warp and warp threads.The woven fabric is then molded into a brassiere. A cup molded product was used.

また該基材は、速度4m/分の金網コンベア上に載置し
、吹き付けた気流はコンベア下部の吸引装置より吸引除
去した。
Further, the substrate was placed on a wire mesh conveyor at a speed of 4 m/min, and the blown air stream was removed by suction from a suction device at the bottom of the conveyor.

該成型体aは、電子顕微鏡し察によると繊維の熱接着が
多数発生していた。平均繊維径は3.1μm、成型体の
成型性は良(○)であった。
When the molded body a was observed using an electron microscope, it was found that many fibers were thermally bonded. The average fiber diameter was 3.1 μm, and the moldability of the molded product was good (◯).

また、前記成型体aより成型基材を手で剥離した不織布
のみの成型体すは、目付51.6g/m”、比容積:)
4.2cc/gで成型住良(○)であった。
In addition, the molded body made of only nonwoven fabric obtained by manually peeling the molded base material from the molded body a has a basis weight of 51.6 g/m'' and a specific volume:
It was molded Sumira (○) at 4.2 cc/g.

更に成型体aを140℃のドライヤーで5分間熱処理し
、不織布と成型基材が熱接着した成型体Cを得た。この
成型体Cは不織布と基材を手で剥離することは困難であ
り、成型性も良(○)であった。
Furthermore, the molded body a was heat-treated for 5 minutes with a dryer at 140° C. to obtain a molded body C in which the nonwoven fabric and the molded base material were thermally bonded. In this molded body C, it was difficult to separate the nonwoven fabric and the base material by hand, and the moldability was also good (◯).

実施例2 固有粘度0,61、融点252℃のポリエステルを第1
成分とし、前記実施例1で用いたものと同一のポリプロ
ピレンを第2成分として用い、孔径0.3mm 、孔数
501の並列型メルトブロー用口金を用い、複合比50
/ 50、紡糸温度を第1成分310℃、第2成分26
0℃、総吐出量120g/分の条件で紡糸し、温度40
0℃の空気を圧力2.0Kg/c+n”で導入し、口金
と成型基材との距離44cm、金網コンベア速度5m/
分で成型基材上に吹き付けし、成型基材と不織布が未剥
離の成型体を得た。
Example 2 Polyester with an intrinsic viscosity of 0.61 and a melting point of 252°C was used as the first
The same polypropylene as that used in Example 1 was used as the second component, and a parallel melt blowing nozzle with a hole diameter of 0.3 mm and a hole number of 501 was used, and a composite ratio of 50 was used.
/ 50, the spinning temperature was 310°C for the first component and 26°C for the second component.
Spinning was carried out under the conditions of 0℃ and total discharge rate of 120g/min, and the temperature was 40℃.
Air at 0°C was introduced at a pressure of 2.0 Kg/c+n'', the distance between the die and the molding base material was 44 cm, and the wire mesh conveyor speed was 5 m/cm.
The mixture was sprayed onto the molded base material for 1 minute to obtain a molded body in which the molded base material and the nonwoven fabric were not separated.

該基材から不織布を手で剥離し、小型掃除機用のフィル
ター成型体dを得た。
The nonwoven fabric was peeled off from the base material by hand to obtain a molded filter d for a small vacuum cleaner.

なお本例では、前記実施例1の複合モノフィラメント製
織布を小型掃除機用フィルターに成型したものを成型基
材として用いた。得られた成型体dは、繊維の熱接着が
多数発生していた。また平均繊維径は4.4μm、目付
4,0.3g/m”、比容積1g、9cc/gで成型住
良(0)であった。
In this example, the composite monofilament woven fabric of Example 1 molded into a filter for a small vacuum cleaner was used as a molding base material. In the obtained molded body d, many fibers were thermally bonded. Moreover, the average fiber diameter was 4.4 μm, the basis weight was 4.0.3 g/m'', the specific volume was 1 g, and it was 9 cc/g, making it a molded Sumira (0).

この成型体はシワが多く、成型不可(×)であった。ま
た風合いも硬く、悪いものであった。しかも比容積は1
3.6cc/gと小であった。
This molded product had many wrinkles and could not be molded (x). Moreover, the texture was hard and bad. Moreover, the specific volume is 1
It was small at 3.6 cc/g.

[比較例1] メルトブロー条件を実施例1と同条件とし、成型基材を
用いずに直接金網コンベア上に吹き付けし、ウェッブを
得た。該ウェッブの平均繊維径は3.2 um 、目付
59.0g/m”、比容積23.7cc/gであった。
[Comparative Example 1] Melt blowing conditions were the same as in Example 1, and a web was obtained by blowing directly onto a wire mesh conveyor without using a molded base material. The web had an average fiber diameter of 3.2 um, a basis weight of 59.0 g/m'', and a specific volume of 23.7 cc/g.

このウェッブを145℃のドライヤーで5分間熱処理後
、直ちに雌雄型の金型を用い0.5Kg /cm”×1
分間のコールドプレスをし、ブラジャーカップ成型体f
を得た。
After heat-treating this web in a dryer at 145°C for 5 minutes, it was immediately molded using a male and female mold to produce 0.5Kg/cm” x 1
Cold press for a minute and mold the bra cup f.
I got it.

[発明の効果] 本発明によれば、メルトブロー法により紡糸と成型を同
時にするので、成型基材を変えるだけで極細繊維による
様々な形状の立体成型体を効率よく製造することができ
る。しかも金型等による後成型処理をする必要がないの
で、嵩高でシワの発生のない成型性の良い立体成型体が
得られる。また極細繊維と成型基材を熱接着させること
もできるので、より強度の大きな成型体を得ることがで
きる。
[Effects of the Invention] According to the present invention, since spinning and molding are performed simultaneously by the melt blow method, three-dimensional molded bodies of various shapes made of ultrafine fibers can be efficiently produced by simply changing the molding base material. Moreover, since there is no need for post-molding treatment using a mold or the like, a bulky three-dimensional molded article with good moldability without wrinkles can be obtained. Furthermore, since the ultrafine fibers and the molding base material can be thermally bonded, a molded article with greater strength can be obtained.

以   上that's all

Claims (4)

【特許請求の範囲】[Claims] (1)立体的にして通気性のある成型基材(以下単に成
型基材と称する)上にメルトブロー法で平均繊維径10
μm以下の熱融着型複合極細繊維を吹き付けると共に該
成型基材上に該極細繊維を融着せしめることを特徴とす
る立体的成型体の製造方法。
(1) A three-dimensional, breathable molded base material (hereinafter simply referred to as molded base material) was melt-blown with an average fiber diameter of 10.
A method for producing a three-dimensional molded body, which comprises spraying heat-sealable composite ultrafine fibers of micrometers or less and fusing the ultrafine fibers onto the molding base material.
(2)熱融着型複合極細繊維が高融点成分と低融点成分
からなる熱融着型複合繊維である特許請求の範囲第(1
)項記載の方法。
(2) Claim No. 1 in which the heat-sealable composite ultrafine fiber is a heat-sealable composite fiber consisting of a high melting point component and a low melting point component.
) Method described in section.
(3)成型基材として、熱可塑性樹脂からなる網状物を
用いた特許請求の範囲第(1)〜(2)項記載の製造方
法。
(3) The manufacturing method according to claims (1) and (2), in which a net-like material made of thermoplastic resin is used as the molding base material.
(4)熱融着型複合極細繊維と成型基材とを相互に熱接
着させた特許請求の範囲第(1)〜(3)項記載の製造
方法。
(4) The manufacturing method according to claims (1) to (3), in which the heat-sealable composite ultrafine fiber and the molding base material are thermally bonded to each other.
JP17428590A 1990-06-29 1990-06-29 Manufacturing method of ultrafine fiber molded body Expired - Fee Related JP2884004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17428590A JP2884004B2 (en) 1990-06-29 1990-06-29 Manufacturing method of ultrafine fiber molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17428590A JP2884004B2 (en) 1990-06-29 1990-06-29 Manufacturing method of ultrafine fiber molded body

Publications (2)

Publication Number Publication Date
JPH0465568A true JPH0465568A (en) 1992-03-02
JP2884004B2 JP2884004B2 (en) 1999-04-19

Family

ID=15976002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17428590A Expired - Fee Related JP2884004B2 (en) 1990-06-29 1990-06-29 Manufacturing method of ultrafine fiber molded body

Country Status (1)

Country Link
JP (1) JP2884004B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362389B1 (en) 1998-11-20 2002-03-26 Kimberly-Clark Worldwide, Inc. Elastic absorbent structures
US6589892B1 (en) 1998-11-13 2003-07-08 Kimberly-Clark Worldwide, Inc. Bicomponent nonwoven webs containing adhesive and a third component
US6686303B1 (en) 1998-11-13 2004-02-03 Kimberly-Clark Worldwide, Inc. Bicomponent nonwoven webs containing splittable thermoplastic filaments and a third component
JP2009263811A (en) * 2008-04-24 2009-11-12 Kuraray Kuraflex Co Ltd Composite fiber sheet composed of nonwoven fabric
JP2018096021A (en) * 2016-11-28 2018-06-21 アディダス アーゲー Manufacturing method of non-woven fabric including component

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6589892B1 (en) 1998-11-13 2003-07-08 Kimberly-Clark Worldwide, Inc. Bicomponent nonwoven webs containing adhesive and a third component
US6686303B1 (en) 1998-11-13 2004-02-03 Kimberly-Clark Worldwide, Inc. Bicomponent nonwoven webs containing splittable thermoplastic filaments and a third component
US6362389B1 (en) 1998-11-20 2002-03-26 Kimberly-Clark Worldwide, Inc. Elastic absorbent structures
JP2009263811A (en) * 2008-04-24 2009-11-12 Kuraray Kuraflex Co Ltd Composite fiber sheet composed of nonwoven fabric
JP2018096021A (en) * 2016-11-28 2018-06-21 アディダス アーゲー Manufacturing method of non-woven fabric including component
US10975500B2 (en) 2016-11-28 2021-04-13 Adidas Ag Method of non-woven fabrics including a component

Also Published As

Publication number Publication date
JP2884004B2 (en) 1999-04-19

Similar Documents

Publication Publication Date Title
JP6865063B2 (en) Bulky composite long fiber non-woven fabric with excellent barrier properties
CA2525315C (en) Molded non-woven fabrics and methods of molding
JP3658884B2 (en) Method for producing composite long-fiber nonwoven fabric
JP7037200B2 (en) Manufacturing method of needle punch non-woven fabric
JPH06294060A (en) Bonded composite non-woven web and preparation thereof
JPH09209254A (en) Laminated nonwoven fabric and its production
CN207056133U (en) Gradient filtration complex nonwoven cloth material
JPH0782649A (en) Blended ultra-fine fiber good and its production
KR101874742B1 (en) The method for manufacturing Polyester nonwoven fabric having an improved permeability
JPH0465568A (en) Production of superfine formed product
JPS622060B2 (en)
JP4705401B2 (en) Nonwoven fabric for feather collection bags
JPH06128852A (en) Laminated nonwoven fabric
JPH0339509Y2 (en)
JPH11247061A (en) Nonwoven fabric for medical use
KR101100018B1 (en) Nonwoven fabric of a mluti-layer for a detergent-sheet and preparing process thereof
KR100715203B1 (en) Polyester spunbonded nonwoven fabrics for air filter and preparation method thereof
JPH10251958A (en) Bulky nonwoven fabric
JPH11320800A (en) Decorative sheet
JPH1096156A (en) Base fabric for disposable clothes
JPH0144822B2 (en)
JPH0253903A (en) Padding cloth of bonded nonwoven fabric
JPH01201567A (en) Production of bulky spun-bond nonwoven fabric
JP2009120975A (en) Blended filament nonwoven fabric
JP4581185B2 (en) Non-woven fabric and fiber product using the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees