JPH0465510B2 - - Google Patents

Info

Publication number
JPH0465510B2
JPH0465510B2 JP9220684A JP9220684A JPH0465510B2 JP H0465510 B2 JPH0465510 B2 JP H0465510B2 JP 9220684 A JP9220684 A JP 9220684A JP 9220684 A JP9220684 A JP 9220684A JP H0465510 B2 JPH0465510 B2 JP H0465510B2
Authority
JP
Japan
Prior art keywords
ptc resistor
ptc
composition
resistance
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9220684A
Other languages
Japanese (ja)
Other versions
JPS60235385A (en
Inventor
Yoshio Kishimoto
Masayuki Terakado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9220684A priority Critical patent/JPS60235385A/en
Publication of JPS60235385A publication Critical patent/JPS60235385A/en
Publication of JPH0465510B2 publication Critical patent/JPH0465510B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明はPTC抵抗体の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a PTC resistor.

従来例の構成とその問題点 従来のPTC抵抗体は、カーボンブラツクを含
有するPTC抵抗体組成物層によつて発熱層が形
成されており、その抵抗値は発熱層の押出成形時
の製線条件により大きく変動し、製造工程が非常
に難しいという難点があり、それは以下の理由に
よる。一般にカーボンブラツクを混練した高分子
組成物は、抵抗安全性に乏しく、熱処理、熱履歴
により絶えず電気抵抗が変化し、この組成物の成
形工程における配向や成形温度によつても大きく
異なる抵抗値を与える。これは、カーボンブラツ
クが鎖状構造の導電材であるため、高分子マトリ
ツクスの中でそのカーボンブラツク粒子は、種々
の配向をし、カーボンブラツクの高分子マトリツ
クス中の含有量が同一であつても大きく異なつた
抵抗値を与える。すなわち、このカーボンブラツ
クを含むPTC低抗体組成物の導電性は、高分子
マトリツクス中におけるカーボンブラツク導電粒
子のチヤネルによつて生ずるものであつて、その
粒子同志の接触数の増減が抵抗値に大きく寄与す
る。実際にカーボンブラツクを含むPTC抵抗体
組成物の電気抵抗を下げるためには、一般に少な
くとも20%wt以上のカーボンブラツクが必要で、
低抵抗の組成物を得るためには40%以上の添加が
必要である。しかしながら、40%以上のカーボン
ブラツクの添加は、高分子自身のすぐれた成形加
工性を損ない、一般高分子のような任意の加工が
出来なくなるという問題点がある。
Structure of the conventional example and its problems In the conventional PTC resistor, the heating layer is formed by a PTC resistor composition layer containing carbon black, and the resistance value is determined by the wire manufacturing process during extrusion molding of the heating layer. The disadvantage is that it varies greatly depending on the conditions and the manufacturing process is extremely difficult, and this is due to the following reasons. In general, polymer compositions kneaded with carbon black have poor resistance stability, and their electrical resistance constantly changes due to heat treatment and thermal history.The resistance value also varies greatly depending on the orientation and molding temperature during the molding process of this composition. give. This is because carbon black is a conductive material with a chain structure, so the carbon black particles have various orientations in the polymer matrix, even if the carbon black content in the polymer matrix is the same. Gives widely different resistance values. In other words, the conductivity of the PTC low antibody composition containing carbon black is caused by the channels of carbon black conductive particles in the polymer matrix, and the increase or decrease in the number of contacts between the particles has a large effect on the resistance value. Contribute. In order to actually lower the electrical resistance of a PTC resistor composition containing carbon black, it is generally necessary to have at least 20%wt of carbon black.
Addition of 40% or more is necessary to obtain a composition with low resistance. However, the addition of carbon black in an amount of 40% or more impairs the excellent moldability of the polymer itself, and there is a problem in that it cannot be processed as desired as with general polymers.

発明の目的 本発明はこれらの問題点を克服し、少ない添加
量のカーボンブラツクを含むPTC抵抗体組成物
粒子の表面を親和性液体により大きく低抵抗化し
安定な抵抗値をもつPTC抵抗体を製造する方法
を提供するものである。
Purpose of the Invention The present invention overcomes these problems and produces a PTC resistor with a stable resistance value by greatly reducing the resistance of the surface of the PTC resistor composition particles containing a small amount of carbon black by using an affinity liquid. This provides a method to do so.

発明の構成 上記目的を達成するために本発明は下記の方法
をとつた。すなわち、上記PTC抵抗体組成物を
これを溶解又は膨潤させる親和性液体で表面処理
することによつて、電気抵抗値が数桁低下するこ
とが見いだされている。これは、このPTC抵抗
体組成物の粒子の表面が液体で表面処理され、そ
の高分子マトリツクスが極度に軟化して、カーボ
ンブラツク粒子が配向、凝集して導電チヤネルを
形成するためである。一方、高分子は一般に成形
温度における成形状態といえども粘度は高く、一
般溶媒のような自由な流動性を持つていない。そ
れ故、高分子マトリツクス中のカーボン粒子は混
練や成形工程において、ランダムな配位となると
共に、成形時に金型などによる流動ひずみを大き
く受け、そのまま冷却され、成形されることとな
る。このため、成形体の各部分が種々の異なる抵
抗値をもつこととなる。ところが、この成形体を
上記液体に浸したりすると、その成形体の表面の
マトリツクス高分子が溶媒により溶解、膨潤し、
粘度が下がり、表面近傍のカーボンブラツク粒子
が動きやすくなり、カーボン粒子同志が配向、凝
集して、導電チヤネルを形成し、その溶媒を乾燥
除去したのち、その成形体表面の抵抗値は驚異的
に低下するのである。そこで本発明は少なくとも
一対の電気導体線間に上記表面処理済のPTC抵
抗体組成物を設けるものである。
Structure of the Invention In order to achieve the above object, the present invention employs the following method. That is, it has been found that by surface-treating the PTC resistor composition with an affinity liquid that dissolves or swells it, the electrical resistance value can be reduced by several orders of magnitude. This is because the surface of the particles of this PTC resistor composition is treated with a liquid, and the polymer matrix thereof is extremely softened, and the carbon black particles are oriented and aggregated to form a conductive channel. On the other hand, polymers generally have a high viscosity even in the molded state at the molding temperature and do not have the free flowability of general solvents. Therefore, the carbon particles in the polymer matrix become randomly oriented during the kneading and molding processes, and are subjected to large flow distortions caused by molds and the like during molding, and are then cooled and molded as they are. Therefore, each part of the molded body has various different resistance values. However, when this molded body is immersed in the above-mentioned liquid, the matrix polymer on the surface of the molded body is dissolved and swelled by the solvent.
The viscosity decreases, the carbon black particles near the surface become more mobile, the carbon particles align and aggregate to form a conductive channel, and after the solvent is dried and removed, the resistance value of the surface of the molded product becomes amazing. It declines. Therefore, the present invention provides the above-mentioned surface-treated PTC resistor composition between at least a pair of electrical conductor wires.

なお本発明において、カーボンブラツクを含む
PTC抵抗体組成物の粒子は塗料のような溶媒を
含む溶液より形成されたものではなく、溶媒を含
まない工程、即ち混練、粉砕等によつて製造され
たものを用いる。
In the present invention, carbon black is included.
The particles of the PTC resistor composition are not formed from a solution containing a solvent like a paint, but are manufactured by a process that does not contain a solvent, such as kneading or pulverization.

本発明は、各種の熱可塑性樹脂をマトリツクス
高分子とする組成物に適用できる他、架橋された
熱硬化性樹脂においても適用できる。
The present invention can be applied to compositions using various thermoplastic resins as matrix polymers, and can also be applied to crosslinked thermosetting resins.

本発明に用いる溶媒は、マトリツクス高分子を
溶解せしめるものであるが、この溶媒中にドーピ
ング剤を溶解させた液体を用いると、PTC抵抗
体組成物粒子表面の低抵抗化とともに、このドー
ピング剤をドーピングすることができる。本発明
におけるドーピング剤とはPTC抵抗体組成物へ
加える安定剤、酸化防止剤、防錆剤等の高分子添
加剤をいう。
The solvent used in the present invention is one that dissolves the matrix polymer, and if a liquid in which a doping agent is dissolved in this solvent is used, the resistance of the PTC resistor composition particle surface is reduced and the doping agent is dissolved. Can be doped. In the present invention, the doping agent refers to a polymeric additive such as a stabilizer, antioxidant, or rust preventive agent added to the PTC resistor composition.

本発明におけるPTC抵抗体組成物に用いる高
分子マトリツクスはポリエチレン、ポリプロピレ
ン、ポリエチレン−酢酸ビニル共重合体、ポリエ
チレン−エチルアクリレート共重合体等のポリオ
レフインやポリアミド、ポリエステル等の結晶性
高分子があり、各々の結晶変態点付近で急激な正
の温度係数を示す。本発明に用いる溶輓はこれら
の高分子を溶解あるいは膨潤させる親和性溶媒を
選択する。
The polymer matrix used in the PTC resistor composition of the present invention includes polyolefins such as polyethylene, polypropylene, polyethylene-vinyl acetate copolymer, polyethylene-ethyl acrylate copolymer, and crystalline polymers such as polyamide and polyester. It shows a sharp positive temperature coefficient near the crystal transformation point of . The solvent used in the present invention is selected from an affinity solvent that dissolves or swells these polymers.

実施例の説明 本発明の一実施例を次に説明する。Description of examples An embodiment of the present invention will be described next.

カーボンブラツク18%とポリエチレン−酢酸ビ
ニル共重合体81%、フエノール系安定剤1%より
なる混合品を加熱ロールにて、20分間混練し、シ
ート状に取り出した。これを回転式粉砕機にて、
約10〜200μmの粒子(A)に粉砕した。この粒子(A)
を流動コーテイング装置に入れ、トルエンをスプ
レーして表面処理をし粒子(B)とした。この粒子(B)
を一部風乾後、押出成形機にて次のような工程に
て第1図のPTC抵抗体組成物3層に成形した。
即ち、PTC抵抗体として、第1図のように、ア
ラミド繊維(1500De)を芯糸1とし、その上に
粒子(A)、(B)を用いて前記PTC抵抗体組成物層を
0.4mm厚で被覆した。このようにして作つた2種
類の線にそれぞれ外巻線2,2′として直径0.3mm
の銅線を2本づつまき、絶縁性外被4として、ポ
リ塩化ビニル共重合体0.5mm厚で被覆した。そし
て、この第1図のPTC抵抗体を各1m長に切断
し溶媒浸漬工程をしなかつたPTC抵抗体組成物
粒子を用いた従来のものと比較しつつ、特性測定
した。
A mixture consisting of 18% carbon black, 81% polyethylene-vinyl acetate copolymer, and 1% phenolic stabilizer was kneaded for 20 minutes using heated rolls, and then taken out in the form of a sheet. This is processed using a rotary crusher.
It was ground into particles (A) of approximately 10-200 μm. This particle (A)
was placed in a fluid coating device, and surface-treated by spraying toluene to obtain particles (B). This particle (B)
After partially air-drying, it was molded into a three-layer PTC resistor composition as shown in FIG. 1 using an extruder in the following steps.
That is, as a PTC resistor, as shown in FIG.
It was coated with a thickness of 0.4 mm. The outer windings 2 and 2' of the two types of wires made in this way are each 0.3 mm in diameter.
Two copper wires were tied together and coated with polyvinyl chloride copolymer 0.5 mm thick as an insulating jacket 4. The PTC resistor shown in FIG. 1 was then cut into 1 m length pieces and their characteristics were measured in comparison with a conventional one using PTC resistor composition particles that were not immersed in a solvent.

その結果を第2図、第3図に示す。粒子(A)を用
いたPTC抵抗体が(A)で粒子(B)のものをBで示す。
即ちAが従来例である。この第2図、第3図から
明らかなように、BはAの従来例に比べ、抵抗バ
ラツキ、PTC特性共にすぐれたものとなつてい
る。
The results are shown in FIGS. 2 and 3. The PTC resistor using particles (A) is shown in (A), and the PTC resistor using particles (B) is shown in B.
That is, A is the conventional example. As is clear from FIGS. 2 and 3, B has better resistance variation and PTC characteristics than the conventional example A.

なお、本実施例において、カーボンブラツクを
含むPTC抵抗体組成物の粒子群に対し、親和性
液体を接触させる方法としては、次のような方法
がある。(1)浸せき法、(2)液体をスプレーする方
法、(3)溶媒の蒸気中にさらす方法、(4)液体を注ぐ
方法。
In this example, the following method can be used to bring the affinity liquid into contact with the particles of the PTC resistor composition containing carbon black. (1) immersion method, (2) liquid spray method, (3) exposure to solvent vapor, and (4) liquid pour method.

また、液体を除去させる方法としては、(1)真空
乾燥法、(2)加熱乾燥法、(3)循環気体による乾燥法
などがある。この乾燥工程は、主にPTC抵抗体
組成物3を形成後におこなう。PTC抵抗体組成
物3に化学架橋や電子架橋をほどこす場合は、
PTC抵抗体組成物3層形成後に行なうのが効果
的である。本実施例においては成形前の粒子状態
で粒子表面が低抵抗、かつ安定化されるため、
PTC抵抗体組成物3層の抵抗値が押出ひずみに
よる不安定化を受けにくい。本実施例における粒
子が微粒である程よいとは言うまでもない。
Further, methods for removing liquid include (1) vacuum drying method, (2) heating drying method, and (3) drying method using circulating gas. This drying step is mainly performed after forming the PTC resistor composition 3. When applying chemical crosslinking or electronic crosslinking to PTC resistor composition 3,
It is effective to carry out this after forming three layers of PTC resistor composition. In this example, since the particle surface has low resistance and is stabilized in the particle state before molding,
The resistance value of the three layers of PTC resistor composition is less susceptible to destabilization due to extrusion strain. Needless to say, the finer the particles in this example, the better.

このようにカーボンブラツクを含むPTC抵抗
体組成物3層は低抵抗化され、本発明はこれのみ
ならず、さらに、こうしてできた低抵抗層は、成
形体の全体にわたり、均一な抵抗値を示し、本実
施例の方法以前のような不均一な抵抗分布は消え
ることがわかつている。本実施例によれば、105
〜108Ω・cmというような、カーボンを用いた
PTC抵抗体組成物では非常に製法の難しい領域
の抵抗値であつても、容易に均一な抵抗分布を示
すものをつくることができる。
In this way, the three layers of the PTC resistor composition containing carbon black have a low resistance, and the present invention is not limited to this, and furthermore, the low resistance layer thus formed exhibits a uniform resistance value over the entire molded body. , it has been found that the non-uniform resistance distribution as before the method of this embodiment disappears. According to this example, 10 5
~10 8 Ω・cm using carbon
PTC resistor compositions can easily be made to exhibit a uniform resistance distribution even if the resistance value is in a region that is extremely difficult to manufacture.

発明の効果 本発明の効果は次のようにまとめられる。Effect of the invention The effects of the present invention can be summarized as follows.

(1) 従来、PTC抵抗組成物が抵抗の安定化が非
常に大きな課題であつたが本発明により、各部
分の抵抗バラツキの少ない安定なPTC抵抗体
が得られる。
(1) Conventionally, stabilizing the resistance of PTC resistor compositions has been a very big problem, but according to the present invention, a stable PTC resistor with little resistance variation in each part can be obtained.

(2) 溶媒処理により低抵抗化されるため、カーボ
ン含有量が少なく、機械特性のすれたPTC抵
抗物組成物を形成できる。
(2) Since resistance is lowered by solvent treatment, a PTC resistor composition with low carbon content and excellent mechanical properties can be formed.

(3) PTC抵抗物組成物の押出機による押出工程
の際、押出速度により、非常にその抵抗値が左
右され、一定抵抗値にするため、定速押出する
ことが必要であつたが、本発明ではその必要性
は少なく、生産性の高いものとなる。
(3) During the extrusion process of the PTC resistor composition using an extruder, the resistance value was greatly affected by the extrusion speed, and it was necessary to extrude at a constant speed in order to maintain a constant resistance value. In the invention, there is little need for this, and productivity is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す斜視図、第2
図は本実施例品と従来例品の1m長の中の抵抗バ
ラツキを示す特性図、第3図は本実施例品と従来
例品の1m長当りの抵抗−温度特性を示す特性図
である。 1……芯糸、2,2′……銅線(電気導体線)、
3……PTC抵抗物組成物。
Fig. 1 is a perspective view showing one embodiment of the present invention;
The figure is a characteristic diagram showing the resistance variation within 1 m length of the product of this example and the conventional example, and Figure 3 is the characteristic diagram showing the resistance-temperature characteristics per 1 m length of the product of this example and the conventional example. . 1... Core thread, 2, 2'... Copper wire (electric conductor wire),
3...PTC resistor composition.

Claims (1)

【特許請求の範囲】 1 カーボンブラツクを含有してなる大きな正の
抵抗温度係数(以下PTCと略す)を有するPTC
抵抗体組成物を粉砕し微粉化したのち、前記組成
物の親和性液体により、前記粒子の表面処理する
とともに成形機にて成形し、少なくとも一対の電
極間に配設して成るPTC抵抗体の製造方法。 2 PTC抵抗体組成物が、ポリオレフインを主
成分とする高分子マトリクスより成り、親和性液
体が芳香族系溶剤を含む特許請求の範囲第1項記
載のPTC抵抗体の製造方法。 3 芳香族系溶剤がベンゼン、トルエン、キシレ
ン、ナフタレンあるいはその誘導体より選ばれた
1種である特許請求の範囲第2項記載のPTC抵
抗体の製造方法。 4 表面処理が流動コーテイング法によつておこ
なわれる特許請求の範囲第1項〜第3項のいずれ
か一つに記載のPTC抵抗体の製造方法。 5 成形機が押出成形機である特許請求の範囲第
1項記載のPTC抵抗体の製造方法。
[Claims] 1. PTC containing carbon black and having a large positive temperature coefficient of resistance (hereinafter abbreviated as PTC)
After crushing and pulverizing the resistor composition, the particles are surface-treated with an affinity liquid of the composition and molded using a molding machine to form a PTC resistor disposed between at least a pair of electrodes. Production method. 2. The method of manufacturing a PTC resistor according to claim 1, wherein the PTC resistor composition is made of a polymer matrix containing polyolefin as a main component, and the affinity liquid contains an aromatic solvent. 3. The method for manufacturing a PTC resistor according to claim 2, wherein the aromatic solvent is one selected from benzene, toluene, xylene, naphthalene, or a derivative thereof. 4. The method for manufacturing a PTC resistor according to any one of claims 1 to 3, wherein the surface treatment is performed by a fluid coating method. 5. The method for manufacturing a PTC resistor according to claim 1, wherein the molding machine is an extrusion molding machine.
JP9220684A 1984-05-08 1984-05-08 Method of producing ptc resistor Granted JPS60235385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9220684A JPS60235385A (en) 1984-05-08 1984-05-08 Method of producing ptc resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9220684A JPS60235385A (en) 1984-05-08 1984-05-08 Method of producing ptc resistor

Publications (2)

Publication Number Publication Date
JPS60235385A JPS60235385A (en) 1985-11-22
JPH0465510B2 true JPH0465510B2 (en) 1992-10-20

Family

ID=14047968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9220684A Granted JPS60235385A (en) 1984-05-08 1984-05-08 Method of producing ptc resistor

Country Status (1)

Country Link
JP (1) JPS60235385A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664929B2 (en) * 1985-04-02 1994-08-22 レイケム・コ−ポレイシヨン Electrical device
JP2936788B2 (en) * 1991-05-22 1999-08-23 松下電器産業株式会社 Method for manufacturing resistor having positive temperature coefficient of resistance and heating element using the resistor

Also Published As

Publication number Publication date
JPS60235385A (en) 1985-11-22

Similar Documents

Publication Publication Date Title
US3096210A (en) Insulated conductors and method of making same
JPH0428743B2 (en)
EP0038718B1 (en) Conductive polymer compositions containing fillers
US4629869A (en) Self-limiting heater and resistance material
JPS6221235B2 (en)
JP2003347106A (en) Ptc composition, thermistor element, and their manufacturing methods
US4318881A (en) Method for annealing PTC compositions
CA1106890A (en) Electrical devices comprising conductive polymer compositions
JPH0465510B2 (en)
KR101482602B1 (en) A heating polymer manufacturing process, heating-yarn manufacturing process and that heating-yarn
JPS63302501A (en) Ptc conductive polymer composition
JP2000508832A (en) Method for producing positive temperature coefficient material
WO1999030329A1 (en) Conductive polymer compositions, electrical devices and methods of making
FR2809859A1 (en) CONDUCTIVE POLYMER COMPOSITIONS CONTAINING FIBRILLATED FIBERS
CN1426071A (en) Polymerized positive temperature coefficiency device capable of returning to initial resistance after over current flow protection
JPS6337142A (en) Production of electrically conductive resin composition
US4992772A (en) Metal oxide film resistor
US6720379B1 (en) Electrostatic dissipative plastics adapted particularly for use at elevated temperatures
Sun et al. Study of the conductive paths of carbon‐black‐filled polyethylene composites by the alternating‐current impedance method
JPS6222836A (en) Production of electrically conductive resin composition
KR100327152B1 (en) Method for Making Conductive Polymer Composite Films
JPH0969410A (en) Current limiting element and current limiting device
Li et al. Manipulating the conductivity of carbon‐black‐filled immiscible polymer composites by insulating nanoparticles
JPH03143938A (en) Conductive resin composition and use thereof
KR100523294B1 (en) Preparation of electrical device having positive temperature coefficient property under high temperature