JPH0465372A - Production of high strength porous ceramics - Google Patents

Production of high strength porous ceramics

Info

Publication number
JPH0465372A
JPH0465372A JP2173285A JP17328590A JPH0465372A JP H0465372 A JPH0465372 A JP H0465372A JP 2173285 A JP2173285 A JP 2173285A JP 17328590 A JP17328590 A JP 17328590A JP H0465372 A JPH0465372 A JP H0465372A
Authority
JP
Japan
Prior art keywords
powder
porous ceramics
acicular mullite
fired
mullite powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2173285A
Other languages
Japanese (ja)
Inventor
Hiroaki Katsuki
勝木 宏昭
Akihiko Kawahara
昭彦 川原
Hiromichi Ichinose
弘道 一ノ瀬
Sachiko Furuta
祥知子 古田
Hiroshi Nakao
浩 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAGA PREF GOV
Saga Prefecture
Original Assignee
SAGA PREF GOV
Saga Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAGA PREF GOV, Saga Prefecture filed Critical SAGA PREF GOV
Priority to JP2173285A priority Critical patent/JPH0465372A/en
Publication of JPH0465372A publication Critical patent/JPH0465372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)

Abstract

PURPOSE:To obtain high strength porous ceramics constituting of three- dimensionally interlaced crystals and having continuous spaces at the inside of firing a molded body of acicular mullite powder extracted from a fired clay mineral. CONSTITUTION:A clay mineral contg. silicon dioxide and aluminum oxide as principal components is fired and a glass component is leached out with an acid and alkali to obtain acicular mullite powder. This mullite powder or a mixture of this powder or a mixture of this powder with an org. material is molded and this molded body is fired to obtain porous ceramics having freely controlled characteristics or pores.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、1000〜1700°Cの酸化雰囲気[従来
の技術] 従来の多孔質セラミックスの製造方法は、(1)粒度を
調整したセラミックス粉末を無機質あるいは有機質バイ
ンダーを用いて成形後、焼成して製造する方法 (2)セラミックス粉末に気孔形成材として高分子粉末
、有機質繊維、炭素粉末などを混合、成形し焼成により
可燃性物質を完全に消失させてセラミックス内に気孔を
残存させて製造する方法(3)高分子発泡体材料にセラ
ミックス泥漿を含浸したのち、この高分子発泡体材料を
熱処理により消失させて製造させる方法などがある。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to an oxidizing atmosphere at 1000 to 1700°C. (2) Mix ceramic powder with polymer powder, organic fiber, carbon powder, etc. as a pore-forming material, mold it, and then bake it to completely remove combustible substances. (3) A method of manufacturing by impregnating a polymeric foam material with a ceramic slurry and then manufacturing the polymeric foam material by causing it to disappear by heat treatment.

[発明か解決しようとする問題点] 従来の技術で製造されたセラミックス多孔体においては
、個々のセラミックス粒子を結合させる場合、ガラス質
フラックスあるいは粘土質物質が結合剤として用いられ
ているのて多孔体の耐熱性、耐薬品性が低下しやすい、
 多孔体は一般的に強度(曲は強度)が低く、これまで
に報告されている値は200kgf/cm2以下のもの
か多い。
[Problem to be solved by the invention] In ceramic porous bodies manufactured using conventional techniques, when bonding individual ceramic particles, a glassy flux or a clay substance is used as a binder. The body's heat resistance and chemical resistance tend to decrease,
Porous bodies generally have low strength (curved strength), and most of the values reported so far are below 200 kgf/cm2.

また高温下では結合剤の軟化により、気孔率、気孔径が
変化しやすく、さらに粒子間の結合が弱い場合には強度
が著しく低下しやすくなる等の問題かあった。
Furthermore, under high temperatures, the binder softens, which tends to change the porosity and pore diameter, and furthermore, when the bonds between particles are weak, the strength tends to drop significantly.

[問題点を解決するための手段] 本発明者らは、粘土鉱物から焼成、抽出した針状あるい
はウィスカー状ムライトが、1)ガラス相を形成しやす
いアルカリ不純物の含有量か少ないこと、2)空気中て
は約1700℃まで耐熱性かあり形状か変化しにくいこ
と、3)また比較的低熱膨張性であることをこれまでに
明らかにしている(日本セラミ・ノクス協会学術論文誌
、第97号(1989)。 この結晶か焼結により3次
元的に密に絡み合うと、内部に連続した空間か生じるこ
とに着目し、針状ムライトのみで所望の形に成形後、焼
成するといった簡単なプロセスにより高強度でしかも高
温での多孔体特性く例えば気孔率や気孔径など)に優れ
たセラミックスを製造する糸口を見出した。 すなわち
、長さ1〜20μm、太さ(113μmの針状ムライト
のみを金型プレス成形、鋳込成形あるいは押出し成形な
どにより板状あるいはパイプ状あるいはハニカム状に成
形した後、1500〜1700°Cで1〜5時間空気中
で焼成したり、あるいは針状ムライトに可燃性物質、例
えはアクリル樹脂、ポリエチレンなどの高分子粉末また
活性炭、炭素繊維粉末を混合、成形して空気中で可燃性
物質を消失させることにより多孔体特性(気孔率、気孔
分布)が自由に制御され、しかも高強度な多孔質セラミ
ックスを得る方法である。  1500〜1700°C
ではムライト中のA1あるいは81成分か個々の結晶表
面で相互拡散するため、結晶間での焼結か起こりやすく
なる。 したがって、従来の多孔体の製造ては構成粒子
の結合のために結合助剤あるいは焼結助剤が必要であっ
たが、本発明の方法てはその様な助剤がまったく不要と
なる。 またムライトは共有結合性が強い酸化物である
ので、ひとたび結晶間に結合が形成されると界面の結合
か強くなるので針状ムライトで構成された多孔体の強度
は増加するようになる。 また混合した可燃性物質のサ
イズ、添加量により気孔率や気孔径が自由に制御できる
[Means for Solving the Problems] The present inventors have discovered that acicular or whisker-like mullite, which is calcined and extracted from clay minerals, 1) has a low content of alkaline impurities that tend to form a glass phase; 2) It has been clarified so far that it is heat resistant up to about 1700 degrees Celsius in air, does not change its shape easily, and 3) has relatively low thermal expansion (Japan Ceramic Nox Association Academic Journal, No. 97). No. (1989). Focusing on the fact that when these crystals are tightly intertwined three-dimensionally through sintering, a continuous space is created inside, we developed a simple process in which only acicular mullite is molded into the desired shape and then fired. As a result, we have found a way to produce ceramics that have high strength and excellent porous properties (e.g., porosity and pore diameter) at high temperatures. That is, after forming only acicular mullite with a length of 1 to 20 μm and a thickness of 113 μm into a plate, pipe, or honeycomb shape by die press molding, casting molding, or extrusion molding, it is heated at 1500 to 1700°C. Burning in air for 1 to 5 hours, or mixing and molding acicular mullite with polymer powder such as acrylic resin or polyethylene, activated carbon, or carbon fiber powder to release flammable material in air. This is a method in which porous properties (porosity, pore distribution) can be freely controlled by vanishing, and high strength porous ceramics can be obtained.1500-1700°C
In this case, since the A1 or 81 components in mullite interdiffuse on the surfaces of individual crystals, sintering between crystals is likely to occur. Therefore, in the production of conventional porous bodies, binding aids or sintering aids were required to bond the constituent particles, but the method of the present invention does not require such aids at all. Furthermore, since mullite is an oxide with strong covalent bonding properties, once bonds are formed between crystals, the bonds at the interface become stronger, and the strength of the porous body composed of acicular mullite increases. Furthermore, the porosity and pore diameter can be freely controlled by changing the size and amount of the mixed combustible material.

[実施例] 以下に本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

実施例1 針状ムライト粉末的30gを直径60mmの金型に入れ
200kgf/cm2で1次成形する。
Example 1 30 g of acicular mullite powder was placed in a mold with a diameter of 60 mm and subjected to primary molding at 200 kgf/cm2.

あるいはそのf&l〜4ton/cm2で静水圧成形し
て空気中1500〜1700°Cで1〜5時間焼成させ
る。 各条件で得られた多孔体の平均3点曲は強度、気
孔率、気孔径および室温から1400°Cまての平均熱
膨張率を表1に示す。
Alternatively, it is subjected to isostatic pressing at f&l~4 ton/cm2 and fired in air at 1500~1700°C for 1~5 hours. Table 1 shows the average three-point bending strength, porosity, pore diameter, and average coefficient of thermal expansion from room temperature to 1400°C of the porous bodies obtained under each condition.

特に1650°C以上て焼成した多孔体は、空気中10
00〜1650°Cで数10時間再加熱しても多孔体の
特性にほとんど変化かない。
In particular, porous bodies fired at temperatures of 1650°C or higher are
There is almost no change in the properties of the porous material even if it is reheated for several tens of hours at 00 to 1650°C.

実施例2 針状ムライト50gに、バインダー1〜2g、解膠剤3
〜4g、純水12〜13gを添加後、十分混合する。 
このスラリーを石膏型へ鋳込み成形し、長さ50mm、
厚さ約5mm、幅30mmの板状成形体を得た。 乾燥
後空気中1500〜1650°Cで1−5時間焼成させ
た。 各条件で得られた多孔体の平均3点曲は強度、気
孔率、気孔径および室温から1400°Cまての平均熱
膨張率を表2に示す、 針状ムライトか石膏面に対して
幾分配向しやすくなるので、金型成形で得た多孔体に比
へて強度は増した。
Example 2 50 g of acicular mullite, 1 to 2 g of binder, and 3 g of deflocculant
After adding ~4 g and 12 to 13 g of pure water, mix thoroughly.
This slurry was cast into a plaster mold, and the length was 50 mm.
A plate-shaped molded body having a thickness of approximately 5 mm and a width of 30 mm was obtained. After drying, it was fired in air at 1500-1650°C for 1-5 hours. The average three-point curve of the porous material obtained under each condition was determined by the strength, porosity, pore diameter, and average coefficient of thermal expansion from room temperature to 1400°C as shown in Table 2. Because the distribution and orientation became easier, the strength increased compared to the porous body obtained by molding.

実施例3 針状ムライト20gに対して直径10μm、長さ100
〜200μmの炭素繊維粉末10g、メチルセルロース
2g、純水40g添加して十分混合後、板状(5x20
x50mm)に鋳込成形する。 乾燥後1600〜]7
00°Cで2時間焼成する。  1600°Cては平均
3点曲げ強度350〜4.OOkgf/cm” 、気孔
率49〜52%の多孔体が得られるが、気孔径は図1の
ように0.7〜0.8μmと6〜7μmに鋭く分布して
いる。 これは針状ムライトで形成される空孔と炭素繊
維の燃焼と消失により形成される空孔の分布を意味して
いる。 また1700°Cでは平均3点曲は強度480
−530kgf/cm2.気孔率36〜41%の多孔体
が得られるか、気孔径は0.4〜0,6μmと4〜5μ
mに分布している。
Example 3 Diameter: 10 μm, length: 100 μm for 20 g of acicular mullite
After adding 10 g of ~200 μm carbon fiber powder, 2 g of methyl cellulose, and 40 g of pure water and mixing thoroughly, a plate-shaped (5 x 20
x50mm). After drying 1600~]7
Bake at 00°C for 2 hours. At 1600°C, the average 3-point bending strength is 350-4. OOkgf/cm" and a porosity of 49 to 52%, but the pore diameters are sharply distributed between 0.7 to 0.8 μm and 6 to 7 μm as shown in Figure 1. This is acicular mullite. It means the distribution of pores formed by combustion and disappearance of carbon fibers. Also, at 1700°C, the average 3-point bending has a strength of 480
-530kgf/cm2. A porous body with a porosity of 36 to 41% can be obtained, and the pore diameter is 0.4 to 0.6 μm and 4 to 5 μm.
It is distributed in m.

以上のように可燃性物質の添加(サイス、添加量)によ
り針状ムライトからなる多孔体の気孔特性を制御できる
As described above, the pore characteristics of the porous body made of acicular mullite can be controlled by adding the combustible substance (size, amount added).

[表、図の簡単な説明] 表1は金型成形、あるいはその後1〜4ton/cm2
て静水圧成形して1500〜1700°Cて焼成した針
状ムライトの多孔体の平均3点曲げ強度、気孔率、気孔
径および熱膨張率の結果である。 表2は鋳込み成形後
、1500〜1650°Cて焼成して得た多孔体の諸特
性の結果である。
[Brief explanation of tables and figures] Table 1 shows mold forming or subsequent 1 to 4 ton/cm2
These are the results of the average three-point bending strength, porosity, pore diameter, and coefficient of thermal expansion of a porous body of acicular mullite that was hydrostatically formed and fired at 1500 to 1700°C. Table 2 shows the results of various properties of porous bodies obtained by firing at 1500 to 1650°C after casting.

図1は針状ムライトに炭素繊維粉末を添加、混合後、鋳
込成形して1650°Cで焼成した多孔体の細孔分布を
示す。
Figure 1 shows the pore distribution of a porous body obtained by adding carbon fiber powder to acicular mullite, mixing, casting, and firing at 1650°C.

各種多孔体の諸1キ性 表2 鋳込成形−焼成により得た多孔体の詫特性0.7
5    4.4 0.66    4.8 0.62    4.5 手続 補 正 書 (方式) %式% 1、事件の表示 平成2年特許願第173285号 2、発明の名称 高強度多孔質セラミックスの製造方法 Pore dian+eter (A)図1 針状ムラ
イトの細孔分布特性 3、補正をする者 事件との関係 住  所 名  称
Characteristics of various porous bodies Table 2: Characteristics of porous bodies obtained by casting and firing: 0.7
5 4.4 0.66 4.8 0.62 4.5 Procedural amendment (method) % formula % 1. Display of case 1990 Patent Application No. 173285 2. Name of invention Manufacture of high-strength porous ceramics Method Pore dian+eter (A) Figure 1 Pore distribution characteristics of acicular mullite 3, relation to the case of the person making the correction Address name Name

Claims (2)

【特許請求の範囲】[Claims] (1)二酸化ケイ素と酸化アルミニウムを主成分とする
粘土鉱物を焼成後、共存するガラス質成分を酸あるいは
アルカリで溶出することにより得られる針状ムライト粉
末を用い、各種成形後、焼成により針状ムライトのみで
構成されることを特徴とする高強度多孔質セラミックス
の製造方法。
(1) Using acicular mullite powder obtained by sintering clay minerals mainly composed of silicon dioxide and aluminum oxide, and eluting the coexisting glassy components with acid or alkali, the acicular mullite powder is obtained by sintering after various moldings and sintering. A method for producing high-strength porous ceramics characterized by being composed only of mullite.
(2)前記の針状ムライト粉末と燃焼により焼失する有
機質物質を混合後、成形、焼成により、気孔特性を自由
に制御出来ることを特徴とする高強度多孔質セラミック
スの製造方法。
(2) A method for producing high-strength porous ceramics, characterized in that the pore characteristics can be freely controlled by mixing the acicular mullite powder and an organic substance that is burnt out by combustion, followed by molding and firing.
JP2173285A 1990-07-02 1990-07-02 Production of high strength porous ceramics Pending JPH0465372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2173285A JPH0465372A (en) 1990-07-02 1990-07-02 Production of high strength porous ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2173285A JPH0465372A (en) 1990-07-02 1990-07-02 Production of high strength porous ceramics

Publications (1)

Publication Number Publication Date
JPH0465372A true JPH0465372A (en) 1992-03-02

Family

ID=15957617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2173285A Pending JPH0465372A (en) 1990-07-02 1990-07-02 Production of high strength porous ceramics

Country Status (1)

Country Link
JP (1) JPH0465372A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981415A (en) * 1996-07-01 1999-11-09 Ube Industries, Ltd. Ceramic composite material and porous ceramic material
US6306335B1 (en) 1999-08-27 2001-10-23 The Dow Chemical Company Mullite bodies and methods of forming mullite bodies
US6953554B2 (en) 1999-12-23 2005-10-11 Dow Global Technologies Inc. Catalytic devices and method of making said devices
JP2007268463A (en) * 2006-03-31 2007-10-18 Hitachi Zosen Corp Method for manufacturing filter material
US7425297B2 (en) 2002-03-25 2008-09-16 Dow Global Technologies Inc. Method of forming mullite bodies
US8571444B2 (en) 2009-11-26 2013-10-29 Oki Data Corporation Neutralization device, developing device and image forming apparatus
CN107001149A (en) * 2014-05-15 2017-08-01 博韦尔公开有限公司 Without boron aluminum alloy ceramic foam filter

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981415A (en) * 1996-07-01 1999-11-09 Ube Industries, Ltd. Ceramic composite material and porous ceramic material
US6306335B1 (en) 1999-08-27 2001-10-23 The Dow Chemical Company Mullite bodies and methods of forming mullite bodies
JP2003508329A (en) * 1999-08-27 2003-03-04 ザ ダウ ケミカル カンパニー Mullite body and method for forming mullite body
US6596665B2 (en) 1999-08-27 2003-07-22 Dow Global Technologies Inc. Mullite bodies and methods of forming mullite bodies
US6953554B2 (en) 1999-12-23 2005-10-11 Dow Global Technologies Inc. Catalytic devices and method of making said devices
US7425297B2 (en) 2002-03-25 2008-09-16 Dow Global Technologies Inc. Method of forming mullite bodies
US7947620B2 (en) 2002-03-25 2011-05-24 Dow Global Technologies Llc Mullite bodies and methods of forming mullite bodies
JP2014031317A (en) * 2002-03-25 2014-02-20 Dow Global Technologies Llc Mullite bodies and methods of forming mullite bodies
JP2007268463A (en) * 2006-03-31 2007-10-18 Hitachi Zosen Corp Method for manufacturing filter material
US8571444B2 (en) 2009-11-26 2013-10-29 Oki Data Corporation Neutralization device, developing device and image forming apparatus
CN107001149A (en) * 2014-05-15 2017-08-01 博韦尔公开有限公司 Without boron aluminum alloy ceramic foam filter
CN107001149B (en) * 2014-05-15 2021-07-13 博韦尔公开有限公司 Boron-free aluminum alloy ceramic foam filter

Similar Documents

Publication Publication Date Title
US20080312064A1 (en) Porous, Fired Ceramic Foam
CN101948316B (en) Preparation method of ceramic filtration supporter
Li et al. Fabrication of porous silicon carbide ceramics at low temperature using aluminum dihydrogen phosphate as binder
JP2000510807A (en) Stabilization of sintered foam and production of open-cell sintered foam
JP2010527897A (en) Cordierite fiber substrate and method for forming the same
JP2001261463A (en) Ceramic porous body and its production process
JP4514274B2 (en) Method for producing porous ceramic structure
JPH04139079A (en) Production of porous ceramics
JPH0465372A (en) Production of high strength porous ceramics
US4859525A (en) Method for low temperature processing of lightweight SiC/SiO2 composites and products
JPH04124073A (en) Zirconia-based complex refractory and heat-insulating material
JPH0288452A (en) Heat-resistant inorganic compact
JPH0236547B2 (en)
JP2651170B2 (en) Ceramics porous body
JP2506503B2 (en) Multilayer ceramic porous body
JP2001278672A (en) Method for manufacturing ceramic material
JPH06166579A (en) Production of lightweight cellular building material produced by using coal ash as main raw material
JPH03150276A (en) Multilayered ceramic material and production thereof
JP3816376B2 (en) Method for producing lightweight porous sintered body
JPH02199076A (en) Production of porous ceramic material
Wang et al. Forming of large thin walled fused silica shapes by gelcasting
KR20240100306A (en) Slurry for manufacturing a ceramic porous body and a method for manufacturing a ceramic porous body using the same
JPH0236549B2 (en)
JPH0259479A (en) Method for lightening fly-ash formed material
JPH04104952A (en) Zirconia-substance complex refractory composition