JPH0465103B2 - - Google Patents

Info

Publication number
JPH0465103B2
JPH0465103B2 JP58031523A JP3152383A JPH0465103B2 JP H0465103 B2 JPH0465103 B2 JP H0465103B2 JP 58031523 A JP58031523 A JP 58031523A JP 3152383 A JP3152383 A JP 3152383A JP H0465103 B2 JPH0465103 B2 JP H0465103B2
Authority
JP
Japan
Prior art keywords
anhydride
weight
acid
polyester resin
polycarbonate resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58031523A
Other languages
Japanese (ja)
Other versions
JPS59157146A (en
Inventor
Masahiko Ozaki
Katsuo Take
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP3152383A priority Critical patent/JPS59157146A/en
Publication of JPS59157146A publication Critical patent/JPS59157146A/en
Publication of JPH0465103B2 publication Critical patent/JPH0465103B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はポリ゚ステル暹脂ずポリカヌボネヌト
暹脂ずの安定化された組成物に関するものであ
り、曎に詳しくは組成物補造におけるストランド
切れがなく、か぀透明性の優れた成圢品を䞎える
熱可塑性暹脂組成物に関する。 ポリ゚チレンテレフタレヌトは透明性、衚面光
沢、ガスバリダヌ性、保銙性、耐薬品性等の優れ
た特性を有し、非垞にガラスに近い倖芳を有する
こずから、食品甚、化粧品甚、医療甚等の容噚や
フむルム等に倚甚されおいる。しかしながら、そ
の構造䞊、結晶性が倧で、しかも結晶化枩床が高
いため、パむプ、ロツド、シヌト等の成圢物に成
圢した堎合、耐衝撃性、匕匵匷床、剛性、耐熱性
等が劣り、充分満足する実甚性胜が埗られない欠
点を有しおいる。したが぀お、ブロヌ成圢などに
より高倍率の延䌞を行う方法でこれ等の物性䞍足
を補぀おいるのが実状である。 ずころで、成圢品の圢状によ぀おは局郚的に䜎
延䌞倍率の箇所を生じたり、本質的に耐熱性が䞍
足しおいるため䜿甚䞭に著しい倉圢を生ずる等の
欠点を有しおおり、䜿甚条件に著しい制玄があ぀
た。埓来、ポリ゚チレンテレフタレヌトの欠点を
解決するため透明性、耐熱性、耐衝撃性、匕匵匷
床などの優れた非晶性ポリマヌであるポリカヌボ
ネヌト暹脂をブレンドした組成物も特開昭52−
111956号公報により公知である。しかしながら、
酞無氎物の配合により該組成物から埗られた成圢
品はポリ゚チレンテレフタレヌトずポリカヌボネ
ヌト暹脂の優れた特長である透明性が損われるほ
か、組成物補造時にストランド切れを生じ易い等
の欠点を有しおいる。 本発明者等はポリ゚チレンテレフタレヌトやポ
リカヌボネヌト暹脂の持぀優れた透明性を極力保
持し぀぀ポリ゚チレンテレフタレヌトの䞊蚘欠点
を解決するべく鋭意研究の結果、本発明に到達し
た。すなわち、本発明ぱチレンテレフタレヌト
繰返し単䜍を䞻䜓ずするポリ゚ステル暹脂(A)ずポ
リカヌボネヌト暹脂(B)およびカルボン酞たたはそ
の無氎物(C)を必須成分ずする熱可塑性暹脂組成物
であ぀お、成分(A)ず成分(B)ずの比が(A)(B)30〜
9570〜重量比であり、か぀成分(C)が成分(A)ず
成分(B)の合蚈100重量郚に察し0.005重量郚以䞊
0.05重量郚未満であるこずを特城ずする熱可塑性
暹脂組成物である。 本発明による組成物は溶融状態における安定性
がすぐれ、か぀加工性、物理的、機械的性質等の
すぐれた成圢甚熱可塑性暹脂組成物を提䟛するこ
ずができる。特に組成物のチツプ化における抌出
成圢時のストランド切れが防止できるこず、埗ら
れた成圢品の透明性がすぐれるこずは工業化にお
ける倧きな利点である。 本発明においお甚いられるカルボン酞たたはそ
の無氎物の䜜甚は十分に解明されおいないが、溶
融状態におけるポリ゚ステル暹脂の分解を抑制す
るためず考えられる。しかしながら、極めお少量
の添加で顕著な効果を発揮するこずはいずれにし
おも党く驚いたこずである。 本発明においお甚いられるポリ゚ステル暹脂ず
しおは、゚チレンテレフタレヌト繰返し単䜍を䞻
䜓ずしたポリ゚ステル暹脂であり、ポリ゚チレン
テレフタレヌトのみならず、酞成分ずしおむ゜フ
タル酞、−オキシ安息銙酞、ゞプニルメタン
ゞカルボン酞、アゞピン酞、セバシン酞、ナフタ
レンゞカルボン酞等、あるいはグリコヌル成分ず
しおプロピレングリコヌル、テトラメチレングリ
コヌル、ヘキサメチレングリコヌル、ネオペンチ
ルグリコヌル、ゞ゚チレングリコヌル、シクロヘ
キサンゞメタノヌル、ビスプノヌル等を共重
合した゚チレンテレフタレヌト系ポリ゚ステル暹
脂が挙げられる。共重合ポリ゚ステルの具䜓䟋ず
しおはポリ゚チレンテレフタレヌト・む゜フタレ
ヌト、ポリ゚チレンテレフタレヌト・アゞペヌ
ト、ポリ゚チレンテレフタレヌト・セバケヌト、
ポリ゚チレンテレフタレヌト・ベチレンテレフタ
レヌト等が䟋瀺される。たた成圢性を損わない範
囲内で官胜性以䞊の゚ステル圢成性成分を共重
合したものであ぀おもよい。しかし、゚チレンテ
レフタレヌト繰返し単䜍が70モル以䞊が奜たし
く、曎には85モル以䞊のポリ゚ステル暹脂が特
に奜たしい。 たた、ポリ゚チレンテレフタレヌトず他のポリ
゚ステルずのブレンドにより党䜓ずしお゚チレン
テレフタレヌトが䞻䜓ずなる耇数のポリ゚ステル
暹脂の混合物であ぀おもよい。該ポリ゚ステル暹
脂はプノヌルテトラクロロ゚タン重
量比䞭30℃で求めた固有粘床が通垞0.4以䞊、
曎には0.5以䞊であるこずが特に奜たしく、融点
は200℃以䞊、特に240℃以䞊のものが奜たしい。
たた、該ポリ゚ステル暹脂はカルボキシル基含量
が通垞40圓量トン以䞋であり、特に奜たしくは
30圓量トン以䞋である。 たた、本発明においお甚いられるポリカヌボネ
ヌト暹脂ずしおは、4′−ゞオキシゞアリヌル
アルカン系ポリカヌボネヌト暹脂であり、特に
4′−ゞオキシゞプニル−−プロパン
通称ビスプノヌルのポリカヌボネヌトが
特に奜たしい。該ポリカヌボネヌト暹脂は任意の
方法によ぀お補造されるが、ホスゲン法たたぱ
ステル亀換法によ぀お補造されたものが奜たし
い。たずえば4′−ゞオキシゞプニル−
−プロパンのポリカヌボネヌト暹脂は4′−
ゞオキシゞプニル−−プロパンをゞオキ
シ化合物ずしお䜿甚し、苛性アルカリ氎溶液およ
び溶剀存圚䞋にホスゲンを吹蟌んで補造するホス
ゲン法、たたは4′−ゞオキシゞプニル−
−プロパンず炭酞ゞ゚ステルずを觊媒存圚
䞋に゚ステル亀換させお補造する゚ステル亀換法
によ぀お補造される。なお、ポリカヌボネヌト暹
脂の分子量は通垞15000皋床以䞊であるこずが奜
たしい。 䞊蚘ポリ゚ステル暹脂ずポリカヌボネヌト暹脂
ずの混合割合はポリ゚ステル暹脂30〜95重量、
ポリカヌボネヌト暹脂70〜重量の割合であ
る。この範囲においお、ポリ゚ステル暹脂単独系
より熱安定性や寞法安定性にすぐれ、か぀機械的
特性にすぐれた成圢品を埗るこずができる。 ポリカヌボネヌト暹脂が重量未満では成圢
品が熱倉圢し易く、寞法安定性、耐衝撃性も劣る
欠点を生じる。䞀方70重量を越えるずポリ゚ス
テル暹脂のすぐれた物理的、機械的性質が倱わ
れ、特に剛性率の䜎䞋が著しい。特に奜たしい配
合割合はポリ゚ステル暹脂35〜80重量、ポリカ
ヌボネヌト暹脂20〜65重量である。 本発明においおは、ポリ゚ステル暹脂、ポリカ
ヌボネヌト暹脂に加えおカルボン酞たたはその無
氎物を配合するこずが重芁である。甚いられるカ
ルボン酞たたはその無氎物ずしおは、ステアリン
酞、テレフタヌル酞のような脂肪族たたは芳銙族
のカルボン酞であ぀おもよいが、通垞酞無氎物が
奜たしい。酞無氎物の具䜓䟋ずしおはカプロン酞
無氎物、ラりリン酞無氎物、ステアリン酞無氎
物、無氎安息銙酞、ヘキサヒドロ無氎フタル酞、
無氎フタル酞、−無氎ナフタル酞、無氎ト
リメリツト酞、無氎ピロメリツト酞、シクロペン
タンテトラカルボン酞無氎物、グリセリントリメ
リツト酞無氎物、゚チレングリコヌルビストリメ
リツト酞無氎物、ベンゟプノンテトラカルボン
酞ゞ無氎物、無氎−ドデシルコハク酞、無氎マ
レむン酞、無氎フマル酞のような脂肪族たたは芳
銙族のカルボン酞の無氎物、ポリセバシン酞無氎
物、ポリテレフタル酞無氎物のようなポリカルボ
ン酞無氎物、トリメリツト酞無氎物ず脂肪族モノ
カルボンずの酞無氎物等が䟋瀺される。特に奜た
しい酞無氎物は無氎ピロメリツト酞のような分子
䞭に少くずも個のカルボン酞基を有するカルボ
ン酞の無氎物である。該カルボン酞たたはその無
氎物の配合量はポリ゚ステル暹脂ずポリカヌボネ
ヌト暹脂の合蚈100重量郚に察し、通垞0.005〜
0.05重量郚である。その配合量が0.005重量郚未
満ではポリ゚ステル暹脂の分解抑制効果が䞍十分
ずなり、成圢品の透明性を損なうほか察衝撃性の
改良効果も埗られなくなる。 䞀方、0.05重量郚以䞊ではチツプ化におけるス
トランド切れが倚発するほか、透明性も䜎䞋する
欠点を生じる。 䞊蚘䞡暹脂やカルボン酞たたはその無氎物の混
合方法ずしおは、たずえばポリ゚ステルの重合終
了の前埌に溶融状態のポリ゚ステル暹脂にカルボ
ン酞およびたたはその無氎物を添加し、均䞀に
混合した埌に粉末状、ペレツト状たたは溶融状態
のポリカヌボネヌト暹脂を添加しお溶融混合する
方法、ポリ゚ステル暹脂ずポリカヌボネヌト暹脂
をそれぞれ粉末状たたはペレツト状で混合し、曎
にこれにカルボン酞およびたたは酞無氎物を添
加した埌、溶融混合する方法等が適圓であるが、
これらに限定されおされるものではない。いずれ
の混合方法による堎合であ぀おもポリ゚ステル暹
脂ずカルボン酞およびたたは酞無氎物の接觊す
る枩床は通垞270〜290℃であり、奜たしくは275
〜285℃の範囲である。たた、ポリ゚ステル暹脂
ずポリカヌボネヌト暹脂の溶融混緎時間は通垞
〜20分であり、奜たしくは〜10分ずし、溶融混
緎機から速やかに抌出し、ペレツト状に成圢する
かたたは混緎機からそのたた盎接射出成圢機や抌
出成圢機に送り蟌むこずが奜たしい。 たた本発明の組成物には、曎に必芁に応じお各
皮充填剀、たずえば金属粉、珪そう土、炭酞カル
シりム、カオリン、ワラストナむト、タルク、ク
レヌ、マむカ、ガラス粉、䞭空シリカ、発泡シリ
カ、ガラスビヌズ、カヌボンブラツク、朚粉等の
粉末たたは粒状充填剀、ガラス繊維、炭玠繊維、
アラミド繊維、りむスカヌ、金属炭化物繊維のよ
うな繊維状匷化剀、熱安定剀、光安定剀のような
安定剀、着色剀、難燃剀、結晶化栞剀、最滑剀、
離型剀、倚官胜性架橋剀、ゎム状補匷剀、他の熱
可塑性暹脂等を添加するこずもできる。 以䞋、実斜䟋によ぀お本発明を説明するが、実
斜䟋䞭の郚はいずれも重量郚を意味する。 実斜䟋  ポリ゚チレンテレフタレヌトη0.6、カル
ボキシル基含量25圓量トン以䞋PETず略
蚘ずポリカヌボネヌト暹脂䞉菱瓊斯化孊瀟ビ
スプノヌルのポリカヌボネヌト分子量24000
以䞋PCず略蚘をそれぞれ130℃、mmHgにお
19時間枛圧也燥した。こうしお也燥したPET60
郚ずPC40郚に察し無氎ピロメリツト酞半井化
孊薬品瀟、Extra Pure Reagentを第衚に瀺
す割合で添加し、十分混合した。 その埌、混合物を䞭倮機械補䜜所補抌出機
VSK−40にお、ダルメヌゞスクリナヌを䜿甚
し、シリンダヌ枩床280℃、シリンダ内の平均滞
留時間玄分ずしお溶融混緎し、盎埄mmのモノ
フむラメント状に抌出した。ストランドの圢状は
良奜であり、氎䞭で急冷した埌切断しおペレツト
を埗た。 かくしお埗たペレツトを130℃、mmHgの枛圧
䞋で15時間也燥した埌、日粟暹脂工業瀟射出成型
機FS−75を甚いお、金型枩床30℃ずし、
ASTM −638厚さ1/8むンチ甚匕匵詊隓片
を成圢した。埗られた詊隓片の透明床ず霞床曇
䟡は、東掋粟機補䜜所補HAZEMETER−を
甚い、JIS −6714−1977に準拠しお枬定し、第
衚に瀺す結果を埗た。 なお、比范䟋ずしおPET単独成圢品および
PETずPCの者混合成圢品、無氎ピロメツト酞
を倚量に配合した堎合の比范䟋デヌトも瀺した。
その際ストランドの埗られない堎合は塊りを粉砕
しお成圢に䟛した。
The present invention relates to a stabilized composition of a polyester resin and a polycarbonate resin, and more particularly to a thermoplastic resin composition that does not cause strand breakage in the production of the composition and provides molded articles with excellent transparency. Polyethylene terephthalate has excellent properties such as transparency, surface gloss, gas barrier properties, fragrance retention, and chemical resistance, and has an appearance very similar to glass, so it is used for food, cosmetics, medical, etc. It is widely used for containers, films, etc. However, due to its structure, it is highly crystalline and has a high crystallization temperature, so when molded into pipes, rods, sheets, etc., it has poor impact resistance, tensile strength, rigidity, heat resistance, etc. It has the disadvantage that satisfactory practical performance cannot be obtained. Therefore, the current situation is to compensate for the lack of these physical properties by stretching at a high magnification such as by blow molding. However, depending on the shape of the molded product, there may be localized areas with low stretching ratios, and the inherent lack of heat resistance may cause significant deformation during use. There were significant restrictions on the conditions. Conventionally, in order to solve the disadvantages of polyethylene terephthalate, a composition blended with polycarbonate resin, an amorphous polymer with excellent transparency, heat resistance, impact resistance, and tensile strength, was also developed.
It is known from the publication No. 111956. however,
Due to the combination of acid anhydride, the molded products obtained from the composition lose the transparency, which is an excellent feature of polyethylene terephthalate and polycarbonate resins, and also have drawbacks such as the tendency to break the strands during production of the composition. There is. The present inventors have arrived at the present invention as a result of intensive research aimed at solving the above-mentioned drawbacks of polyethylene terephthalate while maintaining as much as possible the excellent transparency of polyethylene terephthalate and polycarbonate resins. That is, the present invention provides a thermoplastic resin composition containing as essential components a polyester resin (A) mainly containing ethylene terephthalate repeating units, a polycarbonate resin (B), and a carboxylic acid or its anhydride (C), The ratio of A) and component (B) is (A):(B)=30~
The weight ratio is 95:70 to 5, and component (C) is 0.005 parts by weight or more based on the total of 100 parts by weight of components (A) and (B).
A thermoplastic resin composition characterized in that the amount is less than 0.05 part by weight. The composition according to the present invention has excellent stability in a molten state, and can provide a thermoplastic resin composition for molding that has excellent processability, physical properties, mechanical properties, and the like. In particular, the ability to prevent strand breakage during extrusion molding when chipping the composition and the excellent transparency of the resulting molded products are major advantages in industrialization. Although the effect of the carboxylic acid or its anhydride used in the present invention has not been fully elucidated, it is thought that it suppresses the decomposition of the polyester resin in the molten state. However, it is completely surprising that a very small amount of addition can produce a remarkable effect. The polyester resin used in the present invention is a polyester resin mainly containing ethylene terephthalate repeating units, and includes not only polyethylene terephthalate but also acid components such as isophthalic acid, p-oxybenzoic acid, diphenylmethanedicarboxylic acid, adipic acid, Examples include ethylene terephthalate polyester resins copolymerized with sebacic acid, naphthalene dicarboxylic acid, etc., or propylene glycol, tetramethylene glycol, hexamethylene glycol, neopentyl glycol, diethylene glycol, cyclohexanedimethanol, bisphenol A, etc. as a glycol component. Specific examples of copolymerized polyesters include polyethylene terephthalate isophthalate, polyethylene terephthalate adipate, polyethylene terephthalate sebacate,
Examples include polyethylene terephthalate and betylene terephthalate. It may also be a copolymer of trifunctional or higher functional ester-forming components within a range that does not impair moldability. However, polyester resins containing ethylene terephthalate repeating units preferably have a content of 70 mol% or more, and particularly preferably 85 mol% or more. Alternatively, it may be a mixture of a plurality of polyester resins, the main component of which is ethylene terephthalate, by blending polyethylene terephthalate with another polyester. The polyester resin usually has an intrinsic viscosity of 0.4 or more when measured at 30°C in phenol/tetrachloroethane (6/4 weight ratio).
Further, it is particularly preferably 0.5 or more, and the melting point is preferably 200°C or more, particularly 240°C or more.
Further, the carboxyl group content of the polyester resin is usually 40 equivalents/ton or less, particularly preferably
30 equivalents/ton or less. In addition, the polycarbonate resin used in the present invention is a 4,4'-dioxydiarylalkane-based polycarbonate resin, particularly 4,4'-dioxydiphenyl-2,2-propane (commonly known as bisphenol A). Polycarbonate is particularly preferred. Although the polycarbonate resin can be produced by any method, it is preferably produced by the phosgene method or the transesterification method. For example, 4,4'-dioxydiphenyl-2,
2-propane polycarbonate resin is 4,4'-
The phosgene method uses dioxydiphenyl-2,2-propane as a dioxy compound and blows phosgene into it in the presence of an aqueous caustic alkali solution and a solvent, or 4,4'-dioxydiphenyl-
It is produced by a transesterification method in which 2,2-propane and diester carbonate are transesterified in the presence of a catalyst. Note that the molecular weight of the polycarbonate resin is usually preferably about 15,000 or more. The mixing ratio of the above polyester resin and polycarbonate resin is 30 to 95% by weight of polyester resin,
The proportion of polycarbonate resin is 70 to 5% by weight. Within this range, it is possible to obtain a molded article with superior thermal stability and dimensional stability as well as excellent mechanical properties compared to a polyester resin alone. If the polycarbonate resin content is less than 5% by weight, the molded product is likely to be thermally deformed and has the disadvantage of poor dimensional stability and impact resistance. On the other hand, if it exceeds 70% by weight, the excellent physical and mechanical properties of the polyester resin will be lost, and in particular, the decrease in rigidity will be significant. Particularly preferred blending ratios are 35 to 80% by weight of polyester resin and 20 to 65% by weight of polycarbonate resin. In the present invention, it is important to blend carboxylic acid or its anhydride in addition to the polyester resin and polycarbonate resin. The carboxylic acid or its anhydride used may be an aliphatic or aromatic carboxylic acid such as stearic acid or terephthalic acid, but acid anhydrides are usually preferred. Specific examples of acid anhydrides include caproic anhydride, lauric anhydride, stearic anhydride, benzoic anhydride, hexahydrophthalic anhydride,
Phthalic anhydride, 1,8-naphthalic anhydride, trimellitic anhydride, pyromellitic anhydride, cyclopentanetetracarboxylic anhydride, glycerol trimellitic anhydride, ethylene glycol bistrimellitic anhydride, benzophenonetetracarboxylic acid anhydride anhydrides, anhydrides of aliphatic or aromatic carboxylic acids such as n-dodecylsuccinic anhydride, maleic anhydride, fumaric anhydride; polycarboxylic anhydrides such as polysebacic anhydride and polyterephthalic anhydride; , an acid anhydride of trimellitic anhydride and an aliphatic monocarboxylic acid, and the like. Particularly preferred acid anhydrides are those of carboxylic acids having at least four carboxylic acid groups in the molecule, such as pyromellitic anhydride. The amount of the carboxylic acid or its anhydride is usually 0.005 to 100 parts by weight in total of the polyester resin and polycarbonate resin.
It is 0.05 part by weight. If the amount is less than 0.005 parts by weight, the effect of suppressing the decomposition of the polyester resin will be insufficient, the transparency of the molded article will be impaired, and the effect of improving impact resistance will not be obtained. On the other hand, if it exceeds 0.05 part by weight, strand breakage occurs frequently during chipping, and transparency also decreases. As a method for mixing the above resins and carboxylic acid or its anhydride, for example, carboxylic acid and/or its anhydride is added to the molten polyester resin before and after the completion of polyester polymerization, mixed uniformly, and then powdered. A method of adding and melt-mixing polycarbonate resin in the form of pellets or melt, or mixing polyester resin and polycarbonate resin in powder or pellet form, adding carboxylic acid and/or acid anhydride to this, and then melting. The method of mixing is appropriate, but
It is not limited to these. No matter which mixing method is used, the temperature at which the polyester resin and the carboxylic acid and/or acid anhydride come into contact is usually 270 to 290°C, preferably 275°C.
~285℃ range. In addition, the melt-kneading time of polyester resin and polycarbonate resin is usually 1
20 minutes, preferably 2 to 10 minutes, and it is preferably immediately extruded from a melt kneader and molded into pellets, or sent directly from the kneader to an injection molding machine or an extrusion molding machine. In addition, the composition of the present invention may further include various fillers as necessary, such as metal powder, diatomaceous earth, calcium carbonate, kaolin, wollastonite, talc, clay, mica, glass powder, hollow silica, foamed silica, Glass beads, carbon black, powder or granular fillers such as wood powder, glass fiber, carbon fiber,
Fibrous reinforcements such as aramid fibers, whiskers, metal carbide fibers, stabilizers such as heat stabilizers and light stabilizers, colorants, flame retardants, crystallization nucleating agents, lubricants,
Mold release agents, polyfunctional crosslinking agents, rubbery reinforcing agents, other thermoplastic resins, etc. can also be added. The present invention will be explained below with reference to Examples, and all parts in the Examples mean parts by weight. Example 1 Polyethylene terephthalate (η = 0.6, carboxyl group content 25 equivalents/ton) (hereinafter abbreviated as PET) and polycarbonate resin (Mitsubishi Gas Chemical Co., Ltd. bisphenol A polycarbonate molecular weight 24000)
(hereinafter abbreviated as PC) at 130℃ and 2mmHg.
It was dried under reduced pressure for 19 hours. PET60 dried in this way
Pyromellitic anhydride (Hani Chemical Co., Ltd., Extra Pure Reagent) was added to 1 part and 40 parts of PC in the proportions shown in Table 1, and the mixture was thoroughly mixed. Thereafter, the mixture was melt-kneaded in an extruder (VSK-40) manufactured by Chuo Kikai Seisakusho using a Dalmage screw at a cylinder temperature of 280°C and an average residence time of about 2 minutes to form a monofilament with a diameter of 3 mm. It was extruded into a shape. The shape of the strand was good, and after quenching in water, it was cut to obtain pellets. After drying the pellets thus obtained at 130°C under a reduced pressure of 2 mmHg for 15 hours, the mold temperature was set to 30°C using a Nissei Jushi Kogyo injection molding machine (FS-75).
Tensile test specimens for ASTM D-638 (1/8 inch thick) were molded. The transparency and haze value of the obtained test piece were measured using HAZEMETER-S manufactured by Toyo Seiki Seisakusho in accordance with JIS K-6714-1977, and the results shown in Table 1 were obtained. In addition, as comparative examples, PET single molded products and
Comparative example dates for a binary molded product of PET and PC and a case where a large amount of pyromethic anhydride is blended are also shown.
If a strand could not be obtained at that time, the lump was crushed and used for molding.

【衚】 その結果、本発明による組成物は操業性もよ
く、か぀透明床が70以䞊、曇䟡が70以䞋の透
明性のすぐれた成圢品が埗られた。 実斜䟋  PCの分子量を倉え、か぀無氎ピロメリツト酞
添加量を0.03PHRずする以倖は実斜䟋ず同条
件にお溶融抌出しず射出成圢し、埗られた成圢品
の耐衝撃性、透明性、熱倉圢枩床ASTM
D648、荷重4.6Kgcm2を枬定し、結果を第衚
に瀺した。
[Table] As a result, the composition according to the present invention had good operability, and a molded article with excellent transparency, which had a transparency of 70% or more and a haze value of 70% or less, was obtained. Example 2 Melt extrusion and injection molding were carried out under the same conditions as in Example 1 except that the molecular weight of PC was changed and the amount of pyromellitic anhydride added was 0.03 PHR, and the impact resistance, transparency, Heat Distortion Temperature (ASTM
D648, load 4.6Kg/cm 2 ) was measured, and the results are shown in Table 2.

【衚】 その結果、本発明による組成物がすぐれた耐衝
撃性ず熱倉圢枩床を瀺した。 実斜䟋  PETずPCの組成比を倉化する以倖は実斜䟋
ず同条件にお溶融抌出しおよび射出成圢し、埗ら
れた成圢品の特性を評䟡した。その結果を第衚
に瀺した。
[Table] As a result, the composition according to the present invention exhibited excellent impact resistance and heat distortion temperature. Example 3 Example 1 except for changing the composition ratio of PET and PC
Melt extrusion and injection molding were carried out under the same conditions as above, and the properties of the obtained molded products were evaluated. The results are shown in Table 3.

【衚】 本発明による組成物が操業性もよく、しかも耐
衝撃性、熱倉圢枩床、匕匵匟性率等の物性のバラ
ンスしたすぐれた成圢品を䞎えた。 PCが過少の堎合耐衝撃性、熱倉圢枩床が䞍十
分であり、たた過倚の堎合剛性が䜎䞋する欠点を
生じる。 実斜䟋  実斜䟋で䜿甚したPETずPCの6040重量比
100郚に無氎ピロメリツト酞0.03郚を加え、実斜
䟋ず同様にしお厚さmm、瞊100mm、暪100mmの
平板をフむルムゲヌトで射出成圢した。たた
PET単独に぀いおも同様にしお平板を成圢した。 埗られた平板に぀いお、23℃にお萜球衝撃詊隓
を行い、第衚に瀺す結果を埗た。
[Table] The composition according to the present invention had good operability and gave molded articles with excellent balance of physical properties such as impact resistance, heat distortion temperature, and tensile modulus. If the amount of PC is too small, the impact resistance and heat distortion temperature will be insufficient, and if it is too large, the rigidity will be reduced. Example 4 60/40 weight ratio of PET and PC used in Example 1
0.03 part of pyromellitic anhydride was added to 100 parts, and a flat plate of 3 mm thickness, 100 mm length, and 100 mm width was injection molded using a film gate in the same manner as in Example 1. Also
A flat plate was formed using PET alone in the same manner. A falling ball impact test was conducted on the obtained flat plate at 23°C, and the results shown in Table 4 were obtained.

【衚】 萜球衝撃匷床詊隓法 䞀蟺の長さが80mmの正方圢で、深さ35.5mmの穎
のあいた固定板䞊に、詊料を固定板ず同じ圢の穎
のあいた厚mmのゎム板ず鉄板ではさみ、党䜓を
本のボルトで固定した。䞀方cm間隔に高さが
倉えられる球支持ピン䞊に所定重量の球を眮いた
球支持ガむドを詊料䞊にのせた。球支持ピンを匕
き抜くず、球が萜䞋し、詊料䞭倮郚に衝撃を䞎え
る。cm、10cm  ずcm間隔に高さを倉えお、
萜球を繰り返し、詊料に初めお裂け目が生じる高
さをも぀お、萜球衝撃高さずした。 そしお、次匏で萜球衝撃匷床を蚈算した。 萜球衝撃匷床Kg・cm球の重量Kg×萜球衝
撃高さcm 枬定は回行ない、その平均倀で衚瀺した。 実斜䟋  実斜䟋で䜜成した平板皮に぀き、100℃沞
氎凊理による透明床の経時倉化を枬定し、結果を
第衚に瀺した。
[Table] Falling ball impact strength test method A sample was placed on a fixed plate with a square shape of 80 mm on a side and a hole 35.5 mm deep, and a 3 mm thick rubber plate with holes of the same shape as the fixed plate and a steel plate. I fixed the whole thing with scissors and 4 bolts. On the other hand, a ball support guide in which a ball of a predetermined weight was placed on a ball support pin whose height could be changed at 5 cm intervals was placed on the sample. When the ball support pin is pulled out, the ball falls and impacts the center of the sample. Change the height at 5cm intervals, such as 5cm, 10cm...
The height at which a crack appeared for the first time in the sample after repeatedly falling the ball was defined as the falling ball impact height. Then, the falling ball impact strength was calculated using the following formula. Falling ball impact strength (Kg·cm) = Weight of ball (Kg) x Falling ball impact height (cm) The measurement was performed 5 times and the average value was expressed. Example 5 The two types of flat plates prepared in Example 4 were subjected to boiling water treatment at 100°C to measure changes in transparency over time, and the results are shown in Table 5.

【衚】 本発明品の透明性は、100℃の沞氎凊理を斜し
おも、半透明性は長く維持され、PETの劂く急
激に倱透するこずはない。 実斜䟋  分子量22000のPCを䜿甚し、無氎ピロメリツト
é…žã‚’0.03PHR添加する以倖は実斜䟋ず同条件
にお溶融抌出しおよび射出成圢し、ASTM −
638厚さ1/8むンチ甚匕匵詊隓片を埗た。 埗られた匕匵詊隓片を100℃のオヌブン䞭で
時間熱凊理しお長さ方向の寞法倉化率を枬定し、
第衚に瀺す結果を埗た。なお、比范䟋ずしお
PET単独の詊隓片も成圢し、比范テストした。
[Table] Regarding the transparency of the product of the present invention, even when subjected to boiling water treatment at 100°C, the translucency is maintained for a long time, and unlike PET, it does not suddenly devitrify. Example 6 Using PC with a molecular weight of 22,000, melt extrusion and injection molding were carried out under the same conditions as in Example 2 except that 0.03 PHR of pyromellitic anhydride was added, and ASTM D-
A tensile test piece for 638 (1/8 inch thick) was obtained. The obtained tensile test piece was placed in an oven at 100℃ for 2
Measure the dimensional change rate in the longitudinal direction after time heat treatment,
The results shown in Table 6 were obtained. In addition, as a comparative example
Specimens of PET alone were also molded and tested for comparison.

【衚】 本発明の組成物より埗られた成圢品は、埌収瞮
が極めお小さいため、成圢品を100℃付近で䜿甚
しおも倉圢そりし難いこずが明らかである。
[Table] It is clear that the molded articles obtained from the compositions of the present invention have extremely small post-shrinkage, and therefore are difficult to deform (warp) even when used at around 100°C.

Claims (1)

【特蚱請求の範囲】  ゚チレンテレフタレヌト繰返し単䜍を䞻䜓ず
するポリ゚ステル暹脂(A)ずポリカヌボネヌト暹脂
(B)およびカルボン酞たたはその無氎物(C)を必須成
分ずする熱可塑性暹脂組成物であ぀お、成分(A)ず
成分(B)ずの比が(A)(B)30〜9570〜重量比で
あり、か぀成分(C)が成分(A)ず成分(B)の合蚈100重
量郚に察し0.005重量郚以䞊0.05重量郚未満であ
るこずを特城ずする熱可塑性暹脂組成物。  カルボン酞たたはその無氎物がポリカルボン
酞無氎物である特蚱請求の範囲第項蚘茉の熱可
塑性暹脂組成物。
[Claims] 1. Polyester resin (A) containing ethylene terephthalate repeating units as a main component and polycarbonate resin
A thermoplastic resin composition comprising (B) and a carboxylic acid or its anhydride (C) as essential components, wherein the ratio of component (A) to component (B) is (A):(B) = 30 to A thermoplastic resin having a weight ratio of 95:70 to 5 and containing component (C) in an amount of 0.005 part by weight or more and less than 0.05 part by weight based on a total of 100 parts by weight of components (A) and (B). Composition. 2. The thermoplastic resin composition according to claim 1, wherein the carboxylic acid or its anhydride is a polycarboxylic anhydride.
JP3152383A 1983-02-26 1983-02-26 Thermoplastic resin composition Granted JPS59157146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3152383A JPS59157146A (en) 1983-02-26 1983-02-26 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3152383A JPS59157146A (en) 1983-02-26 1983-02-26 Thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPS59157146A JPS59157146A (en) 1984-09-06
JPH0465103B2 true JPH0465103B2 (en) 1992-10-19

Family

ID=12333545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3152383A Granted JPS59157146A (en) 1983-02-26 1983-02-26 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS59157146A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168656A (en) * 1985-01-23 1986-07-30 Idemitsu Petrochem Co Ltd Polycarbonate resin composition
JPH0321664A (en) * 1989-06-19 1991-01-30 Teijin Chem Ltd Thermoplastic resin composition
JP2774172B2 (en) * 1990-02-14 1998-07-09 垝人化成株匏䌚瀟 Thermoplastic resin composition
JP2550852Y2 (en) * 1991-08-21 1997-10-15 いすゞ自動車株匏䌚瀟 Insulated piston
IT1283590B1 (en) * 1996-04-12 1998-04-22 Sinco Eng Spa POLYESTER RESINS WITH IMPROVED RHEOLOGICAL PROPERTIES (MG-18)
JP3911228B2 (en) * 2002-10-23 2007-05-09 日本ポリ゚ステル株匏䌚瀟 Method for producing polyester / polycarbonate resin composition with increased melt viscosity
JP5310484B2 (en) * 2008-10-31 2013-10-09 東レ株匏䌚瀟 Thermoplastic resin composition
JP5891015B2 (en) * 2011-06-22 2016-03-22 株匏䌚瀟カネカ High thermal conductivity thermoplastic resin composition

Also Published As

Publication number Publication date
JPS59157146A (en) 1984-09-06

Similar Documents

Publication Publication Date Title
US5382628A (en) High impact strength articles from polyester blends
US4125571A (en) Thermoplastic molding composition
CA1087789A (en) Thermoplastic molding composition
US4786692A (en) High strength, reduced heat distortion temperature thermoplastic composition
US4983660A (en) Polyethylene terephthalate resin composition
US4401792A (en) Process for increasing the rate of crystallization of polyesters
JPH07509009A (en) Multicomponent polyester/polycarbonate blend with improved impact strength and processability
US4123415A (en) Reinforced thermoplastic polyester compositions having improved resistance to heat deflection
US4211689A (en) Copolyesters of polybutylene terephthalate
US4184997A (en) Copolyether-esters as additives for fiber-reinforced polyethylene terephthalate
US20070129503A1 (en) Poly(trimethylene terephthalate)/poly(alpha-hydroxy acid) molded, shaped articles
JPH0465103B2 (en)
US4244859A (en) Aromatic polyester composition
US5068274A (en) Secondary amides in polyethylene terephthalate molding compositions
US4271063A (en) Thermoplastic molding compositions
JP3516788B2 (en) Polyester resin composition with excellent impact resistance
KR101857078B1 (en) Poly (butylene terephthalate) ester compositions, methods of manufacture, and articles thereof
EP0178807B1 (en) Polyethylene terephthalate molding composition
JPS641507B2 (en)
JPH02248460A (en) Highly crystalline polyester resin composition
JPS636093B2 (en)
JPH0297519A (en) Highly crystalline polyester copolymer
JPS59184612A (en) Manufacture of molded article made of reinforced polyester
JPH0141659B2 (en)
KR930007443B1 (en) Improved halogenated polyester resin and process for the preparation thereof