JPH0464938B2 - - Google Patents

Info

Publication number
JPH0464938B2
JPH0464938B2 JP60062826A JP6282685A JPH0464938B2 JP H0464938 B2 JPH0464938 B2 JP H0464938B2 JP 60062826 A JP60062826 A JP 60062826A JP 6282685 A JP6282685 A JP 6282685A JP H0464938 B2 JPH0464938 B2 JP H0464938B2
Authority
JP
Japan
Prior art keywords
rubber
rubber stopper
laminated
tetrafluoroethylene
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60062826A
Other languages
Japanese (ja)
Other versions
JPS60251041A (en
Inventor
Kyohiko Ihara
Tsuneo Nakagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP60062826A priority Critical patent/JPS60251041A/en
Priority to US06/736,312 priority patent/US4614276A/en
Priority to DE8585106281T priority patent/DE3572462D1/en
Priority to EP85106281A priority patent/EP0163251B1/en
Publication of JPS60251041A publication Critical patent/JPS60251041A/en
Publication of JPH0464938B2 publication Critical patent/JPH0464938B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Closures For Containers (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はラミネートゴム栓に関し、さらに詳し
くは、栓本体の少なくとも容器口挿入部に、耐薬
品性、気密性、非吸着性に優れ、柔軟性の改良さ
れた含フツ素樹脂フイルムをラミネートすること
により嵌合性を改良した、特に医薬品用、医薬用
具用のゴム栓として適している。ラミネートゴム
栓に関する。 本発明のラミネートゴム栓は、医薬品分野で要
求される各種公定書の規格試験に合格し、更に医
薬的見地から問題となつている、たとえば異物や
微粒子に関する試験項目にも適合できる、医薬品
を容器に保存し、製剤時の純度を長期間保持、保
管するのに適したゴム栓である。 たとえば我国では、医薬品の製造は薬事法によ
つて厚生省の承認を必要とし、これらに使用する
容器、器具は上記法律により規制されている。 したがつて、薬栓として用いられるラミネート
ゴム栓は、「日本薬局方」(第十改正)、「輸液用ゴ
ム栓試験法」、「輸液用プラスチツク容器試験法」
に準拠した品質を原則として有することが求めら
れ、更に上記試験法以外に厚生省告示にて定めら
れた衛生的な性質をも要求されるものである。 また、医療用器具に関しては、厚生省告示第98
号(容器のパツキング)、厚生省告示第442号(デ
イスポーザブル注射筒基準)、厚生省告示第301号
(デイスポーザブル輸液セツト基準)などがあり、
それぞれ所定の基準を満たす必要がある。 [従来の技術] 医薬品の容器素材としては、古くから硝子が使
用され、近年プラスチツクも採用されている。こ
のような容器口を密封する素材としては、耐熱
性、耐圧縮歪性、柔軟性に富み、化学的に不活性
で、酸素、窒素、炭酸ガス、水蒸気などのガスに
対し耐透過性を持つものが選択される。 ジイ.ケイ.メリニコワは、このような素材と
してイソプレンとイソブチレンとの共重合ゴム
(以下、IIRと称す)を推奨している。一方新し
い技術として、ゴムへのポリエチレン微粉末品の
混合、ニトリルゴムに対する塩素化ブチルゴムの
共架橋、スチレン−ブタジエン−スチレン製ブロ
ツク共重合体の使用、ゴム栓成型後のシリコーン
系化合物又はフツ素系化合物によるコーテイン
グ、又はポリプロピレン、ポリエチレン、ナイロ
ン又はフツ素樹脂などのフイルムによるゴム栓の
ラミネートなどが提案されている(実公昭44−
27753号、同45−17831号、同49−21346号、同54
−29207号、特公昭52−1355号、同54−9119号、
同57−53184号の各公報参照)。 しかし、シリコーン及びフツ素系化合物でのコ
ーテイングは、ゴム表面の粘着性を低くするもの
の、医薬品用ゴム栓として見た場合、化学的性
質、物理的性質、特に微粒子物の点で問題を生じ
ている。 このような性質に関しては上記のラミネートゴ
ム栓が優れている。しかし、なお一層深くラミネ
ートゴム栓の検討を行なうと、従来のポリテトラ
フルオロエチレン(PTFE)のようなフツ素樹脂
のフイルムでは成形加工性、機械的強度が劣り、
ラミネートするには多くの工数を必要とし、又ゴ
ムと樹脂フイルムとの接着性が悪いという欠点を
有する。 このような欠点を解決するために、フツ素系コ
ポリマーを使用することによつてゴム加硫と同時
にラミネートする技術がある(特開昭59−5046号
公報参照)。 この製造技術は、ゴム栓製造方法としては優れ
ており、フツ素系コポリマーとして、テトラフル
オロエチレン−エチレン交互共重合体、次にテト
ラフルオロエチレン−ヘキサフルオロプロピレン
共重合体が望ましいものとして挙げられている。
しかるに、従来知られているテトラフルオロエチ
レン−エチレン交互共重合体は、成型温度付近で
の引張り伸度、引張り強度が比較的高く、かつラ
ミネート成形加工性も一応満足できるが、ラミネ
ートゴム栓成型時における樹脂フイルムの破損率
の点で未だ十分とはいえず、また得られたラミネ
ートゴム栓は、樹脂フイルムが硬いため、ゴムの
弾性、耐圧縮歪性が損なわれるため、ラミネート
ゴム栓と容器口との嵌合性が悪くなり、減圧製剤
工程においてエアリークなどのトラブルを生ずる
可能性がある。又、シール性においても不満足な
ものであつた。又、テトラフルオロエチレン−ヘ
キサフルオロプロピレン共重合体では成型温度付
近での機械的性質がテトラフルオロエチレン−エ
チレン共重合体に比べ若干劣るためラミネート成
形性が劣り、又、ゴムとフイルムの接着性も悪い
等の重大な欠点を有する。 医薬用ゴム栓に付いての規格は、先に述べた日
本薬局方(第十改正)の他、ブリテイツシユ・ス
タンダーズ(British Standards)3263(1960)及
び西ドイツ工業規格(DIN)に規定されている
が、これらの内容では、最近の高性能なる医薬品
を長期間保持、保管に適した条件が十分に達成さ
れない。その上、医薬品の製剤技術が進歩し、ゴ
ム栓にも重要な役割が課せられるようになつた。
ここでラミネートゴム栓に要求される性質は化学
的性質と物理的性質に大別される。化学的性質に
優れた素材としてフツ素樹脂を選ぶことができ
る。しかし、物理的性質においては上記の如く従
来のフツ素樹脂では柔軟性、成形加工性、接着性
などを全て満足するものは得られていない。 [発明の目的] 本発明の目的は、たとえば前記特開昭59−5046
号公報に記載されているような従来のフツ素樹脂
ゴム栓のラミネート材料として用いた場合にみら
れる問題を解決すること、すなわちラミネート樹
脂フイルムを改良して、成形加工性に一段と優
れ、かつ化学的性質、物理的性質を全て満足する
ラミネートゴム栓を提供することにある。 さらに詳しく言えば、従来のテトラフルオロエ
チレン−エチレン交互共重合体のラミネート樹脂
フイルムとしての改良に関し、化学的性質を損な
うことなく成形加工性にすぐれ、ラミネートゴム
栓製造時の不良品発生を抑制し、栓体からの微粒
子の発生が少なく、また柔軟性に優れていて容器
口との嵌合性の改良されたラミネートゴム栓を提
供することが本発明の目的である。 [発明の開示] 本発明者らは種々の検討を行なつた結果、特定
のテトラフルオロエチレンとエチレンの組成範囲
の共重合体であれば、柔軟性が改良され、共重合
体フイルムをゴム栓にラミネートすれば容器口と
ラミネートゴム栓との嵌合性が改良され、そのシ
ール性を飛躍的に改良することができ、さらにラ
ミネートゴム栓の製造不良品を激減し、栓体から
の微粒子の発生を少なくすることができることを
見出し、本発明を完成するに至つた。 すなわち本発明の要旨は、ゴム栓本体の少なく
とも容器口挿入部をフツ素樹脂フイルムによりラ
ミネートしたゴム栓において、樹脂フイルムがテ
トラフルオロエチレン、エチレン及び 式: CH2=CX−Rf () 〔式中、Xは水素又はフツ素、Rfはフルオロ
アルキル基を表す。〕で示される共重合可能な含
フツ素ビニルモノマーからなる共重合体であつ
て、テトラフルオロエチレンとエチレンの含有モ
ル比が62:38〜90:10であり、共重合可能な含フ
ツ素ビニルモノマーの含有量がテトラフルオロエ
チレンおよびエチレンの合計モル数に対して0.1
〜5モル%の組成範囲にある共重合体のフイルム
であることを特徴とするラミネートゴム栓に存す
る。 従来知られていたテトラフルオロエチレン−エ
チレン共重合体は、交互共重合体であり、テトラ
フルオロエチレン対エチレンの含有モル比が40/
60〜60/40であり、実際には50/50に近いもので
あるが、本発明で用いる共重合体はテトラフルオ
ロエチレンの割合を大巾に増大させたものであ
る。このように、テトラフルオロエチレンの含有
量を大巾に増加させることによつて、従来のテト
ラフルオロエチレン−エチレン交互共重合体では
得られない柔軟性が得られる。 共重合可能な含フツ素ビニルモノマーは、式:
CH2=CFR′f、CH2=CH−Rf〔式中、Rfはフルオ
ロアルキル基を表す。〕で示される不飽和化合物
であり、具体的にはCH2=CFC3F6H、CH2
CFC5F10H、CH2=CHC4F9、CH2=CHC6F13
が例示できる。 式()で示されるモノマーを用いることによ
り、ラミネート温度における樹脂フイルムの破断
伸びが向上し、ラミネート時のフイルム破断を低
減できる。 含フツ素ビニルモノマーの含有量は、テトラフ
ルオロエチレンおよびエチレンの合計モル数に対
して0.1〜5モル%でよく、耐熱性等の点から0.5
〜5モル%が好ましい。 このような組成の範囲の共重合体であれば、化
学的性質、物理的性質に優れ、特に柔軟性、加工
性、接着性等の性質を全て満足するラミネートゴ
ム栓が得られる。 本発明のラミネートゴム栓に用いるこのような
共重合体の製造に関しては特開昭60−248710号公
報に詳しく述べられているが、重合法としては塊
状、溶液、懸濁、乳化、気相重合法などを採用す
ることができる。 工業的には、クロロフルオロアルカンを溶媒と
し、重合開始剤として有機過酸化物を使用する水
性媒体中での懸濁重合が好ましい。クロロフルオ
ロアルカンとしては、トリクロロトリフルオロエ
タン、ジクロロテトラフルオロエタン、ジクロロ
ジフルオロメタン、クロロジフルオロメタン、ジ
クロロフルオロメタンなどが有利に採用される。
溶媒の使用量は、水に対し10〜100重量%とする
のが懸濁分散性、経済性の面から好ましい。 重合開始剤として用いられる有機過酸化物とし
ては、式:
[Field of Industrial Application] The present invention relates to a laminated rubber stopper, and more specifically, the present invention relates to a laminate rubber stopper, and more specifically, a stopper body that includes a lid having excellent chemical resistance, airtightness, non-adsorption properties, and improved flexibility, at least at the container mouth insertion portion. It has improved fitability by laminating a base resin film and is particularly suitable as a rubber stopper for pharmaceuticals and medical devices. Regarding laminate rubber stoppers. The laminated rubber stopper of the present invention can be used as a container for pharmaceutical products, which can pass the standard tests of various compendial documents required in the pharmaceutical field, and can also meet test items related to foreign matter and fine particles, which are problematic from a pharmaceutical standpoint. This rubber stopper is suitable for preserving and preserving the purity of formulations for long periods of time. For example, in Japan, the manufacture of pharmaceuticals requires approval from the Ministry of Health and Welfare according to the Pharmaceutical Affairs Law, and the containers and equipment used for these are regulated by the above law. Therefore, the laminate rubber stoppers used as medicine stoppers are subject to the Japanese Pharmacopoeia (10th revision), the Test Method for Rubber Stoppers for Infusions, and the Test Method for Plastic Containers for Infusions.
In principle, products are required to have quality that complies with the above test methods, and in addition to the above test methods, they are also required to have hygienic properties as specified in the Ministry of Health and Welfare notification. Regarding medical equipment, Ministry of Health and Welfare Notification No. 98
(Packaging of Containers), Ministry of Health and Welfare Notification No. 442 (Standards for Disposable Syringes), Ministry of Health and Welfare Notification No. 301 (Standards for Disposable Infusion Sets), etc.
Each must meet predetermined criteria. [Prior Art] Glass has been used as a container material for pharmaceuticals since ancient times, and plastic has also been used in recent years. The material used to seal the mouth of such containers is heat resistant, compressive strain resistant, flexible, chemically inert, and permeable to gases such as oxygen, nitrogen, carbon dioxide, and water vapor. things are selected. Jii. Kay. Melnikova recommends copolymer rubber of isoprene and isobutylene (hereinafter referred to as IIR) as such a material. On the other hand, new technologies include mixing polyethylene fine powder with rubber, co-crosslinking chlorinated butyl rubber with nitrile rubber, using styrene-butadiene-styrene block copolymers, and adding silicone or fluorine compounds after molding rubber plugs. Coatings with compounds or lamination of rubber plugs with films of polypropylene, polyethylene, nylon, or fluorine resin have been proposed (Utility Model Act 1973-
No. 27753, No. 45-17831, No. 49-21346, No. 54
−29207, Special Publication No. 52-1355, No. 54-9119,
(Refer to each publication No. 57-53184). However, although coating with silicone and fluorine-based compounds reduces the stickiness of the rubber surface, when viewed as a pharmaceutical rubber stopper, it causes problems in terms of chemical properties, physical properties, and especially fine particles. There is. Regarding these properties, the above-mentioned laminate rubber stopper is excellent. However, when we looked deeper into laminated rubber stoppers, we found that conventional fluororesin films such as polytetrafluoroethylene (PTFE) have poor moldability and mechanical strength.
Lamination requires a lot of man-hours and has the disadvantage of poor adhesion between the rubber and resin film. In order to solve these drawbacks, there is a technique of laminating at the same time as rubber vulcanization by using a fluorine-based copolymer (see Japanese Patent Laid-Open No. 59-5046). This production technology is excellent as a method for producing rubber stoppers, and as fluorine-based copolymers, tetrafluoroethylene-ethylene alternating copolymer, followed by tetrafluoroethylene-hexafluoropropylene copolymer, are cited as desirable. There is.
However, conventionally known tetrafluoroethylene-ethylene alternating copolymers have relatively high tensile elongation and tensile strength near the molding temperature, and are reasonably satisfactory in laminate molding processability, but when molding laminated rubber plugs, In addition, the resulting laminated rubber stopper has a hard resin film, which impairs the elasticity and compressive strain resistance of the rubber. This may cause problems such as air leaks during the vacuum formulation process. Furthermore, the sealing performance was also unsatisfactory. In addition, tetrafluoroethylene-hexafluoropropylene copolymer has slightly inferior mechanical properties near the molding temperature compared to tetrafluoroethylene-ethylene copolymer, resulting in poor lamination formability and poor adhesion between rubber and film. It has serious drawbacks such as poor performance. Standards for pharmaceutical rubber stoppers are stipulated in the Japanese Pharmacopoeia (10th revision) mentioned above, as well as British Standards 3263 (1960) and West German Industrial Standards (DIN). However, with these contents, conditions suitable for long-term retention and storage of recent high-performance pharmaceuticals cannot be sufficiently achieved. Furthermore, as pharmaceutical formulation technology has progressed, rubber stoppers have come to play an important role.
The properties required of the laminated rubber stopper are broadly classified into chemical properties and physical properties. Fluorine resin can be selected as a material with excellent chemical properties. However, in terms of physical properties, as mentioned above, conventional fluororesins have not been able to satisfy all of the requirements such as flexibility, moldability, and adhesiveness. [Object of the invention] The object of the present invention is, for example,
The aim is to solve the problems that occur when using the conventional fluororesin rubber stopper as a laminate material as described in the above publication, namely, to improve the laminate resin film to have even better molding processability and to improve chemical processing. To provide a laminate rubber stopper that satisfies all physical and physical properties. More specifically, regarding the improvement of the conventional tetrafluoroethylene-ethylene alternating copolymer as a laminated resin film, it has excellent moldability without impairing the chemical properties and suppresses the occurrence of defective products during the production of laminated rubber stoppers. It is an object of the present invention to provide a laminate rubber stopper that generates less fine particles from the stopper, has excellent flexibility, and has improved fit with a container opening. [Disclosure of the Invention] As a result of various studies, the present inventors have found that a copolymer with a specific composition range of tetrafluoroethylene and ethylene has improved flexibility and can be used to make a copolymer film into a rubber stopper. If the laminated rubber stopper is laminated, the fit between the container mouth and the laminated rubber stopper will be improved, and the sealing performance will be dramatically improved.Furthermore, the number of defective products in the manufacture of laminated rubber stoppers will be drastically reduced, and fine particles from the stopper will be reduced. They have discovered that the occurrence can be reduced and have completed the present invention. That is, the gist of the present invention is to provide a rubber stopper in which at least the container mouth insertion portion of the rubber stopper body is laminated with a fluorine resin film, and the resin film is composed of tetrafluoroethylene, ethylene, and the formula: CH 2 =CX-Rf () [in the formula] , X represents hydrogen or fluorine, and Rf represents a fluoroalkyl group. A copolymer consisting of a copolymerizable fluorine-containing vinyl monomer represented by ], in which the molar ratio of tetrafluoroethylene to ethylene is 62:38 to 90:10, and the copolymerizable fluorine-containing vinyl monomer Monomer content is 0.1 relative to the total number of moles of tetrafluoroethylene and ethylene
A laminate rubber stopper characterized in that it is a film of a copolymer having a composition in the range of ~5 mol %. The conventionally known tetrafluoroethylene-ethylene copolymer is an alternating copolymer with a molar ratio of tetrafluoroethylene to ethylene of 40/
The ratio is 60 to 60/40, and in reality it is close to 50/50, but the copolymer used in the present invention has a significantly increased proportion of tetrafluoroethylene. By greatly increasing the content of tetrafluoroethylene in this way, flexibility that cannot be obtained with conventional tetrafluoroethylene-ethylene alternating copolymers can be obtained. The copolymerizable fluorine-containing vinyl monomer has the formula:
CH2 =CFR'f, CH2 =CH-Rf [wherein, Rf represents a fluoroalkyl group]. ], specifically CH 2 = CFC 3 F 6 H, CH 2 =
Examples include CFC 5 F 10 H, CH 2 =CHC 4 F 9 and CH 2 =CHC 6 F 13 . By using the monomer represented by the formula (), the elongation at break of the resin film at lamination temperature can be improved, and film breakage during lamination can be reduced. The content of the fluorine-containing vinyl monomer may be 0.1 to 5 mol% based on the total number of moles of tetrafluoroethylene and ethylene, and from the viewpoint of heat resistance etc.
~5 mol% is preferred. If the copolymer has a composition within this range, a laminated rubber stopper can be obtained that has excellent chemical and physical properties, and particularly satisfies all properties such as flexibility, processability, and adhesiveness. The production of such a copolymer used in the laminated rubber stopper of the present invention is described in detail in JP-A-60-248710, and polymerization methods include bulk, solution, suspension, emulsification, and gas phase polymerization. Legal etc. can be adopted. Industrially, suspension polymerization in an aqueous medium using a chlorofluoroalkane as a solvent and an organic peroxide as a polymerization initiator is preferred. As the chlorofluoroalkane, trichlorotrifluoroethane, dichlorotetrafluoroethane, dichlorodifluoromethane, chlorodifluoromethane, dichlorofluoromethane, etc. are advantageously employed.
The amount of solvent to be used is preferably 10 to 100% by weight based on water in terms of suspension dispersibility and economical efficiency. The organic peroxide used as a polymerization initiator has the formula:

【式】 〔式中、Yは、水素、フツ素または塩素、mは
2〜8の整数を表わす。〕 で示される過酸化物が挙げられ、具体的には、ジ
ーパーフルオロプロピオニルパーオキサイド、ジ
(ω−ヒドロパーフルオロヘキサノイル)パーオ
キサイド、ジ(ω−クロロパーフルオロプロピオ
ニル)パーオキサイドなどが例示できる。また、
式: 〔式中、lは1〜10の整数を表わす。〕 で示される過酸化物、たとえばジ(トリクロロパ
ーフルオロヘキサノイル)パーオキサイドなども
好ましい。さらに、ジイソブチルパーオキサイ
ド、ジイソプロピルパーオキシジカーボネートな
どのハイドロカーボン系の有機過酸化物も適当な
ものとして挙げられる。 重合温度は、特に限定されたものではないが、
工業的には0〜100℃でよい。共重合体中のエチ
レン−エチレン連鎖生成による耐熱性の低下を避
けるためには一般に低温が好ましい。 重合圧力は、通常0〜50Kg/cm2Gであつてよ
く、重合操作上は1〜15Kg/cm2Gの比較的低圧が
望ましく、安全上も好ましい。重合圧力は、用い
る溶媒の種類、量なならびに蒸気圧、重合温度な
どの他の重合条件に応じて適宜定められる。 本発明で用いる共重合体の製造に際しては、分
子量調節のため、通常の連鎖移動剤、たとえばイ
ソペンタン、n−ヘキサン、シクロヘキサン、メ
タノール、エタノール、四塩化炭素、クロロホル
ム、塩化メチレン、塩化メチルなどを用いること
ができる。 本発明のゴム栓にラミネートする樹脂フイルム
を製造するには、例えば通常のフイルム押出機を
用い、上記共重合体をTダイ法により260〜360℃
の温度においてフイルム化すればよい。必要に応
じて、このようにして得られたフイルムを再延伸
することにより容易に0.002〜0.5mmの厚みの均一
なフイルムを容易に製造できる。 上記共重合体フイルムには、ゴムとの接着性を
向上するため、放電処理(コロナ処理、ガスプラ
ズマ処理等)を施すことも可能である。 本発明におけるゴム栓の形状は、特に限定され
ず、複雑な形状のゴム栓でも容易にゴム加硫成形
と同時にフイルムをラミネートし得る。 ここで本発明のラミネートゴム栓を、添付図面
を参照して説明する。 第1図に、本発明のラミネートゴム栓の一具体
例の斜視図を示す。第1図ではラミネートフイル
ム部分が明確に表現されていないので、構造をよ
り明確にする為に断面を第2図又は第3図に示
す。 ゴム栓は、第2図の断面図で示したように、び
んに差し込まれる素栓部あるいは足部A1と頭部
A2からなる。これらはそれぞれゴム材料からな
る。 本発明のラミネートゴム栓は第2図および第3
図の中で太線で示すラミネートフイルムをゴム材
料表面にラミネートしたものであり、第2図の如
く素栓周辺の頭部下面を除いてラミネートした構
造でもよく、あるいは第3図の如く素栓周辺の頭
部下面も含めてラミネートした構造でもよい。 なお第3図においてAはゴム材料を示す。 さらに本発明のラミネートゴム栓と通常のゴム
栓の差異を明確にする為に第4図に通常のゴム栓
の断面図を示すが、第2図、第3図に示したラミ
ネートゴム栓と異なりラミネートフイルムが存在
せず、ゴム栓のみからなる。 本発明に従つて、斜視図を第1図に、断面図を
第2図に示す形状を有するゴム栓をラミネートし
た場合、フイルムはゴム加硫温度で平均4倍、特
殊な所では約7〜8倍に伸ばされるので、この条
件に耐え得るフイルムでないと加硫工程中に破断
し、ラミネートゴム栓として不良製品になる。本
発明では、上記共重合体を樹脂フイルムの素子と
して用いているので、高温状態での引張り強さ、
伸びが改善されてラミネートゴム栓の不良品の発
生率が低下し、経済的に医薬品業界に供給するこ
とが可能である。 本発明のゴム栓本体を構成するゴム配合素材
は、実質的に従来技術に従つて製造できる。 即ち、IIR、イソプレンゴム(IR)、ブタジエ
ンゴム(BR)、スチレン−ブタジエンゴム
(SBR)、エチレン−プロピレンゴム(EPM)、エ
チレン−プロピレン−ジエンゴム(EPDM)、ク
ロロスルホン化ポリエチレン(CSM)、エチレン
−酢酸ビニル共重合体(EVA)、スチレン−イソ
プレンゴム(SIR)、熱可塑性エラストマー、天
然ゴムなどに、加硫剤、加硫促進財、加硫活性
財、加工助剤、充填剤、補強剤などを配合してゴ
ム栓としての物理的性質、耐熱性を保つようにし
たものである。 [実施例] 次に、本発明のラミネートゴム栓のラミネート
フイルムに用いる樹脂の製造例、実施例及び比較
例を示し、本発明の有用性を具体的に説明する
が、これら実施例によつて本発明はなんら限定さ
れるものではない。 (1) 樹脂フイルム まず、以下の実施例及び比較例で用いる樹脂の
製造例を示す。 なお、製造例で得られた共重合体の組成は、変
成モノマーの含有量については、共重合中に仕込
んだ総量と共重合後に回収した量との差を共重合
体得量で除することにより、また他のモノマーの
組成については、変性モノマーの含有量および元
素分析値から算出されるところから決定される。 さらに、共重合体の物性値は、次の様にして測
定した。 フロー値 高化式フローテスターを用い、300℃、7Kg荷
重下で、直径2mm、長さ8mmのノズルから単位時
間に流出する共重合体の容量(ml/秒)を測定
し、これをフロー値とする。 融 点 パーキン−エルマ−型DSC装置を用い、20
℃/分の速度で昇温した時の融解ピークを記録
し、極大値に対応する温度を融点とする。 製造例 (樹脂の製造) 内容積4のガラスライニング製オートクレー
ブに脱酸素した水1.2を入れて真空にし、ジク
ロロテトラフルオロエタン1Kgを入れて槽内温度
を15℃に保つた。これにCH2=CFC3F6H23.5g
およびシクロヘキサン1.5mlを仕込み、攪拌下、
テトラフルオロエチレン/エチレン混合ガス(モ
ル比97.4/2.6)を6Kg/cm2Gまで圧入した。次
いで、ジ(ω−ヒドロパーフルオロヘキサノイ
ル)パーオキサイド2.1gを仕込んで重合を開始
した。重合の進行とともに圧力が低下するので、
テトラフルオロエチレン/エチレン/CH2
CFC3F6H混合ガス(モル比63.3:34.0:2.7)を
追加圧入して重合圧力を6Kg/cm2Gに保つた。2
時間毎に2回上記パーオキサイド各0.6gを仕込
み、重合を27.7時間行なつた。内容物を回収して
白色粉末311gを得た。ポリマー組成、テトラフ
ルオロエチレン:エチレン:CH2=CFC3F6H=
63.3:34.0:2.7(モル比)[テトラフルオロエチレ
ン/エチレン=65.1/34.9(モル比)、CH2
CFC3F6H2.7(モル比)]。融点225℃。フロー値
0.4x10-2ml/秒。 比較樹脂製造例 内容積3のガラスライニング製オートクレー
ブに脱酸素した水1.2を入れ真空にし、ジクロ
ロテトラフルオロエタン1Kgを入れて槽内温度15
℃に保つた。これにCH2=CFC3F6H9.5gおよび
n−ペンタン25mlを仕込み、攪拌下、テトラフル
オロエチレン/エチレン混合ガス(モル比83.2:
16.8)を6Kg/cm2Gまで圧入した。次いで、ジ
(ω−ヒドロパーフルオロヘキサノイル)パーオ
キイド1.93gを仕込んで重合を開始した。重合の
進行とともに圧力が低下するので、テトラフルオ
ロエチレン/エチレン/CH2=CFC3F6H混合ガ
ス(モル比52.0:45.9:2.1)を追加圧入して重合
圧力を6Kg/cm2Gに保つた。2時間毎に上記パー
オキサイド各1.16gを仕込み、重合を5.5時間行
なつた。内容物を回収して重合粉末89.8gを得
た。組成、テトラフルオロエチレン:エチレン:
CH2=CFC3F6H52.0:45.9:2.1(モル比)[テト
ラフルオロエチレン/エチレン=53.1/46.9(モ
ル比)、CH2=CFC3F6H2.1(モル比)]。融点268.5
℃。フロー値0.74×10-2ml/秒であつた。 第1表に樹脂の製造例及び比較樹脂製造例で得
られた共重合体及びそのフイルムの物理的性質を
示す。なお、表中「TFE」は「テトラフルオロ
エチレン」を表す。 共重合体の物理値は次のようにして測定した。 引張試験 JIS3号ダンベルに打ち抜いた共重合体フイルム
(100μn)を25℃及び180℃の温度において引張り
速度200mm/分で引張り、破断時の伸度及び強度
を測定した。 デユロメータ硬度 共重合体シート(2mm)を用いて25℃の温度に
おいてASTMD2240に準じて測定した。 曲げ弾性率 共重合体シート(1mm)を用いて25℃の温度に
おいてASTMD747に準じて測定した。
[Formula] [In the formula, Y represents hydrogen, fluorine or chlorine, and m represents an integer of 2 to 8. ] Examples include peroxides represented by the following, and specific examples include jeeperfluoropropionyl peroxide, di(ω-hydroperfluorohexanoyl) peroxide, and di(ω-chloroperfluoropropionyl) peroxide. . Also,
formula: [In the formula, l represents an integer from 1 to 10. ] Peroxides represented by these, such as di(trichloroperfluorohexanoyl) peroxide, are also preferred. Furthermore, hydrocarbon-based organic peroxides such as diisobutyl peroxide and diisopropyl peroxydicarbonate are also suitable. The polymerization temperature is not particularly limited, but
Industrially, the temperature may be 0 to 100°C. In order to avoid a decrease in heat resistance due to the formation of ethylene-ethylene chains in the copolymer, low temperatures are generally preferred. The polymerization pressure may generally be 0 to 50 kg/cm 2 G, and a relatively low pressure of 1 to 15 kg/cm 2 G is desirable for polymerization operations, and is also preferred for safety. The polymerization pressure is appropriately determined depending on the type and amount of the solvent used, as well as other polymerization conditions such as vapor pressure and polymerization temperature. When producing the copolymer used in the present invention, common chain transfer agents such as isopentane, n-hexane, cyclohexane, methanol, ethanol, carbon tetrachloride, chloroform, methylene chloride, methyl chloride, etc. are used to control the molecular weight. be able to. To produce the resin film to be laminated to the rubber stopper of the present invention, for example, using a normal film extruder, the above copolymer is heated to 260 to 360°C by a T-die method.
It is sufficient to form a film at a temperature of . If necessary, the film thus obtained can be re-stretched to easily produce a film having a uniform thickness of 0.002 to 0.5 mm. The above-mentioned copolymer film can also be subjected to electrical discharge treatment (corona treatment, gas plasma treatment, etc.) in order to improve its adhesion to rubber. The shape of the rubber stopper in the present invention is not particularly limited, and even a rubber stopper with a complicated shape can be easily vulcanized and laminated with a film at the same time. The laminated rubber stopper of the present invention will now be explained with reference to the accompanying drawings. FIG. 1 shows a perspective view of a specific example of the laminate rubber stopper of the present invention. Since the laminate film portion is not clearly shown in FIG. 1, a cross section is shown in FIG. 2 or 3 to make the structure clearer. As shown in the cross-sectional view in Figure 2, the rubber stopper consists of a bare stopper part that is inserted into the bottle, or a foot part A1 and a head part.
Consists of A 2 . Each of these is made of rubber material. The laminated rubber stopper of the present invention is shown in Figures 2 and 3.
The laminated film indicated by the bold line in the figure is laminated on the surface of the rubber material, and it may be laminated except for the lower surface of the head around the base plug as shown in Figure 2, or it may be laminated around the base of the base plug as shown in Figure 3. A laminated structure including the lower surface of the head may also be used. In addition, in FIG. 3, A indicates a rubber material. Furthermore, in order to clarify the difference between the laminated rubber stopper of the present invention and a normal rubber stopper, Fig. 4 shows a cross-sectional view of a normal rubber stopper, but unlike the laminate rubber stopper shown in Figs. There is no laminate film, only a rubber stopper. According to the present invention, when a rubber stopper having the shape shown in FIG. 1 in a perspective view and in FIG. Since the film is stretched eight times, unless it can withstand these conditions, it will break during the vulcanization process, resulting in a defective product as a laminated rubber stopper. In the present invention, since the above-mentioned copolymer is used as an element of the resin film, the tensile strength at high temperature,
The improved elongation reduces the incidence of defective products of the laminated rubber stoppers, making it possible to economically supply them to the pharmaceutical industry. The rubber compound material constituting the rubber stopper body of the present invention can be manufactured substantially according to conventional techniques. Namely, IIR, isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene rubber (SBR), ethylene-propylene rubber (EPM), ethylene-propylene-diene rubber (EPDM), chlorosulfonated polyethylene (CSM), ethylene -Vinyl acetate copolymer (EVA), styrene-isoprene rubber (SIR), thermoplastic elastomer, natural rubber, etc., along with vulcanizing agents, vulcanization accelerators, vulcanization activators, processing aids, fillers, and reinforcing agents. It is formulated with the following ingredients to maintain the physical properties and heat resistance of a rubber stopper. [Example] Next, production examples, examples, and comparative examples of the resin used for the laminate film of the laminate rubber stopper of the present invention will be shown to specifically explain the usefulness of the present invention. The present invention is not limited in any way. (1) Resin film First, production examples of resins used in the following Examples and Comparative Examples will be shown. The composition of the copolymer obtained in the production example was calculated by dividing the difference between the total amount charged during copolymerization and the amount recovered after copolymerization by the amount of copolymer obtained. , and the composition of other monomers is determined from the content of the modified monomer and the elemental analysis values. Furthermore, the physical properties of the copolymer were measured as follows. Flow value Using a Koka type flow tester, measure the volume (ml/sec) of copolymer flowing out per unit time from a nozzle with a diameter of 2 mm and a length of 8 mm at 300℃ and under a load of 7 kg, and calculate this as the flow value. shall be. Melting point Using a Perkin-Elmer type DSC device, 20
The melting peak when the temperature is increased at a rate of °C/min is recorded, and the temperature corresponding to the maximum value is taken as the melting point. Production Example (Production of Resin) A glass-lined autoclave with an internal volume of 4 was charged with 1.2 liters of deoxygenated water, evacuated, and 1 kg of dichlorotetrafluoroethane was charged, and the temperature inside the tank was maintained at 15°C. To this, CH 2 = CFC 3 F 6 H23.5g
Add 1.5 ml of cyclohexane and stir.
A mixed gas of tetrafluoroethylene/ethylene (molar ratio 97.4/2.6) was injected to a pressure of 6 kg/cm 2 G. Next, 2.1 g of di(ω-hydroperfluorohexanoyl) peroxide was charged to initiate polymerization. As the pressure decreases as the polymerization progresses,
Tetrafluoroethylene/ethylene/CH 2 =
CFC 3 F 6 H mixed gas (molar ratio 63.3:34.0:2.7) was further pressurized to maintain the polymerization pressure at 6 Kg/cm 2 G. 2
0.6 g of each of the above peroxides was charged twice every hour, and polymerization was carried out for 27.7 hours. The contents were collected to obtain 311 g of white powder. Polymer composition, tetrafluoroethylene: ethylene: CH 2 = CFC 3 F 6 H =
63.3:34.0:2.7 (molar ratio) [tetrafluoroethylene/ethylene = 65.1/34.9 (molar ratio), CH 2 =
CFC 3 F 6 H2.7 (molar ratio)]. Melting point 225℃. flow value
0.4x10 -2 ml/sec. Comparative resin production example: Pour 1.2 liters of deoxygenated water into a glass-lined autoclave with an internal volume of 3, create a vacuum, then add 1 kg of dichlorotetrafluoroethane and bring the temperature inside the tank to 15.
It was kept at ℃. To this, 9.5 g of CH 2 =CFC 3 F 6 H and 25 ml of n-pentane were charged, and while stirring, a mixed gas of tetrafluoroethylene/ethylene (molar ratio 83.2:
16.8) was press-fitted to 6 kg/cm 2 G. Next, 1.93 g of di(ω-hydroperfluorohexanoyl) peroxide was charged to initiate polymerization. As the pressure decreases as the polymerization progresses, additionally pressurize the tetrafluoroethylene/ethylene/CH 2 = CFC 3 F 6 H mixed gas (molar ratio 52.0:45.9:2.1) to maintain the polymerization pressure at 6 Kg/cm 2 G. Ta. 1.16 g of each of the above peroxides was charged every 2 hours, and polymerization was carried out for 5.5 hours. The contents were collected to obtain 89.8 g of polymer powder. Composition, tetrafluoroethylene: ethylene:
CH2 = CFC3F6H52.0 :45.9:2.1 (molar ratio) [tetrafluoroethylene/ethylene=53.1/46.9 (molar ratio), CH2=CFC3F6H2.1 ( molar ratio )]. Melting point 268.5
℃. The flow value was 0.74×10 −2 ml/sec. Table 1 shows the physical properties of the copolymers and films obtained in resin production examples and comparative resin production examples. In addition, "TFE" in the table represents "tetrafluoroethylene." The physical values of the copolymer were measured as follows. Tensile Test A copolymer film (100 μn) punched into a JIS No. 3 dumbbell was pulled at a pulling rate of 200 mm/min at temperatures of 25°C and 180°C, and the elongation and strength at break were measured. Durometer hardness Measured using a copolymer sheet (2 mm) at a temperature of 25°C according to ASTM D2240. Flexural Modulus Measured using a copolymer sheet (1 mm) at a temperature of 25°C according to ASTM D747.

【表】【table】

【表】 F−が、製造例で得た本発明に従つた樹脂フ
イルムであり、比較樹脂製造例で得たF−に比
して高温時の引張り強さ、伸びが改善され、硬度
及び曲げ弾性率から極めて柔軟な方向へ改善され
ていることがわかる。 さらに、本発明で用いる樹脂の組成範囲の特徴
を明らかにするために、第2表にテトラフルオロ
エチレン/エチレン組成比と硬度及び曲げ弾性率
の関係を記す。
[Table] F- is the resin film according to the present invention obtained in the production example, and has improved tensile strength and elongation at high temperatures, hardness and bending compared to F- obtained in the comparative resin production example. It can be seen that the elastic modulus has been improved to become extremely flexible. Furthermore, in order to clarify the characteristics of the composition range of the resin used in the present invention, Table 2 shows the relationship between the tetrafluoroethylene/ethylene composition ratio, hardness, and flexural modulus.

【表】 上記フイルムはゴム栓成形前に表面を気圧1×
10-2Torr、Rf電圧800W、巻取速度0.3m/分でス
パツタエツチング処理を施した。 (2) ゴム配合物 第3表のゴム配合物を使用した。
[Table] The surface of the above film was heated to 1× pressure before forming the rubber plug.
Sputter etching treatment was performed at 10 -2 Torr, Rf voltage of 800 W, and winding speed of 0.3 m/min. (2) Rubber compound The rubber compound shown in Table 3 was used.

【表】【table】

【表】 (3) ラミネートゴム栓の成型 第3表のゴム配合物はゴム用2本ロール、ある
いはインターナルミキサーで配合した。 配合操作は「ゴム試験法」(日本ゴム協会編)
108−118頁に記載されている方法に準拠して行な
い、樹脂フイルムをゴム栓成形と同時にラミネー
トする方法をとつた。 その手順は、下金型(ゴム栓の数15×15=225
個)上に上記樹脂フイルム及び未加硫配合ゴム
(第2図ではA1に、第3図ではAに相当)を重ね
合わせ、その上に上金型(第2図では平らな金
型、第3図ではゴム栓頭部を成形する窪みを有す
る金型)を置いて、温度150±1℃でゴムを加圧
して、ゴム栓を成形加硫すると同時ににゴム栓素
栓部(足部ともいう)をラミネートする。次に所
定の大きさにカツテイングして完成する。 なお、第2図の場合には、更に下金型内に上記
で得られた足栓を置き、その上に未加硫配合ゴム
A2を置き、更にゴム栓頭部を成形する窪みを有
する上金型を置き、温度150±1℃にて加圧して
ゴム栓を完成する。ゴム栓は個々になるようにカ
ツテイングする。次に必要ならば洗浄する。 加硫時間及び加硫時の樹脂フイルムの破損率を
第4表に示す。
[Table] (3) Molding of laminated rubber stoppers The rubber compounds shown in Table 3 were compounded using a two-roll rubber roll or an internal mixer. The compounding operation is "Rubber Test Method" (edited by Japan Rubber Association)
This was carried out in accordance with the method described on pages 108-118, and a method was used in which the resin film was laminated simultaneously with the molding of the rubber plug. The procedure is to use the lower mold (number of rubber plugs 15 x 15 = 225
The above resin film and unvulcanized compounded rubber (corresponding to A 1 in Fig. 2 and A in Fig. 3) are superimposed on top of the upper mold (in Fig. 2, a flat mold, In Figure 3, a mold with a depression for forming the head of the rubber stopper is placed, and the rubber is pressurized at a temperature of 150 ± 1°C to form and vulcanize the rubber stopper. (also called laminate). Next, it is cut to the specified size and completed. In addition, in the case of Fig. 2, the foot plug obtained above is further placed in the lower mold, and the unvulcanized compound rubber is placed on top of it.
A 2 was placed, and then an upper mold having a depression for forming the head of the rubber stopper was placed, and pressure was applied at a temperature of 150±1°C to complete the rubber stopper. Cut the rubber stoppers into individual pieces. Then wash if necessary. Table 4 shows the vulcanization time and the breakage rate of the resin film during vulcanization.

【表】 第4表に示す如く、本発明に従つたフイルムは
加硫温度時の破断強度、破断伸度が大きいため
に、ゴム栓成形時に樹脂フイルムの破損率が少な
い。従つて、ゴム栓の品質保証が高い。 (4) 製品衛生試験 「日本薬局方」(第十改正)の「輸液用ゴム栓
試験方法」による衛生試験に準拠して、121±1
℃で60分間、精製水により抽出した液についての
透過率、泡立ち、PHの変化、亜鉛、過マンガン酸
カリウム還元性物質、蒸発残留物の各試験項目規
格に本実施例品は、総て合格した。 なおブリテイツシユ・スタンダーズ(British
Standards)3263(1960)に規定された、ラミネ
ートゴム栓の注射針刺し、及び水中のゴム落ち試
験に合格した。なお「日本薬局方」17注射剤に記
載してある10μm微粒子量を光遮蔽型自動微粒子
計測器(米国、HIAC製)にて試験した結果、微
粒子は1個も認められなかつた。 (5) ゴム栓の透湿試験 試験方法 注射剤用管びん(JIS R3523−1978):TB3(口
内径12.5±0.1mm)に粉末状の乾燥塩化カルシウ
ム±0.05gを充填し、その後、本発明実施例のゴ
ム栓又は比較例のゴム栓を施栓し、更にアルミキ
ヤツプを巻締めした。検体は、温度20±1℃、相
対湿度95%(Na2HPO4・12H2O)の試験器に放
置した後、予め五酸化リン中に4時間放置した重
量を基準にし、重量増加量を測定した。 透湿率(%)=経時検体重量−基本重量/基本重量×
100 結果を第5表に示す。
[Table] As shown in Table 4, since the film according to the present invention has high breaking strength and breaking elongation at vulcanization temperature, the resin film has a low breakage rate during rubber stopper molding. Therefore, the quality assurance of the rubber stopper is high. (4) Product hygienic test Based on the hygienic test according to the "Rubber stopper test method for infusion" of the "Japanese Pharmacopoeia" (10th revision), 121±1
This example product passed all of the test item specifications for transmittance, foaming, PH change, zinc, potassium permanganate reducing substance, and evaporation residue for the liquid extracted with purified water at ℃ for 60 minutes. did. The British Standards (British Standards)
It passed the syringe needle stick and underwater rubber drop tests for laminated rubber stoppers as specified in Standards) 3263 (1960). Furthermore, as a result of testing the amount of 10 μm fine particles listed in "Japanese Pharmacopoeia" 17 injection using a light-shielding automatic particle counter (manufactured by HIAC, USA), not a single fine particle was observed. (5) Moisture permeability test for rubber stoppers Test method Tubes for injections (JIS R3523-1978): TB 3 (mouth inner diameter 12.5 ± 0.1 mm) is filled with powdered dry calcium chloride ± 0.05 g, and then The rubber stopper of the invention example or the rubber stopper of the comparative example was attached, and an aluminum cap was further tightened. After leaving the specimen in a test chamber at a temperature of 20 ± 1°C and a relative humidity of 95% (Na 2 HPO 4 12H 2 O), the weight increase was calculated based on the weight that had been left in phosphorus pentoxide for 4 hours. It was measured. Moisture permeability (%) = Test weight over time - Basis weight / Basis weight x
100 The results are shown in Table 5.

【表】 実施例1の樹脂フイルムをラミネートしたゴム
栓はびん口との嵌合性がゴム素面のみよりも良好
であることを示す。これに対して比較例2の樹脂
フイルムは硬いために容器口との嵌合性が悪いた
めに塩化カルシウムが吸水して重量が増加した。 実施例2は、容器口頭部までフイルムでラミネ
ートしたゴム栓のためか、実施例1より若干嵌合
性が悪く、透湿率も大きい。しかし、硬度のフイ
ルムをラミネートしたゴム栓、即ち比較例3より
も嵌合性が良好なことをこの結果は示している。 本発明に従つて樹脂フイルムでラミネートした
ゴム栓の嵌合性(シール性)は、ゴム素面と同等
か又は若干良好なことを示す。 (6) その他の試験 (a) 自己密閉性試験 注射剤用管びんTB3に水10.0mlを正確に入れ、
本発明ゴム栓を施栓し、アルミキヤツプを巻き締
めて検体とする。予め検体の重量を測定し、それ
をAとする。 操作は注射器に皮下針(22G、1 1/4″)をつ
け、検体に空気2.0mlを圧入する。検体を倒立状
態にして検体内の水を2.0ml抜き取る。次に皮下
針を抜き取る。この後の重量をBとする。結果
は、試験20本の平均値として求めた。 液漏れ量(mg)=A−(B+2.0) (b) 真空保持性試験 注射剤用管びんTB3に本発明のラミネートゴム
栓を真空バイアル打栓機(器内の真空度20±
1Torrに調節すること)にて施栓し、すみやかに
アルミキヤツプを巻き締める。その検体を室温20
±1℃に放置し、28日、84日、168日放置した後
の、検体内の真空度を電子マノメータ(豊田工機
(株)製)で測定した。最初の値に対してリーク量を
第6表に示す。 (c) 針刺し試験(抵抗値) 注射剤用管びんTB3に本発明のラミネートゴム
栓を施栓し、更にアルミキヤツプを巻き締めて検
体とする。この検体に皮下注射針(21G R.B
TOP製)が貫通する際の抵抗値を測定する。試
験機は島津オートグラフDCS−100を使用し、速
度200mm/分とした。 これら試験の結果を第6表に示す。
[Table] The rubber stopper laminated with the resin film of Example 1 has a better fit with the bottle mouth than the rubber stopper alone. On the other hand, the resin film of Comparative Example 2 was hard and had poor fit with the container mouth, resulting in an increase in weight due to calcium chloride absorption. In Example 2, the fit was slightly worse than in Example 1, and the moisture permeability was also higher, probably because the rubber stopper was laminated with a film up to the mouth of the container. However, this result shows that the fit is better than that of the rubber stopper laminated with a hard film, that is, Comparative Example 3. The fitting performance (sealing performance) of the rubber stopper laminated with a resin film according to the present invention is equivalent to or slightly better than that of the rubber stopper. (6) Other tests (a) Self-sealing test Pour 10.0 ml of water into an injection tube TB 3 accurately.
A rubber stopper of the present invention is attached, and an aluminum cap is wrapped around it to prepare a sample. Measure the weight of the specimen in advance and call it A. The operation is to attach a hypodermic needle (22G, 1 1/4") to the syringe and pressurize 2.0ml of air into the specimen. Hold the specimen upside down and remove 2.0ml of water from the specimen. Next, remove the hypodermic needle. The remaining weight is B. The result was obtained as the average value of 20 test tubes. Amount of liquid leakage (mg) = A - (B + 2.0) (b) Vacuum retention test Injection tube bottle TB 3 The laminated rubber stopper of the present invention is applied to a vacuum vial capping machine (internal vacuum level 20±
Adjust to 1Torr) and immediately tighten the aluminum cap. Store the specimen at room temperature for 20 minutes.
After being left at ±1°C for 28, 84, and 168 days, the degree of vacuum inside the specimen was measured using an electronic manometer (Toyoda Koki
Co., Ltd.). Table 6 shows the amount of leakage for the initial values. (c) Needleprick test (resistance value) A laminate rubber stopper of the present invention is attached to an injection tube TB 3 , and an aluminum cap is further wrapped around the bottle to serve as a sample. Insert a hypodermic needle (21G RB) into this specimen.
(manufactured by TOP) measures the resistance value when it penetrates. The test machine used was Shimadzu Autograph DCS-100, and the speed was 200 mm/min. The results of these tests are shown in Table 6.

【表】 実施例1の本発明のラミネートゴム栓は、自己
密閉性、真空保持性試験、及び針刺し試験に於い
て、従来フイルムをラミネートしたゴム栓よりも
優れている。 その内容中、真空保持性に於いて容器口との嵌
合性に付いて言えば、ゴム類は優れた性質を持つ
物質であるのに対し、従来の樹脂フイルムは曲げ
弾性、表面状態から嵌合性が悪い。しかし本発明
の樹脂フイルムは、ゴム類と同等か又は若干優れ
ていることが上記の結果から理解される。 なお、針刺し試験は全体に抵抗値が低い。この
ように抵抗値が低い樹脂は自己密閉性が悪いのが
一般的であるが、本発明の樹脂フイルムは自己密
閉性も優れている。 [発明の効果] (1) 本発明のラミネートゴム栓は共重合体樹脂フ
イルムが柔軟性に富んでいるため、ラミネート
ゴム栓と容器口との嵌合性にすぐれ、したがつ
て、シール性に極めて優れた特性を有する。 (2) 本発明のラミネートゴム栓は自己密閉性に優
れる。 (3) 本発明のラミネートゴム栓は注射針貫通抵抗
力が大巾に改良された特性を有する。 (4) 本発明の共重合体樹脂フイルムは、高温状態
での物理的性質つまり、引張り強さ、伸びが極
めて優れているためゴム加硫と同時に複雑な形
状のゴム栓をラミネート成形でき、ゴム栓製造
収率はノンラミネートゴム製造とほぼ同率の収
率で得られる。 (5) 本発明のラミネートゴム栓は耐化学的に不活
性、無吸着性で、日本薬局方、ブリテイツシ
ユ・スタンダーズ(British Standards)3263、
その他の規格値に合格した、新しい、高級医薬
品を長期間保持保存し得るゴム栓である。
[Table] The laminated rubber stopper of the present invention of Example 1 is superior to the conventional rubber stopper laminated with a film in the self-sealing property, vacuum retention test, and needle stick test. Among the contents, rubber is a material with excellent properties when it comes to vacuum retention and fitability with the container mouth, whereas conventional resin films do not fit well due to their bending elasticity and surface condition. Poor compatibility. However, it is understood from the above results that the resin film of the present invention is equivalent to or slightly superior to rubbers. In addition, the resistance value in the needle stick test was low overall. Resins with such low resistance values generally have poor self-sealing properties, but the resin film of the present invention also has excellent self-sealing properties. [Effects of the Invention] (1) Since the copolymer resin film of the laminate rubber stopper of the present invention is highly flexible, the laminate rubber stopper and the container opening have excellent fitting properties, and therefore have excellent sealing performance. It has extremely excellent properties. (2) The laminated rubber stopper of the present invention has excellent self-sealing properties. (3) The laminated rubber stopper of the present invention has a characteristic that resistance to needle penetration is greatly improved. (4) The copolymer resin film of the present invention has extremely excellent physical properties at high temperatures, ie, tensile strength and elongation, so it can be laminated into rubber plugs of complicated shapes at the same time as rubber vulcanization, and rubber The yield of plug production is approximately the same as that of non-laminated rubber production. (5) The laminated rubber stopper of the present invention is chemically inert and non-adsorbent, and conforms to Japanese Pharmacopoeia, British Standards 3263,
This is a new rubber stopper that passes other standard values and can hold and preserve high-grade pharmaceuticals for a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のラミネートゴム栓の斜視
図、第2図は、素栓部のみをラミネートしたゴム
栓の断面図、第3図は、素栓部及び頭部下面にラ
ミネートしたゴム栓の断面図、及び第4図は、ノ
ンラミネートゴム栓の断面図である。 1……ゴム栓、2……ラミネートフイルム。
Fig. 1 is a perspective view of a laminated rubber stopper of the present invention, Fig. 2 is a cross-sectional view of a rubber stopper in which only the bare stopper part is laminated, and Fig. 3 is a rubber stopper laminated on the bare stopper part and the lower surface of the head. and FIG. 4 are cross-sectional views of the non-laminated rubber stopper. 1...Rubber stopper, 2...Laminated film.

Claims (1)

【特許請求の範囲】 1 ゴム栓本体の少なくとも容器口挿入部をフツ
素樹脂フイルムによりラミネートしたゴム栓にお
いて、フツ素樹脂フイルムがテトラフルオロエチ
レン、エチレン及び 式: CH2=CX−Rf () 〔式中、Xは水素又はフツ素、Rfはフルオロ
アルキル基を表す。〕 で示される共重合可能な含フツ素ビニルモノマー
からなる共重合体であつて、テトラフルオロエチ
レンとエチレンの含有モル比が62:38〜90:10で
あり、共重合可能な含フツ素ビニルモノマーの含
有量がテトラフルオロエチレンおよびエチレンの
合計モル数に対して0.1〜5モル%の組成範囲に
ある共重合体のフイルムであることを特徴とする
ラミネートゴム栓。
[Scope of Claims] 1. A rubber stopper in which at least the container mouth insertion portion of the rubber stopper body is laminated with a fluororesin film, wherein the fluororesin film contains tetrafluoroethylene, ethylene and the formula: CH 2 =CX-Rf () [ In the formula, X represents hydrogen or fluorine, and Rf represents a fluoroalkyl group. ] A copolymer consisting of a copolymerizable fluorine-containing vinyl monomer represented by the formula, wherein the molar ratio of tetrafluoroethylene to ethylene is 62:38 to 90:10, and the copolymerizable fluorine-containing vinyl monomer A laminate rubber stopper characterized in that it is a copolymer film having a monomer content in a composition range of 0.1 to 5 mol % based on the total number of moles of tetrafluoroethylene and ethylene.
JP60062826A 1984-05-22 1985-03-26 Laminated rubber plug Granted JPS60251041A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60062826A JPS60251041A (en) 1985-03-26 1985-03-26 Laminated rubber plug
US06/736,312 US4614276A (en) 1984-05-22 1985-05-21 Laminated rubber stopper
DE8585106281T DE3572462D1 (en) 1984-05-22 1985-05-22 Laminated rubber stopper
EP85106281A EP0163251B1 (en) 1984-05-22 1985-05-22 Laminated rubber stopper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60062826A JPS60251041A (en) 1985-03-26 1985-03-26 Laminated rubber plug

Publications (2)

Publication Number Publication Date
JPS60251041A JPS60251041A (en) 1985-12-11
JPH0464938B2 true JPH0464938B2 (en) 1992-10-16

Family

ID=13211517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60062826A Granted JPS60251041A (en) 1984-05-22 1985-03-26 Laminated rubber plug

Country Status (1)

Country Link
JP (1) JPS60251041A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131874A (en) * 2007-12-26 2014-07-17 Daikyo Seiko Ltd Rubber molding

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223961A (en) * 1988-07-13 1990-01-26 Showa Rubber Kk Laminated rubber plug for medicine, method and mold for preparing the same
JP2560099B2 (en) * 1988-11-18 1996-12-04 昭和ゴム株式会社 Rubber stopper for drug container
JPH1176365A (en) * 1997-09-01 1999-03-23 Nissho Corp Rubber plug for vial
JP2002209975A (en) 2001-01-19 2002-07-30 Daikyo Seiko Ltd Laminated rubber stopper for medical vial
US7604818B2 (en) * 2004-12-22 2009-10-20 Advanced Cardiovascular Systems, Inc. Polymers of fluorinated monomers and hydrocarbon monomers
US9040646B2 (en) * 2007-10-04 2015-05-26 W. L. Gore & Associates, Inc. Expandable TFE copolymers, methods of making, and porous, expanded articles thereof
WO2017082315A1 (en) 2015-11-13 2017-05-18 旭硝子株式会社 Resin film and production process therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753184A (en) * 1980-07-25 1982-03-30 Thomson Csf Electromagnetic radiation detecting matrix and image intensifier
JPS57109811A (en) * 1980-12-26 1982-07-08 Asahi Glass Co Ltd Fluorine-containing elastic copolymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753184A (en) * 1980-07-25 1982-03-30 Thomson Csf Electromagnetic radiation detecting matrix and image intensifier
JPS57109811A (en) * 1980-12-26 1982-07-08 Asahi Glass Co Ltd Fluorine-containing elastic copolymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131874A (en) * 2007-12-26 2014-07-17 Daikyo Seiko Ltd Rubber molding
JP5572859B2 (en) * 2007-12-26 2014-08-20 株式会社大協精工 Rubber molded product

Also Published As

Publication number Publication date
JPS60251041A (en) 1985-12-11

Similar Documents

Publication Publication Date Title
EP0163251B1 (en) Laminated rubber stopper
EP3045192B1 (en) Gasket for pre-filled syringe
JP2550256B2 (en) Medical bag
CA2458188C (en) Method and process for enhancing properties and medical tubing performance in a polybutadiene material
JPS62139668A (en) Laminated plug for syringe
US20090274912A1 (en) Multilayer structure having a grafted polyvinylidene fluoride blend layer
JPS6258615B2 (en)
WO1998014518A1 (en) Thermoplastic polymer composition
WO2011125133A1 (en) Cylinder gasket and pre-filled syringe using same
JP2689398B2 (en) Rubber compositions and rubber products for pharmaceuticals and medical devices
JPH0464938B2 (en)
JP6787335B2 (en) Resin film and its manufacturing method
JPS62156153A (en) Polymer composition
EP0841374B1 (en) Molded rubber part suitable for use in contact with medical solution
WO2015151264A1 (en) Injection fluid bag and injection preparation
WO2004033580A1 (en) Sealing material for semiconductor device and method for production thereof
EP1592382B1 (en) Medical container
JP4341125B2 (en) Chemical liquid permeation inhibitor, chemical liquid permeation inhibiting fluorine-containing resin composition comprising the inhibitor
JPH0422362A (en) Rubber plug for medicine vessel
JP2891838B2 (en) Pharmaceutical and medical rubber stoppers and method of manufacturing the same
JP4063992B2 (en) Block copolymer composition
JP4180391B2 (en) Vinylidene chloride copolymer resin composition and film
JPS62146931A (en) Production of molding based on fluoroelastomer-type thermoplastic elastomer
JP3399136B2 (en) Polymer composition for medical bag and medical bag
JP3973703B2 (en) Medical multi-chamber container

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term