JPH0464522B2 - - Google Patents

Info

Publication number
JPH0464522B2
JPH0464522B2 JP59243866A JP24386684A JPH0464522B2 JP H0464522 B2 JPH0464522 B2 JP H0464522B2 JP 59243866 A JP59243866 A JP 59243866A JP 24386684 A JP24386684 A JP 24386684A JP H0464522 B2 JPH0464522 B2 JP H0464522B2
Authority
JP
Japan
Prior art keywords
filler
organic
polymerization
phenyl group
artificial marble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59243866A
Other languages
Japanese (ja)
Other versions
JPS6160716A (en
Inventor
Isao Sasaki
Nobuhiro Mukai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP24386684A priority Critical patent/JPS6160716A/en
Publication of JPS6160716A publication Critical patent/JPS6160716A/en
Publication of JPH0464522B2 publication Critical patent/JPH0464522B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は充填剤を含有する人工大理石の製造法
に関し、更に詳細には、高い機械的性質と優れた
外観とを有する人工大理石の製造法に関する。 〔従来の技術〕 従来、主として意匠性、難燃性及び剛性を付与
する目的で、種々の無機化合物(例えば、水酸化
アルミニウム、シリカ、炭酸カルシウム等)が無
機質充填剤としてメタクリル酸メチル(MMA)
系樹脂に配合された各種の所謂人工大理石の開発
が行われてきた。 〔発明が解決しようとする問題点〕 これら従来の人工大理石において、無機質充填
剤と有機樹脂とは互いに諸性質を著しく異にする
ため、相溶性、接着性等の界面親和性に乏しく、
従つて、従来用いられた無機質充填剤は、人工大
理石の機械的特性、特に曲げ強度と衝撃強度に関
して充分な改良効果を発揮できないことが多かつ
た。従来の無機質充填剤に基づく前記欠点を改善
するために、無機質充填剤を例えばシランカツプ
リング剤で表面処理し、これを例えばMMA系樹
脂に配合して成る人工大理石が提案されている
が、まだ必ずしも充分な改善は達成されていな
い。 〔問題点を解決するための手段〕 前記の問題点を解決するために、本発明は、 一般式〔〕 〔式中、R1及びR2はそれぞれH、炭素数1〜15
のアルキル基、COOY(ここでYはH、NH4又は
アルカリ金属原子を表す)、ハロゲン原子、フエ
ニル基又は置換フエニル基、R3はH、炭素数1
〜15のアルキル基、ハロゲン原子、フエニル基又
は置換フエニル基、XはH、NH4又はアルカリ
金属原子を表す。〕又は、一般式〔〕 (式中、R4及びR5はそれぞれH、炭素数1〜15
のアルキル基、ハロゲン原子、フエニル基又は置
換フエニル基を表す。)で示される少なくとも1
種のカルボン酸系単量体と、少なくとも1種のラ
ジカル重合可能なビニル単量体とを、無機化合物
を分散させた重合系中で無触媒で重合させて強固
に合一化された有機質結合充填剤を得、ついでこ
の得られた有機質結合充填剤にビニル化合物を加
えて成る組成物を硬化させることを特徴とする人
工大理石の製造法を提供するものである。 本発明の製造法における有機質結合充填剤の形
成に用いられ、前記一般式〔〕又は〔〕で示
されるカルボン酸系単量体は、重合活性をもたら
す活性サイトとしてカルボン酸基を有し、かつ生
成重合体と無機化合物との強固な合一性を発現さ
せる活性サイトとしての二重結合を有することが
必須条件であり、これらの官能基を有する化合物
であればいずれでもよく、例としてアクリル酸、
メタクリル酸、クロトン酸、チグリン酸、ケイ皮
酸、無水マレイン酸、無水シトラコン酸等を挙げ
ることができ、これらのうち、重合活性が高い点
で特にアクリル酸、メタクリル酸及びクロトン酸
が好ましい。 また前記有機質結合充填剤の形成に用いられる
無機化合物としては、周期表第、、、、
族、遷移金属及びこれらの酸化物、水酸化物、
塩化物、硫酸塩、亜硫酸塩、炭酸塩、リン酸塩、
ケイ酸塩及びこれらの混合物、複合塩等が挙げら
れ、これらのうち、亜硫酸カルシウム、硫酸カル
シウム、硫酸バリウム、二酸化ケイ素、石英、方
解石、長石、酸化チタン、三酸化アンチモン、タ
ルク、クレー、酸化アルミニウム、炭酸カルシウ
ム、ニッケル粉、鉄粉、亜鉛粉、銅粉、酸化鉄、
酸化亜鉛、水酸化アルミニウム、水酸化マグネシ
ウム、ガラス粉末、ガラスビーズ、ガラス繊維、
バリウム塩、鉛塩を含有するガラスフイラー、シ
リカゲル、ジルコニウム酸化物、スズ酸化物、セ
ツコウ等が、ビニル単量体の活性化及び重合体と
の強固な結合効果が特に顕著であり、好ましい。
これらの無機化合物は組成物全重量に対して20〜
95重量%、好ましくは30〜90重量%の量で使用す
ることができ、その形状、大きさは適宜選択でき
る。 さらに前記有機質結合充填剤の形成に用いられ
るビニル単量体としては、ラジカル重合可能な通
常のビニル単量体のいずれでもよく、中でもメタ
クリル酸メチルは特異的に重合活性が高く、その
上、生成重合体と無機化合物との合一性が良好で
あるため、特に好ましい。2種以上のビニル単量
体が混合使用される場合、その1成分としてメタ
クリル酸メチルを使用することは、特に重合活性
の面から好ましい。 前記有機質結合充填剤は、無機化合物を分散さ
せた重合系中で、前記カルボン酸系単量体及び1
種以上の重合可能な前記ビニル単量体を重合させ
ること、即ち、無機化合物の存在下での重合を必
須条件として得ることができる。 前記有機質結合充填剤の好ましい製造法の一例
として、熱重合反応を生じない範囲の温度条件で
前記ビニル単量体と前記無機化合物とを水媒体中
に懸濁分散させた後、前記カルボン酸系単量体を
添加、撹拌することによつて、水系不均一重合反
応を起こさせ、所定時間、重合を行う方法を挙げ
ることができる。 有機質結合充填剤を得る際のカルボン酸系単量
体は、無機化合物とビニル単量体との総重量に基
づき約0.05〜100重量%、好ましくは0.1〜50重量
%、より好ましくは0.5〜30重量%の量で使用さ
れる。大抵の場合、ヒニル単量体成分の増加に応
じてカルボン酸系単量体の量を増加させるのが好
ましい。また無機化合物とビニル単量体(1種ま
たは2種以上の混合物)との重量比は広範囲に変
えることができ、約500:1〜約1:5、好まし
くは約50:1〜約1:1の範囲でああ。反応媒体
としての水の量は、無機化合物とビニル単量体と
の総重量に基づき約1重量%〜数百倍、好ましく
は約10重量%〜数10倍の範囲である。重合反応は
好ましくは、例えば窒素等の不活性ガスの雰囲気
下で、約10〜100℃、好ましくは20〜80℃の温度
範囲で行われる。反応時間は30分〜約15時間とす
ることができる。生成される有機質結合充填剤
は、約10〜300℃、好ましくは約50〜200℃の温度
範囲で乾燥することができる。 この有機質結合充填剤における無機化合物と重
合体との間の相互作用は、簡単な吸着あるいは、
フアンデルワールス力等による物理的な意味にお
ける接着以上のものである。このことは、ビニル
重合体の良溶媒、例えば熱ベンゼンでこの有機質
結合充填剤を抽出処理した場合、抽出される重合
体が極めて少ないことから明らかである。有機質
結合充填剤における無機化合物と重合体とのこの
ような強固な結合効果は、無機化合物の存在下で
の前記重合の際に生成すると考えられる重合体を
別途製造し、これを溶剤法によつて前記無機化合
物に被覆させた単なる有機質充填剤によつては全
く得られず、このことは、この有機質充填剤に前
記と同様の抽出処理を行うと、重合体の大部分が
抽出されることから明らかである。 本発明の製造法において、前記有機質結合充填
剤と配合されるビニル化合物としては、メタクリ
ル酸メチル及びメタクリル酸メチルの部分重合物
(以下、メタクリレートシロツプと記す)が好ま
しく、他の単官能性ビニル化合物又は多官能性ビ
ニル化合物を併用してもよい。前記メタクリレー
トシロツプは、重合体の割合が95〜2重量%、好
ましくは85〜15重量%のものが用いられる。 前記単官能性ビニル化合物の例としては、スチ
レン;アクリロニトリル;酢酸ビニル;メチルア
クリレート;エチルアクリレート及びメタクリレ
ート;ブチルアクリレート及びメタクリレート;
2−エチルヘキシルアクリレート及びメタクリレ
ート;ラウリルアクリレート及びメタクリレー
ト;ステアリルアクリレート及びメタクリレー
ト;ビドロキシエチルアクリレート及びメタクリ
レート;メトキシエチルアクリレート及びメタク
リレート;グリシジルアクリレート及びメタクリ
レート;メタクリロキシエチルトリメリツト酸及
びその酸無水物等が挙げられる。 前記多官能性ビニル化合物としては、 一般式〔〕 (式中、R6はH又はメチル基、pは1〜20の整
数である)で示されるエチレングリコールジアク
リレート及びジメタクリレート;ジエチレングリ
コールジアクリレート及びジメタクリレート;ト
リエチレングリコールジアクリレート及びジメタ
クリレート;ポリエチレングリコールジアクリレ
ート及びジメタクリレート等が挙げられる。これ
らのアクリレート類及びメタクリレート類は各単
独で、又は2種以上を組み合わせて使用すること
ができる。さらに液状のポリブタジエンを添加す
ることもできる。 本発明の製造法においては、組成物中に主とし
て粘度低減化をはかるために、シラン系、チタネ
ート系、アルミネート系及びジルコアルミネート
系の各カツプリング剤の少なくとも1種が配合さ
れていることが好ましく、その配合量は、組成物
全量に対して0.01〜10重量%であればよい。 また本発明の製造法においては組成物中に、必
要に応じて着色剤、重合禁止剤、紫外線吸収剤、
酸化防止剤を配合することもできる。 前記有機質結合充填剤と前記ビニル化合物とか
ら成る組成物を注型重合法により重合硬化させて
成形された人工大理石を得る。その際、組成物中
において従来手法では極めて困難であつた充填剤
の均一分散安定化が得られ、従つて硬化成形物も
優れた諸特性を発揮することができる。なお、前
記有機質結合充填剤をメタクリル系樹脂と混合
し、この混合物を溶融加熱により、加圧成形する
ことにより、優れた性質を有する成形物を得るこ
とができるが、この成形物は、前記注型重合によ
つて得られる硬化成形物に比較すると機械的強度
がわずかに劣る。 前記組成物を使用して所望の硬化成形物を得る
ためには、組成物中のビニル化合物を重合硬化さ
せるための重合触媒が用いられる。重合触媒とし
ては、公知の化合物がいずれも使用できるが、加
熱により重合硬化させる場合には、高温で分解し
て重合を開始し得る物質、例えば過酸化ベンゾイ
ル、クメンヒドロペルオキシド、tert−ブチルヒ
ドロペルオキシド、ジクミルペルオキシド、過酸
化アセチル、過酸化ラウロイル、アゾビスイソブ
チロニトリルなどがあり、常温で重合硬化させる
場合には、例えば過酸化物とアミン類、過酸化物
とスルフイン酸類、過酸化物とコバルト化合物類
の各組合わせが使用できる。 また、前記組成物は、光増感剤、例えばベンゾ
インメチルエーテル、ベンゾインエチルエーテ
ル、ベンゾインプロピルエーテル等を用いて、紫
外線照射により硬化させることもできる。 注型重合により硬化させるのに使用される重合
開始剤の量は、ビニル化合物に対して0.01〜10重
量%の範囲とすることができる。また、注型重合
は例えば、まず50〜80℃で1〜5時間重合反応を
行い、次いで100〜140℃で0.5〜3時間重合反応
を行うようにして実施することができる。 以下に本発明を実施例よりさらに詳細に説明す
る。なお、実施例中の部はすべて重量部である。
また、硬化成形物の機械的強度の測定は、JIS
K6911に従つて、曲げ強度とアイゾツト衝撃強度
とについて行つた。 実施例1と2及び比較例1と2 冷却管、窒素導入管、撹拌棒及び内温検知用熱
電対を備えた5の四つ口フラスコに脱イオン水
4,000mlを入れ、これに無機化合物として水酸
化アルミニウム粉末(昭和軽金属(株)製、ハイジラ
イト(商標)H−210)1200gを加え、懸濁分散
させた後、30分間窒素置換を行つた。次いで、ビ
ニル単量体としてメタクリル酸メチル215gを窒
素の流通下に激しく撹拌しながら加えた。次に、
温水浴中でフラスコの内容物を60℃まで昇温さ
せ、メタクリル酸メチルの均一な分散状態を確認
した後、さらに、カルボン酸系単量体としてメタ
クリル酸57gを脱イオン水100mlに溶解した溶液
を徐々に加え、60℃で8時間重合反応を行つた。 反応終了後、生成物を減圧濾過し、脱イオン水
で充分に洗浄後、蒸気乾燥機を用いて105℃で水
分を除去して有機質結合充填剤1370gを得た。こ
の有機質結合充填剤については、重合体含有率を
焼成法で測定したところ、12%であり、一方、熱
ベンゼンを抽出溶媒として50時間のソックスレー
抽出試験を行つたところ、抽出処理後でもなお重
合体含有率は10%であつた。従つて、水酸化アル
ミニウム粉末と、この粉末の表面に前記重合反応
によつて複合化された重合体の大部分とは極めて
強固に合一化していることがわかつた。 こうして得られた有機質結合充填剤を、メタク
リレートシロツプ(重合率=33.4%、重合体の固
有粘度=0.033/g、23℃における粘度=
680cp)及びアゾビスイソブチロニトリルと、次
の第1表の実施例1に示す割合で配合し、この配
合物を機械的に混合し、注型重合用のドープを調
製した。 またドープ粘度低減化のために、シランカツプ
リング剤として3−メタクリロキシプロピルトリ
メトキシシランを有機質結合充填剤に対して1重
量%配合したドープを調製した(実施例2)。 これら実施例1及び2の各ドープを、ポリエチ
レンテレフタレートフイルムを貼り付けた強化ガ
ラス及びガスケツトで構成された型に充填した
後、水槽を用いて65℃で3時間、さらに乾式で
120℃で2時間硬化させた。得られた各硬化物の
曲げ強度及びアイゾツト衝撃強度を測定した。結
果を第1表に示した。 比較のため、前記実施例1及び2で使用された
有機質結合充填剤の代わりに、この充填剤の形成
に用いた前記水酸化アルミニウム粉末を充填剤と
したドープ(比較例1)及び、さらに実施例2と
同様にシランカツプリング剤を配合したドープ
(比較例2)を調製した。なお、この比較例1に
おいて、充填剤の配合量は、実施例1における有
機質結合充填剤中の水酸化アルミニウム粉末の含
有量に相当するようにした。即ち、409部×0.88
=360部。一方、比較例1におけるメタクリレー
トシロツプの配合量は、前記有機質結合充填剤中
の重合体の含有量に相当する量、即ち、409部−
360部=49部だけ実施例1より多くした。実施例
2と比較例2とにおいても、同様の計算に基づい
て各配合量を決めた。 比較例1及び2の各ドープを用いて、前記実施
例と同様に硬化物を得、曲げ強度とアイゾツト衝
撃強度を測定した。結果を第1表に示した。
[Industrial Application Field] The present invention relates to a method for manufacturing artificial marble containing fillers, and more particularly to a method for manufacturing artificial marble having high mechanical properties and excellent appearance. [Prior Art] Conventionally, various inorganic compounds (e.g., aluminum hydroxide, silica, calcium carbonate, etc.) have been used as inorganic fillers such as methyl methacrylate (MMA) mainly for the purpose of imparting design properties, flame retardance, and rigidity.
Various so-called artificial marbles blended with resins have been developed. [Problems to be solved by the invention] In these conventional artificial marbles, the inorganic filler and the organic resin have significantly different properties, so they have poor interfacial compatibility such as compatibility and adhesiveness.
Therefore, conventionally used inorganic fillers have often been unable to sufficiently improve the mechanical properties of artificial marble, particularly with respect to bending strength and impact strength. In order to improve the above-mentioned drawbacks caused by conventional inorganic fillers, artificial marble has been proposed in which the surface of the inorganic filler is treated with, for example, a silane coupling agent, and this is blended with, for example, MMA-based resin. Sufficient improvement has not always been achieved. [Means for Solving the Problems] In order to solve the above problems, the present invention provides the following: [In the formula, R 1 and R 2 are each H, carbon number 1 to 15
alkyl group, COOY (where Y represents H, NH 4 or an alkali metal atom), halogen atom, phenyl group or substituted phenyl group, R 3 is H, carbon number 1
~15 alkyl groups, halogen atoms, phenyl groups or substituted phenyl groups, X represents H, NH 4 or an alkali metal atom. ] or general formula [] (In the formula, R 4 and R 5 are each H, carbon number 1 to 15
represents an alkyl group, halogen atom, phenyl group or substituted phenyl group. ) at least 1
An organic bond formed by polymerizing a seed carboxylic acid monomer and at least one radically polymerizable vinyl monomer without a catalyst in a polymerization system in which an inorganic compound is dispersed. The present invention provides a method for producing artificial marble, which comprises obtaining a filler, and then curing a composition obtained by adding a vinyl compound to the obtained organic bond filler. The carboxylic acid monomer used to form the organic bond filler in the production method of the present invention and represented by the general formula [] or [] has a carboxylic acid group as an active site that brings about polymerization activity, and It is essential that the resulting polymer has a double bond as an active site to express strong union with the inorganic compound, and any compound having these functional groups may be used, such as acrylic acid. ,
Examples include methacrylic acid, crotonic acid, tiglic acid, cinnamic acid, maleic anhydride, and citraconic anhydride. Among these, acrylic acid, methacrylic acid, and crotonic acid are particularly preferred because they have high polymerization activity. In addition, the inorganic compounds used for forming the organic binding filler include those listed in the periodic table.
group, transition metals and their oxides, hydroxides,
chloride, sulfate, sulfite, carbonate, phosphate,
Examples include silicates, mixtures thereof, complex salts, etc. Among these, calcium sulfite, calcium sulfate, barium sulfate, silicon dioxide, quartz, calcite, feldspar, titanium oxide, antimony trioxide, talc, clay, aluminum oxide. , calcium carbonate, nickel powder, iron powder, zinc powder, copper powder, iron oxide,
Zinc oxide, aluminum hydroxide, magnesium hydroxide, glass powder, glass beads, glass fiber,
Glass fillers containing barium salts or lead salts, silica gel, zirconium oxides, tin oxides, slags, etc. are preferred because they have a particularly remarkable effect of activating vinyl monomers and strongly bonding with polymers.
These inorganic compounds should be present in amounts ranging from 20% to 20% based on the total weight of the composition.
It can be used in an amount of 95% by weight, preferably 30 to 90% by weight, and its shape and size can be selected as appropriate. Furthermore, the vinyl monomer used to form the organic bonding filler may be any ordinary vinyl monomer that can be radically polymerized, and among them, methyl methacrylate has a particularly high polymerization activity, and moreover, It is particularly preferred because the polymer and the inorganic compound have good coalescence. When two or more types of vinyl monomers are used in combination, it is particularly preferable to use methyl methacrylate as one component from the viewpoint of polymerization activity. The organic binding filler is formed by combining the carboxylic acid monomer and 1 in a polymerization system in which an inorganic compound is dispersed.
It can be obtained by polymerizing more than one type of polymerizable vinyl monomer, that is, by polymerizing in the presence of an inorganic compound as an essential condition. As an example of a preferred method for producing the organic bond filler, the vinyl monomer and the inorganic compound are suspended and dispersed in an aqueous medium under temperature conditions that do not cause a thermal polymerization reaction, and then the carboxylic acid-based filler is suspended and dispersed in an aqueous medium. Examples include a method in which a monomer is added and stirred to cause an aqueous heterogeneous polymerization reaction, and the polymerization is carried out for a predetermined period of time. The amount of carboxylic acid monomer used to obtain the organic binding filler is about 0.05 to 100% by weight, preferably 0.1 to 50% by weight, more preferably 0.5 to 30% by weight, based on the total weight of the inorganic compound and vinyl monomer. Used in amounts of % by weight. In most cases, it is preferred to increase the amount of carboxylic acid monomer as the hinyl monomer content increases. Additionally, the weight ratio of inorganic compound to vinyl monomer (one type or mixture of two or more types) can vary over a wide range, and is from about 500:1 to about 1:5, preferably from about 50:1 to about 1: In the range of 1. The amount of water as a reaction medium ranges from about 1% by weight to several hundred times, preferably from about 10% by weight to several tens of times, based on the total weight of inorganic compound and vinyl monomer. The polymerization reaction is preferably carried out at a temperature range of about 10-100°C, preferably 20-80°C, under an atmosphere of an inert gas, such as nitrogen. Reaction times can range from 30 minutes to about 15 hours. The organic bond filler produced can be dried at a temperature ranging from about 10 to 300°C, preferably from about 50 to 200°C. The interaction between the inorganic compound and the polymer in this organic binding filler can be caused by simple adsorption or
This is more than adhesion in a physical sense due to van der Waals forces and the like. This is clear from the fact that when this organic bond filler is extracted with a good solvent for vinyl polymers, such as hot benzene, very little polymer is extracted. Such a strong bonding effect between the inorganic compound and the polymer in the organic bonding filler can be obtained by separately producing a polymer that is thought to be produced during the above polymerization in the presence of the inorganic compound, and then using a solvent method to produce the polymer. This cannot be obtained at all by simply using an organic filler coated on the inorganic compound, and this means that if this organic filler is subjected to the same extraction process as described above, most of the polymer will be extracted. It is clear from this. In the production method of the present invention, the vinyl compound to be blended with the organic binding filler is preferably methyl methacrylate and a partial polymer of methyl methacrylate (hereinafter referred to as methacrylate syrup), and other monofunctional A vinyl compound or a polyfunctional vinyl compound may be used in combination. The methacrylate syrup used has a polymer content of 95 to 2% by weight, preferably 85 to 15% by weight. Examples of the monofunctional vinyl compounds include styrene; acrylonitrile; vinyl acetate; methyl acrylate; ethyl acrylate and methacrylate; butyl acrylate and methacrylate;
2-ethylhexyl acrylate and methacrylate; lauryl acrylate and methacrylate; stearyl acrylate and methacrylate; bidroxyethyl acrylate and methacrylate; methoxyethyl acrylate and methacrylate; glycidyl acrylate and methacrylate; methacryloxyethyl trimellitic acid and its acid anhydride, etc. . The polyfunctional vinyl compound has the general formula [] (In the formula, R 6 is H or a methyl group, p is an integer of 1 to 20) Ethylene glycol diacrylate and dimethacrylate; Diethylene glycol diacrylate and dimethacrylate; Triethylene glycol diacrylate and dimethacrylate; Polyethylene Examples include glycol diacrylate and dimethacrylate. These acrylates and methacrylates can be used alone or in combination of two or more. Furthermore, liquid polybutadiene can also be added. In the production method of the present invention, at least one of silane-based, titanate-based, aluminate-based, and zircoaluminate-based coupling agents is blended into the composition, mainly to reduce viscosity. Preferably, the blending amount may be 0.01 to 10% by weight based on the total amount of the composition. In addition, in the production method of the present invention, colorants, polymerization inhibitors, ultraviolet absorbers,
Antioxidants can also be blended. A molded artificial marble is obtained by polymerizing and curing a composition comprising the organic bond filler and the vinyl compound by a cast polymerization method. At this time, it is possible to stabilize the uniform dispersion of the filler in the composition, which has been extremely difficult using conventional methods, and the cured molded product can therefore exhibit excellent properties. Note that by mixing the organic binder filler with a methacrylic resin and press-molding this mixture by melting and heating, a molded product with excellent properties can be obtained. The mechanical strength is slightly inferior to that of cured molded products obtained by mold polymerization. In order to obtain a desired cured molded article using the composition, a polymerization catalyst for polymerizing and curing the vinyl compound in the composition is used. Any known compound can be used as the polymerization catalyst, but in the case of polymerization and curing by heating, substances that can decompose at high temperatures and initiate polymerization, such as benzoyl peroxide, cumene hydroperoxide, tert-butyl hydroperoxide, etc. , dicumyl peroxide, acetyl peroxide, lauroyl peroxide, azobisisobutyronitrile, etc. When polymerizing and curing at room temperature, for example, peroxide and amines, peroxide and sulfinic acids, peroxide and cobalt compounds can be used. The composition can also be cured by UV irradiation using a photosensitizer such as benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, etc. The amount of polymerization initiator used for curing by cast polymerization can range from 0.01 to 10% by weight, based on the vinyl compound. Cast polymerization can be carried out, for example, by first carrying out a polymerization reaction at 50 to 80°C for 1 to 5 hours, and then carrying out a polymerization reaction at 100 to 140°C for 0.5 to 3 hours. The present invention will be explained in more detail below with reference to Examples. Note that all parts in the examples are parts by weight.
In addition, the mechanical strength of cured molded products can be measured using JIS
Bending strength and Izot impact strength were tested in accordance with K6911. Examples 1 and 2 and Comparative Examples 1 and 2 4,000 ml of deionized water was placed in a No. 5 four-necked flask equipped with a cooling tube, a nitrogen introduction tube, a stirring rod, and a thermocouple for internal temperature detection, and inorganic compounds were added to the flask. After adding 1200 g of aluminum hydroxide powder (Hygilite (trademark) H-210, manufactured by Showa Light Metal Co., Ltd.) and suspending and dispersing the mixture, the mixture was purged with nitrogen for 30 minutes. Next, 215 g of methyl methacrylate as a vinyl monomer was added under nitrogen flow and vigorous stirring. next,
After heating the contents of the flask to 60°C in a hot water bath and confirming the uniform dispersion of methyl methacrylate, a solution of 57 g of methacrylic acid as a carboxylic acid monomer dissolved in 100 ml of deionized water was added. was gradually added, and the polymerization reaction was carried out at 60°C for 8 hours. After the reaction was completed, the product was filtered under reduced pressure, thoroughly washed with deionized water, and then water was removed using a steam dryer at 105°C to obtain 1370 g of an organic binding filler. The polymer content of this organic binder filler was measured using a calcination method and was found to be 12%.On the other hand, when a Soxhlet extraction test was conducted for 50 hours using hot benzene as an extraction solvent, it was found that even after the extraction process, the polymer content was still 12%. The combined content was 10%. Therefore, it was found that the aluminum hydroxide powder and most of the polymer composited on the surface of this powder by the polymerization reaction were extremely strongly integrated. The organic bond filler thus obtained was mixed into methacrylate syrup (polymerization rate = 33.4%, intrinsic viscosity of the polymer = 0.033/g, viscosity at 23°C =
680 cp) and azobisisobutyronitrile in the proportions shown in Example 1 in Table 1 below, and this blend was mechanically mixed to prepare a dope for cast polymerization. Further, in order to reduce the viscosity of the dope, a dope was prepared in which 1% by weight of 3-methacryloxypropyltrimethoxysilane was blended as a silane coupling agent based on the organic binding filler (Example 2). Each of the dopes of Examples 1 and 2 was filled into a mold made of tempered glass with a polyethylene terephthalate film attached and a gasket.
It was cured at 120°C for 2 hours. The bending strength and Izot impact strength of each of the obtained cured products were measured. The results are shown in Table 1. For comparison, a dope (Comparative Example 1) in which the aluminum hydroxide powder used in the formation of this filler was used as a filler instead of the organic binding filler used in Examples 1 and 2, and A dope containing a silane coupling agent (Comparative Example 2) was prepared in the same manner as in Example 2. In Comparative Example 1, the blending amount of the filler was made to correspond to the content of aluminum hydroxide powder in the organic binding filler in Example 1. That is, 409 copies x 0.88
=360 copies. On the other hand, the amount of methacrylate syrup blended in Comparative Example 1 was an amount corresponding to the content of the polymer in the organic binding filler, that is, 409 parts.
The amount was increased by 360 copies = 49 copies compared to Example 1. In Example 2 and Comparative Example 2, each compounding amount was determined based on similar calculations. Using each dope of Comparative Examples 1 and 2, cured products were obtained in the same manner as in the above Examples, and the bending strength and Izot impact strength were measured. The results are shown in Table 1.

【表】 第1表から明らかなように、本発明の実施例に
よる有機質結合充填剤を配合してなるドープ組成
物は、未処理充填剤を配合してなる比較例のドー
プ組成物に比べて、優れた機械的性質を有する人
工大理石硬化物を与えることができる。また、前
記有機質結合充填剤は液部レジンに対する濡れ性
が極めてよいためにレジンと複合化しやすく、硬
化物の外観は比較例の場合に比べて著しくきれい
であつた。 実施例3と4及び比較例3と4 無機化合物として石英粉末(龍森(株)製クリスタ
ライト(商標)A−2)1200gを用いた他は実施
例1の場合と同様にして水系不均一重合反応を行
い、有機質結合充填剤1333gを得た。この有機質
結合充填剤は重合体含有率が10%であり、熱ベン
ゼンによる50時間のソツクスレー抽出処理後でも
なお重合体含有率は9%であつた。この有機質結
合充填剤及び前記石英粉末をそれぞれ用いて、第
2表に示す配合に従つて、実施例3と4及び比較
例3と4の各ドープを調製し、これらのドープを
実施例1と同様にして硬化させた。得られた硬化
物について機械的強度を測定し、結果を第2表に
示した。
[Table] As is clear from Table 1, the dope composition containing the organic binder filler according to the example of the present invention is superior to the dope composition of the comparative example containing the untreated filler. , can provide an artificial marble cured product with excellent mechanical properties. Further, since the organic binding filler had extremely good wettability with respect to the liquid resin, it was easy to form a composite with the resin, and the appearance of the cured product was significantly cleaner than that of the comparative example. Examples 3 and 4 and Comparative Examples 3 and 4 Aqueous heterogeneous treatment was performed in the same manner as in Example 1, except that 1200 g of quartz powder (Crystallite (trademark) A-2 manufactured by Ryumori Co., Ltd.) was used as the inorganic compound. A polymerization reaction was carried out to obtain 1333 g of an organic bonding filler. The organic binder filler had a polymer content of 10%, and even after 50 hours of Soxhlet extraction with hot benzene, the polymer content was still 9%. Using this organic binder filler and the quartz powder, dopes of Examples 3 and 4 and Comparative Examples 3 and 4 were prepared according to the formulations shown in Table 2, and these dopes were mixed with Example 1 and Comparative Examples 3 and 4. It was cured in the same way. The mechanical strength of the obtained cured product was measured and the results are shown in Table 2.

【表】 第2表から明らかなように、比較例3と4の各
ドープは、強度物性値が、実施例3と4の各ドー
プの場合に比べてかなり低い水準である硬化物を
与えられる。即ち、本実施例における有機質結合
充填剤は、硬化物に対して著しい強度改良効果を
発揮し、優れた機械的性質を有する人工大理石用
硬化物を与える。また、この有機質結合充填剤は
液部レジンとの濡れ性が極めて良好であるため
に、レジンと複合化しやすく、しかも、硬化物は
外観が比較例の場合と比べて著しくきれいであつ
た。 実施例5及び比較例5と6 無機化合物として水酸化マグネシウム粉末(試
薬特級)1200gを用いた他は実施例1の場合と同
様にして水系不均一重合反応を行い、有機質結合
充填剤1412gを得た。この有機質結合充填剤は重
合体含有率が15%であり、熱ベンゼンによる50時
間のソツクスレー抽出処理後でもなお重合体含有
率は13%であつた。この有機質結合充填剤及び前
記水酸化マグネシウム粉末をそれぞれ用いて、第
3表に示す配合に従つて、実施例5及び比較例5
と6の各ドープを調製し、これらのドープを実施
例1と同様にして硬化させた。得られた硬化物の
機械的強度を測定し、結果を第3表に示した。
[Table] As is clear from Table 2, each of the dopes of Comparative Examples 3 and 4 provides a cured product with physical strength values that are considerably lower than those of each of the dopes of Examples 3 and 4. . That is, the organic bond filler in this example exhibits a remarkable strength-improving effect on the cured product, and provides a cured product for artificial marble with excellent mechanical properties. Furthermore, since this organic binding filler had extremely good wettability with the liquid resin, it was easy to form a composite with the resin, and the appearance of the cured product was significantly cleaner than that of the comparative example. Example 5 and Comparative Examples 5 and 6 An aqueous heterogeneous polymerization reaction was carried out in the same manner as in Example 1, except that 1200 g of magnesium hydroxide powder (special grade reagent) was used as the inorganic compound, and 1412 g of organic binding filler was obtained. Ta. The organic binder filler had a polymer content of 15%, and even after 50 hours of Soxhlet extraction with hot benzene, the polymer content was still 13%. Using this organic binding filler and the magnesium hydroxide powder, Example 5 and Comparative Example 5 were prepared according to the formulations shown in Table 3.
and 6 were prepared, and these dopes were cured in the same manner as in Example 1. The mechanical strength of the obtained cured product was measured and the results are shown in Table 3.

【表】 第3表から明らかなように、水酸化マグネシウ
ム粉末を充填剤として利用した比較例5と6の各
ドープは、強度物性値が実施例5のドープの場合
に比べてかなり低い水準である硬化物を与える。
即ち、本実施例における有機質結合充填剤は、硬
化物に対して著しい強度改良効果を発揮し、優れ
た機械的性質を有する人工大理石用硬化物を与え
る。また、この有機質結合充填剤は液部レジンと
の濡れ性が極めて良好であるために、レジンと複
合化しやすく、しかも、硬化物は外観が比較例の
場合と比べて著しくきれいであつた。 比較例 7 バルク重合法により、メタクリル酸メチル50g
と、メタクリル酸13gとを、重合開始剤としてア
ゾビスイソブチロニトリル0.6gを用いて共重合
反応を行つた。得られた共重合体49gをメタクリ
レートシロツプ(実施例1に記載のものと同じ)
191gに溶解した共重合体配合メタクリレートシ
ロツプ240gを用い、前記比較例2と同様に配合
してドープを調製し、硬化させた。硬化物の機械
的強度を測定した結果、第4表に示す通りでつ
た。
[Table] As is clear from Table 3, the strength properties of the dopes of Comparative Examples 5 and 6, which used magnesium hydroxide powder as a filler, were significantly lower than that of the dope of Example 5. Give a certain cured product.
That is, the organic bond filler in this example exhibits a remarkable strength-improving effect on the cured product, and provides a cured product for artificial marble with excellent mechanical properties. Furthermore, since this organic binding filler had extremely good wettability with the liquid resin, it was easy to form a composite with the resin, and the appearance of the cured product was significantly cleaner than that of the comparative example. Comparative Example 7 50g of methyl methacrylate by bulk polymerization method
and 13 g of methacrylic acid were copolymerized using 0.6 g of azobisisobutyronitrile as a polymerization initiator. 49 g of the obtained copolymer was added to methacrylate syrup (same as described in Example 1).
Using 240 g of the copolymer-blended methacrylate syrup dissolved in 191 g, a dope was prepared and cured in the same manner as in Comparative Example 2 above. The mechanical strength of the cured product was measured and the results were as shown in Table 4.

【表】 第4表から明らかなように、比較例7のドープ
の硬化分は強度物性値が実施例2と比べてかなり
低い水準であつた。また、濡れ性が不良であるた
めに複合化しにくく、しかも充填剤の均一分散安
定性が悪いため充填剤の沈澱が起こり、硬化物の
外観は著しく不良であつた。 参考例 1 前記実施例1において得られた有機質結合充填
剤と、パール状のメタクリル酸メチル樹脂とを混
合し、溶融加熱による加圧成形を行い、実施例1
の場合と同様に機械的強度を測定した。 結果を第5表に示した。
[Table] As is clear from Table 4, the hardened portion of the dope of Comparative Example 7 had a significantly lower strength physical property value than that of Example 2. In addition, the wettability was poor, making it difficult to form a composite, and the uniform dispersion stability of the filler was poor, resulting in filler precipitation, and the appearance of the cured product was extremely poor. Reference Example 1 The organic bond filler obtained in Example 1 and pearl-like methyl methacrylate resin were mixed and pressure molded by melting and heating.
Mechanical strength was measured in the same way as in the case of . The results are shown in Table 5.

〔発明の効果〕〔Effect of the invention〕

本発明に係る人工大理石の製造法は、充填剤と
して無機化合物と有機重合体とが強固に合一化さ
れた有機質結合充填剤を配合するため、充填剤と
ビニル化合物との界面親和性が著しく改善され、
この結果、組成物中での充填剤の均一分散安定化
がもたらされ、作業性が著しく改善される。従つ
て、この組成物を硬化させることにより、従来の
製造法では得られなかつた高い機械的性質と優れ
た外観とを有する人工大理石を得ることができ
る。
The method for producing artificial marble according to the present invention uses an organic bonding filler in which an inorganic compound and an organic polymer are strongly combined as a filler, so the interfacial affinity between the filler and the vinyl compound is extremely high. improved,
As a result, the filler is uniformly dispersed and stabilized in the composition, and workability is significantly improved. Therefore, by curing this composition, it is possible to obtain artificial marble having high mechanical properties and an excellent appearance that cannot be obtained by conventional manufacturing methods.

Claims (1)

【特許請求の範囲】 1 一般式〔〕 〔式中、R1及びR2はそれぞれH、炭素数1〜15
のアルキル基、COOY(ここでYはH、NH4又は
アルカリ金属原子を表す)、ハロゲン原子、フエ
ニル基又は置換フエニル基、R3はH、炭素数1
〜15のアルキル基、ハロゲン原子、フエニル基又
は置換フエニル基、XはH、NH4又はアルカリ
金属原子を表す。〕又は、一般式〔〕 (式中、R4及びR5はそれぞれH、炭素数1〜15
のアルキル基、ハロゲン原子、フエニル基又は置
換フエニル基を表す。)で示される少なくとも1
種のカルボン酸系単量体と、少なくとも1種のラ
ジカル重合可能なビニル単量体とを、無機化合物
を分散させた重合系中で無触媒で重合させて強固
に合一化された有機質結合充填剤を得、ついでこ
の得られた有機質結合充填剤にビニル化合物を加
えて成る組成物を硬化させることを特徴とする人
工大理石の製造法。 2 シラン系、チタネート系、アルミネート系及
びジルコアルミネート系の各カツプリング剤の少
なくとも1種が配合されていることを特徴とする
特許請求の範囲第1項記載の人工大理石の製造
法。
[Claims] 1. General formula [] [In the formula, R 1 and R 2 are each H, carbon number 1 to 15
alkyl group, COOY (where Y represents H, NH 4 or an alkali metal atom), halogen atom, phenyl group or substituted phenyl group, R 3 is H, carbon number 1
~15 alkyl groups, halogen atoms, phenyl groups or substituted phenyl groups, X represents H, NH 4 or an alkali metal atom. ] or general formula [] (In the formula, R 4 and R 5 are each H, carbon number 1 to 15
represents an alkyl group, halogen atom, phenyl group or substituted phenyl group. ) at least 1
An organic bond formed by polymerizing a seed carboxylic acid monomer and at least one radically polymerizable vinyl monomer without a catalyst in a polymerization system in which an inorganic compound is dispersed. 1. A method for producing artificial marble, which comprises obtaining a filler and then curing a composition obtained by adding a vinyl compound to the obtained organic bond filler. 2. The method for producing artificial marble according to claim 1, wherein at least one of silane-based, titanate-based, aluminate-based, and zircoaluminate-based coupling agents is blended.
JP24386684A 1984-11-19 1984-11-19 Production of artificial marble Granted JPS6160716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24386684A JPS6160716A (en) 1984-11-19 1984-11-19 Production of artificial marble

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24386684A JPS6160716A (en) 1984-11-19 1984-11-19 Production of artificial marble

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP18138984A Division JPS6157601A (en) 1984-08-30 1984-08-30 Artificial marble composition

Publications (2)

Publication Number Publication Date
JPS6160716A JPS6160716A (en) 1986-03-28
JPH0464522B2 true JPH0464522B2 (en) 1992-10-15

Family

ID=17110139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24386684A Granted JPS6160716A (en) 1984-11-19 1984-11-19 Production of artificial marble

Country Status (1)

Country Link
JP (1) JPS6160716A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673Y2 (en) * 1988-04-01 1994-01-05 ペガサスミシン製造株式会社 Thread feeder for double chain stitch sewing machine
GB2568050A (en) * 2017-11-01 2019-05-08 Caesarstone Ltd Compositions comprising an acrylic polymer and processes of preparing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564612A (en) * 1979-06-25 1981-01-19 Nippon Gakki Seizo Kk Marbleized product
JPS564611A (en) * 1979-06-25 1981-01-19 Nippon Gakki Seizo Kk Marbleized product
JPS57195133A (en) * 1981-05-27 1982-11-30 Mitsubishi Monsanto Chem Co Preparation of composite particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564612A (en) * 1979-06-25 1981-01-19 Nippon Gakki Seizo Kk Marbleized product
JPS564611A (en) * 1979-06-25 1981-01-19 Nippon Gakki Seizo Kk Marbleized product
JPS57195133A (en) * 1981-05-27 1982-11-30 Mitsubishi Monsanto Chem Co Preparation of composite particle

Also Published As

Publication number Publication date
JPS6160716A (en) 1986-03-28

Similar Documents

Publication Publication Date Title
EP0173290B1 (en) Compositions for artificial marbles and process for producing artificial marbles therefrom
JPS6259605A (en) Manufacture of curable molding resin
JP6754818B2 (en) Method for producing core-shell copolymer, core-shell copolymer and resin composition containing the same
JPH0464522B2 (en)
JP4766777B2 (en) Two-component curing composition consisting of liquid / powder
JPS63265907A (en) Composition for artificial, marble
JPS6157601A (en) Artificial marble composition
JPH05836A (en) Silicone modified polymer powder
JP2775836B2 (en) Thermoplastic resin composition
JPS63265908A (en) Composition for artificial marble
JP5017847B2 (en) Method for producing silica particle-containing methacrylic resin
JPS6069008A (en) Dental composition
JPS5930818A (en) Thermosettable epoxy composition and use for manufacturing products
JPS6160702A (en) Composition for artificial marble
JP2775840B2 (en) Thermoplastic resin composition
JPH09316299A (en) Epoxy resin composition
JPH0549704B2 (en)
JP2000355616A5 (en)
JP2000273130A (en) (meth)acrylic syrup, its preparation and molding material containing the (meth)acrylic syrup and molded product
JP4857728B2 (en) Method for producing methacrylic resin containing inorganic particles
JP3648591B2 (en) Resin composition for artificial marble production
JPH041762B2 (en)
JP2752461B2 (en) Manufacturing method of thermoplastic resin with high haze
JPS6081116A (en) Dental composition
JP2003105210A (en) Resin composition for cast molding