JPH0464328B2 - - Google Patents

Info

Publication number
JPH0464328B2
JPH0464328B2 JP10410684A JP10410684A JPH0464328B2 JP H0464328 B2 JPH0464328 B2 JP H0464328B2 JP 10410684 A JP10410684 A JP 10410684A JP 10410684 A JP10410684 A JP 10410684A JP H0464328 B2 JPH0464328 B2 JP H0464328B2
Authority
JP
Japan
Prior art keywords
metal compound
polyester
film
master chip
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10410684A
Other languages
Japanese (ja)
Other versions
JPS60248737A (en
Inventor
Seiji Sakamoto
Yoshiki Sato
Masashi Inagaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diafoil Co Ltd
Original Assignee
Diafoil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diafoil Co Ltd filed Critical Diafoil Co Ltd
Priority to JP10410684A priority Critical patent/JPS60248737A/en
Publication of JPS60248737A publication Critical patent/JPS60248737A/en
Publication of JPH0464328B2 publication Critical patent/JPH0464328B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はポリエステルフイルムの厚み精度、生
産性を改良するために原料ポリエステルに配合す
る、高濃度の金属化合物を含有する熱可塑性樹脂
組成物の製造方法に関する。 〔従来の技術〕 ポリエステル、とりわけポリエチレンテレフタ
レートの二軸配向フイルムは機械的特性、電気的
特性、耐薬品性、寸法安定性等の点で優れている
ことから、磁気テープ用、コンデンサー用、包装
用、製版用、電絶用、写真フイルム用等多くの分
野で基材として用いられている。 ところで、近年フイルム品質に対する要求特性
はますます厳しくなり、例えば磁気テープ分野に
おいてはベースフイルムの長期的なうねりを減少
させること、即ち厚み精度を向上させることが必
要欠くべからざる条件となつてきた。 このためには例えば特公昭37−6142号公報記載
のように押出口金から溶融押出したシート状物を
回転冷却ドラムで急冷する際、該シート状物の表
面に静電荷を与え該シート状物を冷却面に密着さ
せるいわゆる静電印加冷却法が有効であることが
知られている。 しかしながら、この静電印加冷却法において生
産性を高める目的で回転冷却ドラムの速度を高め
ると、シート状物と冷却ドラムとの間の密着力が
減少し、いわゆる束縛気泡が生じるようになる
が、これは製品に要求される品質特性としては許
容されないものである。 この束縛気泡は一般に原料ポリエステルの溶融
時の比抵抗が高いほど発生し易くなることが知ら
れており、かかる欠点を改良する方法の一つとし
て冷えば特開昭51−70269号公報記載のようにポ
リエステル製造時金属化合物を添加、含有させる
方法がある。 しかしながら、本発明者らの知るところによれ
ば、かかる方法を用いて溶融時の比抵抗を減じよ
うとした場合、その効果を確実にするためにはポ
リエステル製造時かなり多量の金属化合物の添加
を必要とするが、その場合同化合物は、長時間高
温にさらされるため、しばしば副生物であるジエ
チレングリコール結合の生成が促進され熱安定性
が劣るようになる。また往々にして重合時間が遅
延したり、ポリエステル中に不要な粒子が形成さ
れてしまう。 本発明者らは上記実情に鑑み、静電印加冷却法
が効果的に適用できないポリエステルを改質する
有力な方法を特開昭57−18534号公報にて提案し
た。該出願において提案した方法は、ポリエステ
ルフイルムを製造するに際し、溶融押出以前の工
程で該ポリエステル対し、脂肪族モノカルボン酸
又は脂肪族ジカルボン酸の金属塩を0.01〜1重量
%添加する方法である。かかる方法を採用すれ
ば、耐熱性、透明性及び色調を損うことなく、静
電印加冷却法を用いて好ましい程度にまでフイル
ムの厚み精度を向上させることができる。 〔発明が解決しようとする問題点〕 ところで、かかる金属化合物をポリエステルに
配合するに際しては配合の均一性及び操作性を向
上させるため、該金属化合物を直接ポリエステル
にブレンドすることは避け、予め高濃度に含有さ
せた熱可塑性樹脂組成物、いわゆるマスターチツ
プを製造しておいて該チツプをポリエステルチツ
プとブレンドする方法が好ましく用いられる。 しかしながら、かかるマスターチツプ法を採用
しようとするしばしば別の困難さに遭遇する。と
いうのは、これら金属化合物は母体である熱可塑
性樹脂、例えばポリエステルに特に溶融状態では
積極的に作用するため、往々にして熱可塑性樹脂
の分子量の低下、着色の増大、更には不溶性異物
の生成等をもたらすが、この傾向はマスターチツ
プ製造の段階、即ち金属化合物が高濃度に含まれ
る状態では特に顕著で、極端な場合にはチツプ化
が困難となつてしまう。 〔問題点を解決するための手段〕 本発明者らはかかる欠点の改良に腐心した結
果、該金属化合物を少くとも完全には溶融させな
い条件下でマスターチツプを製造するならば、こ
れらの欠点を解消することができ良質なマスター
チツプを安定して得ることができることを知見し
本発明を完成するに至つた。 即ち、本発明は、融点120〜290℃の金属化合物
を含有するポリエステルフイルム配合用マスター
チツプを製造するに際し、該金属化合物が少くと
も完全には溶融しない条件下に溶融成型し、か
つ、該金属化合物を0.1〜30重量%含有させるこ
とを特徴とするマスターチツプの製造方法に存す
る。 以下本発明について更に詳細に説明する。 本発明でいうポリエステルとはテレフタル酸も
しくはそのエステル形成性誘導体、例えばジメチ
ルテレフタレートとエチレングリコールとを主な
出発原料とし、エステル化もしくはエステル交換
反応を行つた後、重縮合反応を行うことにより得
られるポリエステルを指すが、その一部を他の第
3成分で置き換えても良い。 例えば、酸成分の一部をイソフタル酸、ナフタ
レンジカルボン酸、p−ヒドロキシ安息香酸、ア
ジピン酸、セバシン酸もしくはこれらの低級アル
キルエステルで置き換えても良いし、またグリコ
ール成分の一部をトリメチレングリコール、ヘキ
サメチレングリコール等で置き換えても良い。 いずれにしても本発明でいうポリエステルとは
80モル%以上、好ましくは90モル%以上がエチレ
ンテレフタレート単位であるポリエステルを指
す。 ポリエステルのフイルム化は通常290℃程度の
温度で行なわれるため、本発明においては最終的
にポリエステルに配合、含有される金属化合物の
融点は290℃以下、120℃以上でなければならな
い。 金属化合物の融点が290℃を越えるようになる
と溶融押出工程で全く溶融しないかあるいは充分
に溶融しないためポリエステルの電気伝導性を良
くするという本来の目的が充分には達成されな
い。一方融点が低すぎる場合は、成膜温度との差
が大き過ぎるため分解あるいは劣化を起し易くフ
イルムに悪影響を与えてしまう。 本発明で用いるに適したこれらの要件を満す金
属化合物としては、例えば炭素数4〜30程度の脂
肪族モノカルボン酸あるいはジカルボン酸の金属
塩、就中リチウム塩、ナトリウム塩、カリウム
塩、マグネシウム塩、マンガン塩、亜鉛塩、カル
シウム塩及びアルミニウム塩等から選ばれた化合
物の一種以上を挙げることができる。とりわけマ
グネシウム塩、マンガン塩、亜鉛塩及びカルシウ
ム塩の場合に本発明の効果が有効に発揮される。 より具体的な金属化合物の例としては、パルミ
チン酸マグネシウム、パルミチン酸マンガン、パ
ルミチン酸亜鉛、ステアリン酸マグネシウム、ス
テアリン酸亜鉛、オレイン酸カリウム、オレイン
酸ナトリウム、オレイン酸マグネシウム、オレイ
ン酸亜鉛、セバシン酸マグネシウム、セバシン酸
マンガン等を挙げることができるが、もちろんこ
れらに限定されるものではない。 本発明の特徴はかかる金属化合物を高濃度に含
むマスターチツプを製造するに際し、該金属化合
物が少くとも完全には溶融しに条件下に溶融成型
する点にある。換言すれば、含有すべき金属化合
物の融点より低い成型温度でマスターチツプを製
造するのが好ましい。 この場合マトリツクスたる熱可塑性樹脂は含有
する金属化合物の融点との組合せで決まるが、当
然金属化合物の融点より低い軟化温度を有するも
のが選ばれる。 本発明で用いることのできる熱可塑性樹脂とし
ては軟化温度が290℃未満である例えばポリエス
テル、ポリアミド、ポリカーボネート、ポリスチ
レン、ポリエチレン、ポリプロピレン及びポリブ
チレン等を挙げることができる。これらの中でも
マスターチツプ配合後の相溶性が良いことからポ
リエステル系の樹脂、具体的には、イソフタル
酸、ナフタレンジカルボン酸、アジピン酸、セバ
シン酸、ジエチレングリコール、トリメチレング
リコール、テトラメチレングリコール等から選ば
れる共重合成分の一種以上を含有して成る共重合
ポリエチレンテレフタレートもしくは共重合成分
を含むかあるいは含まないポリブチレンテレフタ
レートが好適に用いられる。 本発明の技術思想を具現化するためには、マス
ターチツプの成型温度として金属化合物の融点と
熱可塑性樹脂の軟化点との間の温度を選定するこ
とが好ましいが、実用上は必ずしもこれに拘束さ
れない。というのは成型機の種類や規模、運転条
件、あるいは金属化合物の含量等の条件によつて
は、しばしば樹脂温がかかる範囲を逸脱した場合
にも金属化合物の一部が溶融したのみで実用上支
障なく成型できることがあるからである。 いずれにしても本発明の特徴は含有すべき金属
化合物を少くとも完全には溶融させない条件下に
成型を行うものであり、その趣旨が損なわれない
限り、成型温度等に拘束されるものではない。 なおこのようにして得られたマスターチツプ中
の金属化合物の濃度は0.1〜30重量%、好ましく
は1〜15重量%、更に好ましくは2〜10重量%と
するのが良い。この値が0.1重量%未満の場合に
はポリエステルの溶融時の比抵抗を下げるために
多量のマスターバツチを配合しなければならずそ
の意義が薄れると共に得られたフイルムの表面粗
度、滑り性等の特性が大きく変化してしまうし、
一方この値が30重量%を越えるようになると、本
発明の方法をもつてしても、往々にして成型が困
難となるしまた配合量があまりにも少くなるため
分散が不均一になり易い。 なおマスターチツプ配合後の製膜に供するポリ
エステル組成物中の金属化合物量は静電印加冷却
時の効果、フイルムの分子量低下、熱安定性等の
観点から0.005〜3重量部、好ましくは0.01〜1
重量%、更に好ましくは0.02〜0.2重量%とする
のが良い。 なお、本発明においては静電印加冷却法を用い
て無定形のシート状物を形成した後は通常の延伸
工程を使用することができる。 即ち、縦、横に逐次二軸延伸あるいは同時二軸
延伸し160℃〜240℃で熱処理する等の方法(例え
ば特公昭30−5639号公報記載の方法)を使用でき
る。 〔発明の効果〕 以上詳述した如く、本発明によれば、金属化合
物と熱可塑性樹脂との融点下を功みに利用した成
型条件を採用することにより、静電印加冷却法を
効果的に適用するための金属化合物を多量に含ん
だマスターチツプを安定して得ることができ、そ
の利用価値は大きい。 〔実施例〕 以下実施例及び比較例に基いて本発明を更に詳
細に説明する。なお実施例及び比較例中「部」と
あるは「重量部」を示す。また用いた測定法を次
に示す。 (1) 比粘度の測定 ポリマーまたはフイルム1gをフエノール/
テトラクロロエタン(50/50重量比)100mlに
溶解させ、30.0℃で測定した。 (2) 色調 ポリマーまたはフイルムの黄色味の指標であ
るb値を東京電色製光電色差計(TC−5Dタイ
プ)を用いて測定した。b値が大きくなるほど
の黄色味が強くなる。 (3) 溶融時の比抵抗 特開昭57−190040号公報に記載してある方法
による。即ち、ポリエステルを285℃で溶融し
た後、3KVの直流電圧を印加し、印加直後の
比抵抗を溶融時の比抵抗とする。 実施例 1 差動熱量計で測定した場合259℃の融点を示す
セバシン酸マンガン2部と、融点242℃のイソフ
タル酸10モル%共重合ポリエチレンテレフタレー
ト98部を均一に混合した後、神戸製鋼所(株)製竪型
プラスチツク押出機(KOBE−TEC、VE−125
−20型)を用いてマスターバツチを製造した。 この時シリンダーの設定温度を250℃とし、10
Kg/時の速度でストランド状に押し出した後ペレ
ツト化したが、何ら支障なく成型し得た。 該マスターチツプは白濁しており、セバシン酸
マンガンが少くとも完全には溶融していないこと
がわかる。また、その比粘度は1.71、b値は2.7
といずれも満足すべき値であつた。 これらの結果を他の実施例及び比較例と共に第
1表に示す。 次に該マスターチツプの効果を確認するため、
静電印加冷却法によるシートの成型及びフイルム
化を行なつた。即ち、テレフタル酸及びエチレン
グリコールを出発原料としてエステル化反応後、
三酸化アンチモン0.03部及び燐酸0.01部を添加す
ることによつて得られた比粘度1.78溶融時の比抵
抗9×108Ω−cmのポリエチレンテレフタレート
100部に該マスターバツチ2部を配合し、製膜用
のポリエステル組成物を得た。この組成物の溶融
時の比抵抗は5×107Ω−cmと充分に低下してい
た。 次いで、該組成物を290℃で押出機よりシート
状に押出し静電印加冷却法を用いて無定形シート
とした。この時の静電印加の条件は次の通りであ
る。即ち、プラス電極として直径0.1mmのタング
ステン線を用い、これを回転冷却ドラムの上面に
シートの流れと直角方向に張り、これに直流電圧
約10KVを印加した。 無定形シートを得たのち縦方向に3.0倍、横方
向に3.5倍延伸し、常に厚さ15μの二軸延伸フイル
ムが得られるよう押出量及び回転冷却体の粗度を
調節したが、この時回転冷却体の速度と束縛気泡
との関係について観察した。回転冷却体の速度を
20m/分から徐々に増したが、40m/分となつて
も全く束縛気泡は発生せず、この時得られた二軸
延伸フイルムの厚みむらも小さく充分満足し得る
ものであつた。 なお該二軸延伸フイルムの比粘度は1.70、b値
は2.7で実用上問題のないレベルであつた。 比較例 1 実施例1において製膜原料ポリエステルとして
マスターチツプを加えないポリエステルを用いる
他は実施例1と全く同様にして厚さ15μのポリエ
ステルフイルムを得た。 回転冷却体速度が31m/分となつた時束縛気泡
が認められたが、更に40m/分に速度を上げた。
この時得られたポリエステルフイルムは表面に水
玉状の欠陥があり、厚みむらも大きく実用に耐え
ないものであつた。 実施例2、3及び比較例2、3 表1に示すとおりにマスターチツプ製造条件を
変える他は実施例1と同様にしてマスターチツプ
の製造を行なつた。 本発明方法を採用した場合には順調に良質なマ
スターバツチを得ることができ、結果的に優れた
ポリエステルフイルムを生産性良く得ることがで
きるのに対し、比較例に示したように通常の方法
を採用した場合には、マスターバツチの製造自体
が困難でしかも分子量の低下やb値の増大が大き
く、該マスターバツチを配合してポリエステルフ
イルムを得るに際してもしばしば破断が生じ円滑
な運転が困難であつた。 【表】
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a thermoplastic resin composition containing a high concentration of a metal compound, which is blended into raw polyester to improve the thickness accuracy and productivity of polyester films. Regarding the manufacturing method. [Prior art] Biaxially oriented polyester films, especially polyethylene terephthalate, have excellent mechanical properties, electrical properties, chemical resistance, dimensional stability, etc., and are therefore used for magnetic tapes, capacitors, and packaging. It is used as a base material in many fields such as plate making, electrical cutting, and photographic film. Incidentally, in recent years, the requirements for film quality have become increasingly strict, and in the field of magnetic tapes, for example, reducing the long-term waviness of the base film, that is, improving the thickness accuracy, has become an indispensable condition. For this purpose, for example, as described in Japanese Patent Publication No. 37-6142, when a sheet-like material melted and extruded from an extrusion die is rapidly cooled in a rotating cooling drum, an electrostatic charge is applied to the surface of the sheet-like material. It is known that the so-called electrostatic cooling method, in which the cooling surface is brought into close contact with the cooling surface, is effective. However, in this electrostatic application cooling method, when the speed of the rotating cooling drum is increased for the purpose of increasing productivity, the adhesion between the sheet material and the cooling drum decreases, and so-called bound bubbles are generated. This is unacceptable as a quality characteristic required for the product. It is generally known that the higher the specific resistance of raw material polyester when it is melted, the more likely it is that these bound bubbles will occur. There is a method of adding and containing a metal compound during the production of polyester. However, according to the knowledge of the present inventors, when attempting to reduce the resistivity during melting using such a method, in order to ensure the effect, it is necessary to add a considerably large amount of metal compound during polyester production. However, in this case, the compound is exposed to high temperatures for a long time, which often promotes the formation of by-product diethylene glycol bonds, resulting in poor thermal stability. Additionally, polymerization time is often delayed and unwanted particles are formed in the polyester. In view of the above circumstances, the present inventors proposed an effective method for modifying polyester to which the electrostatic cooling method cannot be effectively applied, in Japanese Patent Application Laid-Open No. 18534/1983. The method proposed in this application is a method in which 0.01 to 1% by weight of a metal salt of an aliphatic monocarboxylic acid or an aliphatic dicarboxylic acid is added to the polyester in a step before melt extrusion when producing a polyester film. If such a method is adopted, the thickness accuracy of the film can be improved to a preferable degree using the electrostatic cooling method without impairing heat resistance, transparency, and color tone. [Problems to be Solved by the Invention] By the way, when blending such a metal compound into polyester, in order to improve the uniformity of the blend and the operability, it is necessary to avoid directly blending the metal compound with polyester and to prepare it in advance at a high concentration. Preferably, a method is used in which a thermoplastic resin composition containing a so-called master chip is produced, and the chip is blended with a polyester chip. However, other difficulties are often encountered when attempting to employ such master chip methods. This is because these metal compounds act aggressively on the base thermoplastic resin, such as polyester, especially in the molten state, often leading to a decrease in the molecular weight of the thermoplastic resin, an increase in coloration, and even the formation of insoluble foreign substances. However, this tendency is particularly noticeable at the stage of master chip production, that is, in a state where a high concentration of metal compounds is contained, and in extreme cases, it becomes difficult to form chips. [Means for Solving the Problems] As a result of the inventors' efforts to improve these drawbacks, it has been found that these drawbacks can be overcome if the master chip is manufactured under conditions in which the metal compound is not completely melted. The present invention was completed based on the discovery that it is possible to solve this problem and to stably obtain high-quality master chips. That is, the present invention, when producing a master chip for blending a polyester film containing a metal compound with a melting point of 120 to 290°C, involves melting and molding the metal compound under conditions that do not at least completely melt the metal compound. The present invention relates to a method for producing a master chip, characterized in that it contains a compound in an amount of 0.1 to 30% by weight. The present invention will be explained in more detail below. Polyester as used in the present invention is obtained by using terephthalic acid or its ester-forming derivatives, such as dimethyl terephthalate and ethylene glycol, as main starting materials, performing an esterification or transesterification reaction, and then performing a polycondensation reaction. Although it refers to polyester, a part of it may be replaced with another third component. For example, part of the acid component may be replaced with isophthalic acid, naphthalene dicarboxylic acid, p-hydroxybenzoic acid, adipic acid, sebacic acid, or lower alkyl esters thereof, and part of the glycol component may be replaced with trimethylene glycol, It may be replaced with hexamethylene glycol or the like. In any case, what is polyester as used in the present invention?
It refers to a polyester in which 80 mol% or more, preferably 90 mol% or more, of ethylene terephthalate units. Since polyester is usually formed into a film at a temperature of about 290°C, in the present invention, the melting point of the metal compound finally blended and contained in the polyester must be 290°C or lower and 120°C or higher. If the melting point of the metal compound exceeds 290° C., it will not melt at all or will not melt sufficiently during the melt extrusion process, so that the original purpose of improving the electrical conductivity of polyester will not be fully achieved. On the other hand, if the melting point is too low, the difference from the film-forming temperature is too large, which tends to cause decomposition or deterioration, which will have an adverse effect on the film. Examples of metal compounds that meet these requirements and are suitable for use in the present invention include metal salts of aliphatic monocarboxylic acids or dicarboxylic acids having about 4 to 30 carbon atoms, especially lithium salts, sodium salts, potassium salts, magnesium salts, etc. Examples include one or more compounds selected from salts, manganese salts, zinc salts, calcium salts, aluminum salts, and the like. In particular, the effects of the present invention are effectively exhibited in the case of magnesium salts, manganese salts, zinc salts, and calcium salts. Examples of more specific metal compounds include magnesium palmitate, manganese palmitate, zinc palmitate, magnesium stearate, zinc stearate, potassium oleate, sodium oleate, magnesium oleate, zinc oleate, and magnesium sebacate. , manganese sebacate, etc., but are not limited to these, of course. A feature of the present invention is that when producing a master chip containing a high concentration of such a metal compound, the master chip is melt-molded under conditions such that the metal compound is at least completely melted. In other words, it is preferable to manufacture the master chip at a molding temperature lower than the melting point of the metal compound to be contained. In this case, the thermoplastic resin serving as the matrix is determined by the combination with the melting point of the metal compound contained therein, and of course one having a softening temperature lower than the melting point of the metal compound is selected. Examples of thermoplastic resins that can be used in the present invention include polyester, polyamide, polycarbonate, polystyrene, polyethylene, polypropylene, and polybutylene, which have a softening temperature of less than 290°C. Among these, polyester resins are selected from isophthalic acid, naphthalene dicarboxylic acid, adipic acid, sebacic acid, diethylene glycol, trimethylene glycol, tetramethylene glycol, etc. because of their good compatibility after blending with master chips. Copolymerized polyethylene terephthalate containing one or more copolymer components or polybutylene terephthalate containing or not containing a copolymer component is preferably used. In order to embody the technical idea of the present invention, it is preferable to select a temperature between the melting point of the metal compound and the softening point of the thermoplastic resin as the molding temperature of the master chip, but in practice this is not necessarily the case. Not done. This is because, depending on conditions such as the type and scale of the molding machine, operating conditions, or the content of the metal compound, it is often the case that even if the resin temperature deviates from this range, only a portion of the metal compound will melt and it will not be practical. This is because molding may be possible without any problems. In any case, the feature of the present invention is that molding is performed under conditions that do not at least completely melt the metal compound to be contained, and as long as the purpose is not impaired, there is no restriction on the molding temperature etc. . The concentration of the metal compound in the master chip thus obtained is preferably 0.1 to 30% by weight, preferably 1 to 15% by weight, and more preferably 2 to 10% by weight. If this value is less than 0.1% by weight, a large amount of masterbatch must be blended to lower the resistivity during melting of the polyester, which reduces its significance and also reduces the surface roughness, slipperiness, etc. of the resulting film. Characteristics change significantly,
On the other hand, if this value exceeds 30% by weight, even with the method of the present invention, molding is often difficult and the amount blended is too small, which tends to result in non-uniform dispersion. The amount of metal compound in the polyester composition used for film formation after blending with the master chip is 0.005 to 3 parts by weight, preferably 0.01 to 1 part by weight, from the viewpoint of the effect during electrostatic application cooling, molecular weight reduction of the film, thermal stability, etc.
The amount is preferably 0.02 to 0.2% by weight, more preferably 0.02 to 0.2% by weight. In the present invention, after the amorphous sheet-like material is formed using the electrostatic cooling method, a normal stretching process can be used. That is, methods such as sequential biaxial stretching or simultaneous biaxial stretching in the longitudinal and transverse directions and heat treatment at 160 DEG C. to 240 DEG C. can be used (for example, the method described in Japanese Patent Publication No. 30-5639). [Effects of the Invention] As detailed above, according to the present invention, by adopting molding conditions that take advantage of the below melting point of the metal compound and thermoplastic resin, the electrostatic application cooling method can be effectively applied. Master chips containing a large amount of metal compounds for application can be stably obtained and have great utility value. [Examples] The present invention will be explained in more detail below based on Examples and Comparative Examples. In the examples and comparative examples, "parts" indicate "parts by weight." The measurement method used is shown below. (1) Measurement of specific viscosity 1 g of polymer or film is mixed with phenol/
It was dissolved in 100 ml of tetrachloroethane (50/50 weight ratio) and measured at 30.0°C. (2) Color Tone The b value, which is an index of the yellowness of the polymer or film, was measured using a photoelectric color difference meter (TC-5D type) manufactured by Tokyo Denshoku. The larger the b value, the stronger the yellowish tinge. (3) Specific resistance during melting According to the method described in JP-A-57-190040. That is, after melting polyester at 285° C., a DC voltage of 3 KV is applied, and the specific resistance immediately after application is taken as the specific resistance at the time of melting. Example 1 After uniformly mixing 2 parts of manganese sebacate, which has a melting point of 259°C when measured with a differential calorimeter, and 98 parts of polyethylene terephthalate copolymerized with 10 mol% isophthalic acid and a melting point of 242°C, Kobe Steel, Ltd. Co., Ltd. vertical plastic extruder (KOBE-TEC, VE-125
-20 type) was used to produce a masterbatch. At this time, the set temperature of the cylinder is 250℃, and 10
It was extruded into strands at a rate of Kg/hour and then pelletized, and the pellets could be molded without any problems. The master chips were cloudy, indicating that the manganese sebacate was not completely melted. Also, its specific viscosity is 1.71 and b value is 2.7
Both values were satisfactory. These results are shown in Table 1 along with other Examples and Comparative Examples. Next, to confirm the effect of the master chip,
The sheet was formed into a film using the electrostatic cooling method. That is, after an esterification reaction using terephthalic acid and ethylene glycol as starting materials,
Polyethylene terephthalate with a specific viscosity of 1.78 and a specific resistance when melted of 9×10 8 Ω-cm obtained by adding 0.03 part of antimony trioxide and 0.01 part of phosphoric acid.
2 parts of the masterbatch was mixed with 100 parts to obtain a polyester composition for film formation. The specific resistance of this composition when melted was 5×10 7 Ω-cm, which was sufficiently low. Next, the composition was extruded into a sheet from an extruder at 290° C. and an amorphous sheet was formed using an electrostatic cooling method. The conditions for applying static electricity at this time are as follows. That is, a tungsten wire with a diameter of 0.1 mm was used as a positive electrode, and this wire was stretched on the upper surface of a rotating cooling drum in a direction perpendicular to the flow of the sheet, and a DC voltage of about 10 KV was applied to it. After obtaining the amorphous sheet, it was stretched 3.0 times in the longitudinal direction and 3.5 times in the transverse direction, and the extrusion rate and roughness of the rotary cooling body were adjusted so that a biaxially stretched film with a thickness of 15 μm was always obtained. The relationship between the speed of the rotary cooling body and the bound bubbles was observed. The speed of the rotating cooling body
Although the speed was gradually increased from 20 m/min, no bound bubbles were generated even at 40 m/min, and the biaxially stretched film obtained at this time had small unevenness in thickness and was sufficiently satisfactory. The biaxially stretched film had a specific viscosity of 1.70 and a b value of 2.7, which were at a level that caused no practical problems. Comparative Example 1 A polyester film having a thickness of 15 μm was obtained in exactly the same manner as in Example 1, except that polyester without master chips was used as the polyester raw material for film formation. When the rotating cooling body speed reached 31 m/min, trapped bubbles were observed, but the speed was further increased to 40 m/min.
The polyester film obtained at this time had polka dot-like defects on the surface and had a large thickness unevenness, making it unsuitable for practical use. Examples 2 and 3 and Comparative Examples 2 and 3 Master chips were manufactured in the same manner as in Example 1, except that the master chip manufacturing conditions were changed as shown in Table 1. When the method of the present invention is adopted, it is possible to smoothly obtain a high-quality masterbatch, and as a result, an excellent polyester film can be obtained with good productivity. When this method is adopted, it is difficult to manufacture the masterbatch itself, and the molecular weight decreases and the b value increases significantly, and even when the masterbatch is blended to obtain a polyester film, breakage often occurs, making smooth operation difficult. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 金属化合物を含有するマスターチツプを製造
するに際し、該金属化合物が融点120〜290℃の、
脂肪族モノカルボン酸又はジカルボン酸の金属塩
であり、マトリツクスである熱可塑性樹脂組成物
が該金属化合物の融点より低い軟化温度を有し、
該金属化合物が少なくとも完全には溶融しない条
件下で溶融成型し、かつ、該金属化合物を0.1〜
30重量%含有させることを特徴とする、静電印加
冷却法によるポリエステルフイルムの製造に用い
る原料ポリエステルに配合されるマスターチツプ
の製造方法。
1. When producing a master chip containing a metal compound, the metal compound has a melting point of 120 to 290°C,
is a metal salt of an aliphatic monocarboxylic acid or dicarboxylic acid, and the thermoplastic resin composition serving as the matrix has a softening temperature lower than the melting point of the metal compound,
The metal compound is melt-molded under conditions that do not melt at least completely, and the metal compound is
A method for producing a master chip to be blended into a raw material polyester used for producing a polyester film by an electrostatic cooling method, the content being 30% by weight.
JP10410684A 1984-05-23 1984-05-23 Production of master chip for compounding to polyester Granted JPS60248737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10410684A JPS60248737A (en) 1984-05-23 1984-05-23 Production of master chip for compounding to polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10410684A JPS60248737A (en) 1984-05-23 1984-05-23 Production of master chip for compounding to polyester

Publications (2)

Publication Number Publication Date
JPS60248737A JPS60248737A (en) 1985-12-09
JPH0464328B2 true JPH0464328B2 (en) 1992-10-14

Family

ID=14371869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10410684A Granted JPS60248737A (en) 1984-05-23 1984-05-23 Production of master chip for compounding to polyester

Country Status (1)

Country Link
JP (1) JPS60248737A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323831A (en) * 1997-05-26 1998-12-08 Diafoil Co Ltd Production of polyester composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323831A (en) * 1997-05-26 1998-12-08 Diafoil Co Ltd Production of polyester composition

Also Published As

Publication number Publication date
JPS60248737A (en) 1985-12-09

Similar Documents

Publication Publication Date Title
EP0830426B1 (en) Amorphous copolyester compositions containing carbon black
US3937754A (en) Biaxially oriented polyethylene-2,6-naphthalate film containing another polyester resin and process for its production
US5188774A (en) Aromatic polyester film and process for producing the same
JP2004027229A (en) Polyester film and its manufacturing method, and polyester
JPH0464328B2 (en)
JPS6143173B2 (en)
JP3949565B2 (en) Heat-shrinkable polyester film and method for producing the same
JPS6241256B2 (en)
JPS59229314A (en) Polyester film
JP5002878B2 (en) Copolyester
JPH0433815B2 (en)
JPH01172448A (en) Polyester composition for film
JPS5964630A (en) Production of polyester
JPH115834A (en) Production of aromatic polyester and production of film using the polyester
JPS59193953A (en) Polyester composition
JPS59214618A (en) Manufacture of polyester film
JPS58185618A (en) Production of polyester
KR0175722B1 (en) Method of making polyester film
JP6206224B2 (en) Biaxially oriented polyester film
CN113584630A (en) Pearlescent 3D printing material and preparation method thereof
JPH0141168B2 (en)
JPH029624B2 (en)
JPS60238356A (en) Polyester resin composition
JPH0953004A (en) Polyester resin composition and its production
JPH05128491A (en) Polyester film for high density magnetic tape

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees