JPH01172448A - Polyester composition for film - Google Patents

Polyester composition for film

Info

Publication number
JPH01172448A
JPH01172448A JP33022587A JP33022587A JPH01172448A JP H01172448 A JPH01172448 A JP H01172448A JP 33022587 A JP33022587 A JP 33022587A JP 33022587 A JP33022587 A JP 33022587A JP H01172448 A JPH01172448 A JP H01172448A
Authority
JP
Japan
Prior art keywords
potassium
film
parts
polymer
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33022587A
Other languages
Japanese (ja)
Other versions
JPH0721099B2 (en
Inventor
Hideyori Kurihara
英資 栗原
Tetsuo Ichihashi
哲夫 市橋
Takatoshi Kuratsuji
倉辻 孝俊
Shozo Nitta
新田 省三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP62330225A priority Critical patent/JPH0721099B2/en
Publication of JPH01172448A publication Critical patent/JPH01172448A/en
Publication of JPH0721099B2 publication Critical patent/JPH0721099B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title composition improved in film forming speed without causing the formation of foreign matter, by regulating the volume resistivity of the polymer to be in a specified range by adding a specified amount of a potassium compound in the production of a thermoplastic polyester by transesterification. CONSTITUTION:In the production of a thermoplastic polyester (e.g., polyethylene terephthalate) by transesterification, the volume resistivity of the polymer at 285 deg.C is regulated to 7X10<6>-4X10<7>OMEGA.cm by adding 0.002-0.0072pt.wt. (in terms of potassium element), per 100pts.wt. polyester, potassium compound to the system. Preferable examples of said potassium compounds include potassium hydroxide, potassium acetate and potassium benzoate. In this way, it is possible to produce a polyester film low in surface defects in a high efficiency by improving the adhesion of the sheet produced by melt-extruding the obtained thermoplastic polyester to the surface of a rotary cooling drum.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はフィルム用ポリエステル組成物に関し、更に詳
しくは表面欠点の少ない、ないしは無いポリエステルフ
ィルムを高能率で製造することができるフィルム用ポリ
エステル組成物に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a polyester composition for films, and more specifically to a polyester composition for films that can produce polyester films with few or no surface defects with high efficiency. Regarding.

〈従来技術〉 ポリエチレンテレフタレートで代表されるポリエステル
は、優れた物理的、化学的性質を有することから、磁気
テープ用途、電絶、コンデンサー用途、写真用途、包装
用途などのフィルム分野に広く使用されている。
<Prior art> Polyesters, represented by polyethylene terephthalate, have excellent physical and chemical properties and are widely used in film fields such as magnetic tape applications, electrical insulation, capacitor applications, photographic applications, and packaging applications. There is.

ポリエステルフィルムは、通常、押出機により溶融押出
したシート状ポリエステルを回転冷却ドラム等の冷却体
表面で急冷した後、縦・横方向に2軸延伸して製造され
る。このフィルム製造において、その生産性を高めて製
造コストを低減することは品質の向上とともに重要な課
題であり、そのためには回転冷却ドラムの周速を大きく
して、製膜速度を向上させることが効果的な方法である
Polyester films are usually produced by melt-extruding sheet polyester using an extruder, rapidly cooling it on the surface of a cooling body such as a rotating cooling drum, and then biaxially stretching it in the longitudinal and transverse directions. In film production, increasing productivity and reducing manufacturing costs are important issues as well as improving quality, and to achieve this, it is necessary to increase the peripheral speed of the rotating cooling drum and increase the film forming speed. This is an effective method.

しかし、この回転冷却ドラムの周速を高めて製膜速度を
向上させるにつれて、冷却ドラム表面へのシート状ポリ
エステルの密着性が低下し、均一なフィルムが得られず
、またシート状ポリエステルと回転冷却ドラムとの間に
空気を巻き込むことにより、フィルム表面に欠点を生ず
るようになる。
However, as the circumferential speed of the rotary cooling drum was increased to improve the film forming speed, the adhesion of the sheet polyester to the surface of the cooling drum decreased, making it impossible to obtain a uniform film. The entrainment of air between the film and the drum causes defects on the film surface.

シート状ポリエステルを急冷する際、押出口金と回転冷
却ドラム表面との間にワイヤー状の電極を設けて未固化
のシート状物上面に静電荷を析出させ、該シート状物を
冷却体表面に密着させて均一なフィルムを得る静電キャ
スト法は公知である(特公昭37−6142号公報等)
。しかし、この静電キャスト法においても、製膜速度を
高めるために回転冷却ドラムの周速を速くしていくと、
冷却ドラム表面に密着されたシート状物の表面上への単
位面積静電荷量が減少し、シート状物と回転冷却ドラム
との密着力が低下し、フィルム表面上に欠点が生ずるよ
うになる。このため、シート状物と回転冷却ドラムとの
密着力を高めるべく、押出口金と回転冷却ドラム表面と
の間に設置された電極への印加電圧を高め、シート状物
表面上への静電荷の析出量を多くする方法が講じられる
が、印加電圧を高め過ぎると、電極と冷却ドラム表面と
の間にアーク敢電が生じ、冷却体表面のシート状物が破
壊されるとともに、冷却体表面上に損傷を与えることに
なる。従って、電極に印加される電圧をある一定以上に
高めることは実質上不可能であり、従来の静電キャスト
法ではフィルムの製膜速度を向上させて均一なフィルム
を得るには限界がある。
When rapidly cooling sheet-like polyester, a wire-shaped electrode is installed between the extrusion die and the surface of the rotating cooling drum to deposit an electrostatic charge on the top surface of the unsolidified sheet-like material, and then the sheet-like material is placed on the surface of the cooling body. The electrostatic casting method for obtaining a uniform film by adhesion is well known (Japanese Patent Publication No. 37-6142, etc.)
. However, even in this electrostatic casting method, if the circumferential speed of the rotating cooling drum is increased in order to increase the film forming speed,
The amount of electrostatic charge per unit area on the surface of the sheet-like material closely attached to the cooling drum surface decreases, the adhesion between the sheet-like material and the rotating cooling drum decreases, and defects appear on the film surface. Therefore, in order to increase the adhesion between the sheet material and the rotating cooling drum, the voltage applied to the electrode installed between the extrusion die and the surface of the rotating cooling drum is increased, and the electrostatic charge on the surface of the sheet material is increased. However, if the applied voltage is too high, electric arcs will occur between the electrodes and the surface of the cooling drum, destroying the sheet-like material on the surface of the cooling drum, and causing damage to the surface of the cooling drum. This will cause damage to the top. Therefore, it is virtually impossible to increase the voltage applied to the electrodes above a certain level, and there is a limit to increasing the film forming rate and obtaining a uniform film using the conventional electrostatic casting method.

かかる静電キャスト法の限界を克服し、製膜速度を向上
させて高能率で均一な表面欠点のないポリエステルフィ
ルムを1qる目的で、特公昭53−/10231号公報
にはアルカリ金属、アルカリ土類金属またはそれらの化
合物を含有せしめて溶融ポリマーの比抵抗をコントロー
ルし、ポリエステルフィルムを高能率で製造する方法が
提案されている。
In order to overcome the limitations of the electrostatic casting method, improve the film forming speed, and produce a highly efficient, uniform polyester film with no surface defects, Japanese Patent Publication No. 10231/1983 discloses the use of alkali metals and alkaline earths. A method has been proposed for controlling the resistivity of a molten polymer by containing similar metals or their compounds to produce polyester films with high efficiency.

この公報に具体的に例示しである比抵抗コントロール剤
は酸化マグネシウム、酸化カルシウム、塩化リチウム、
塩化ナトリウム、塩化カルシウム。
The resistivity control agents specifically exemplified in this publication include magnesium oxide, calcium oxide, lithium chloride,
Sodium chloride, calcium chloride.

塩化ストロンチウム、水素化カルシウム、水素化ストロ
ンチウム、硫酸ナトリウム、硫酸カルシウム、硫酸バリ
ウム、炭酸ナトリウム、炭酸カルシウム、リン酸カルシ
ウム、酢酸カルシウム、酢酸リヂウム、酢酸ストロンチ
ウム、酢酸バリウム。
Strontium chloride, calcium hydride, strontium hydride, sodium sulfate, calcium sulfate, barium sulfate, sodium carbonate, calcium carbonate, calcium phosphate, calcium acetate, lithium acetate, strontium acetate, barium acetate.

安息香酸ストロンチウム、安息香酸バリウム、フタル酸
ナトリウム、フタル酸カルシウム、テレフタル酸カルシ
ウム及びプレフタル酸バリウムであり、これらの少くと
も1種をo、 oos〜1重間%含有せしめて溶融ポリ
マーの比抵抗を2X107〜5×108Ω・C11Iに
コントロールし、ポリエステルシート状物と回転冷却ド
ラムとの密着性を向上させるものである。しかしながら
、上記の具体的化合物を用いたポリマーにも限界があり
、これを用いてポリエステルフィルムを製造する際の能
率をさらに上げることができない。
These are strontium benzoate, barium benzoate, sodium phthalate, calcium phthalate, calcium terephthalate, and barium prephthalate, and at least one of these is contained in o, oos to 1% by weight to increase the specific resistance of the molten polymer. The resistance is controlled to 2×10 7 to 5×10 8 Ω·C11I to improve the adhesion between the polyester sheet and the rotating cooling drum. However, polymers using the above-mentioned specific compounds also have limitations, and it is not possible to further increase the efficiency of producing polyester films using them.

また、特公昭61−40538M公報には熱可塑性ポリ
エステル中に該ポリニスデル100 fifi部当り、
無機微粉末を0,01〜2重母部重量にエヂレングリコ
ール可溶性のアルカリ金属化合物を金属換算にして0.
0001〜0.0025重量部含有させることを特徴と
するポリエステルフィルムの製造方法が提案されている
。この方法では無機微粒子の添加が必須であり、仮にこ
の無機微粉末を添加しないでポリエステルフィルムの製
造の能率を一ヒげようとしても満足する結果は得られな
い。また、この方法にも限界があり、ポリエステルフィ
ルム製造の能率を更に上げようとする場合には満足する
結果を得ることはできない。
Further, in Japanese Patent Publication No. 61-40538M, per 100 fifi parts of the polynisdel in thermoplastic polyester,
The inorganic fine powder is 0.01 to 2 parts by weight, and the alkali metal compound soluble in ethylene glycol is 0.01 to 2 parts by weight in terms of metal.
A method for producing a polyester film characterized by containing 0001 to 0.0025 parts by weight has been proposed. In this method, it is essential to add inorganic fine particles, and even if an attempt is made to increase the efficiency of polyester film production without adding these inorganic fine particles, satisfactory results will not be obtained. Furthermore, this method also has its limitations, and it is not possible to obtain satisfactory results when attempting to further increase the efficiency of polyester film production.

また、特開昭59−62626号公報には直接重合法で
ポリエステルを製造するに際し、エステル化率が所定の
値に達した後にカルシウム化合物をカルシウム原子とし
て生成ポリエステルに対し50〜400ppm 、リン
化合物をリン原子とカルシウム原子の比が1.2≦Ca
/P≦3.0.ナトリウム及びカリウム化合物より選ば
れた少くとも1種のアルカリ金属化合物をアルカリ金属
原子として3.0〜20ppm添加することを特徴とす
るポリエステルの製造法が提案されている。
In addition, JP-A-59-62626 discloses that when producing polyester by direct polymerization, after the esterification rate reaches a predetermined value, 50 to 400 ppm of a phosphorus compound is added to the produced polyester as calcium atoms. The ratio of phosphorus atoms to calcium atoms is 1.2≦Ca
/P≦3.0. A method for producing polyester has been proposed, which is characterized in that 3.0 to 20 ppm of at least one alkali metal compound selected from sodium and potassium compounds is added as alkali metal atoms.

同様に、特開昭59−62627号公報には直接重合法
でポリエステルを製造するに際し、エステル化率が所定
の値に達した後にマグネシウム化合物をマグネシウム原
子として生成ポリエステルに対し30〜400ppm、
リン化合物をリン原子とマグネシウム原子の比が1.2
≦Ha/P≦20.ナトリウム及びカリウム化合物より
選ばれた少くとも1種のアルカリ金属化合物をアルカリ
金属原子として3.0〜50ppm添加することを特徴
とするポリエステルの製造法が提案されている。
Similarly, JP-A-59-62627 discloses that when producing polyester by a direct polymerization method, after the esterification rate reaches a predetermined value, a magnesium compound is added as a magnesium atom to the produced polyester, at a concentration of 30 to 400 ppm.
Phosphorus compounds have a ratio of phosphorus atoms to magnesium atoms of 1.2
≦Ha/P≦20. A method for producing polyester has been proposed, which is characterized in that 3.0 to 50 ppm of at least one alkali metal compound selected from sodium and potassium compounds is added as alkali metal atoms.

しかしながら、本発明者の研究結果によれば、エステル
交換法でポリエステルを製造する場合には、かかる多量
のカルシウム化合物またはマグネシウム化合物とリン化
合物、アルカリ金属化合物とを、生成ポリエステルに添
加すると、副生ずる異物量が多くなり、製品フィルムの
品質が低下することが明らかとなった。
However, according to the research results of the present inventors, when polyester is produced by the transesterification method, when such large amounts of calcium or magnesium compounds, phosphorus compounds, and alkali metal compounds are added to the polyester produced, by-products are produced. It became clear that the amount of foreign matter increased and the quality of the product film deteriorated.

ところで、特開昭60−34826号公報にも記載しで
あるように従来の静電キ(Iスト法の上限は冷却ドラム
の周速で40〜50m/分と言われていた。そして、こ
れ以上の周速を1qるためには、特開昭62−1527
15号公報に記載しであるように、■ 静電荷を印加す
る電極をピン状電極にしたり、口金にしたり、キt’ス
テインクドラムなどの冷却体にしたりダブル電極にした
りする方法。
By the way, as described in JP-A No. 60-34826, the upper limit of the conventional electrostatic (I) strike method was said to be 40 to 50 m/min at the peripheral speed of the cooling drum. In order to reduce the circumferential speed by 1q, please refer to JP-A-62-1527.
As described in Publication No. 15, (1) A method in which the electrode for applying an electrostatic charge is made into a pin-shaped electrode, a cap, a cooling body such as a kit' stain drum, or a double electrode.

■ 静電荷を印加する雰囲気を特定のガス気流下で行な
う方法や加圧下にて行なう方法。
■ A method in which an electrostatic charge is applied under a specific gas flow or under pressure.

■ 静電キャスト法とエアーナイフ法を併用する、ある
いは小径押出ロールと併用する、あるいはエアー吸引法
と併用する方法。
■ A combination of electrostatic casting and air knife methods, a combination of small-diameter extrusion rolls, or a combination of air suction methods.

■ 静電印加をかける冷却体表面をサンドブラストのよ
うな表面粗面ロールにして用いる方法。
■ A method in which the surface of the cooling body to which electrostatic charge is applied is made into a roll with a rough surface similar to sandblasting.

などの方法が提案されている。Other methods have been proposed.

ざらには、特開昭61−255号公報に記載しであるよ
うに直接重合法で得られたポリエステルにH(Itを1
50ppm、 2nを15ppm 、 Kを15ppm
、 pを151ppmもの多聞存在させて最大キャステ
ィング速度を72 m/分まで上げうる例もあるが、前
述したように、エステル交換法でこのような多量の金属
をポリエステル中に存在させると、副生異物が発生し、
かつ生成ポリエステルの熱安定性も低下する。
Specifically, as described in JP-A No. 61-255, H (It is 1
50ppm, 2n 15ppm, K 15ppm
In some cases, the maximum casting speed can be increased to 72 m/min by including as much as 151 ppm of p, but as mentioned above, when such a large amount of metal is present in polyester by the transesterification method, by-products Foreign matter occurs,
Moreover, the thermal stability of the produced polyester is also reduced.

〈発明の目的〉 本発明者はポリエステルフィルムを更に高能率で得る方
法について鋭意検討した結果、静電印加冷却法における
ポリエステルの成膜において、用いるポリエステルを特
定の化合物で改質すると、溶融押出したシート状物と回
転冷却ドラム表面との密着性をより一層向上せしめ得る
ことを見出し、本発明に到達した。
<Purpose of the Invention> As a result of intensive study on a method for obtaining a polyester film with higher efficiency, the present inventor found that when polyester is formed into a polyester film using the electrostatic cooling method, if the polyester used is modified with a specific compound, melt extrusion becomes possible. The inventors have discovered that it is possible to further improve the adhesion between the sheet material and the surface of the rotating cooling drum, and have arrived at the present invention.

本発明の目的は、シート状物と回転冷却ドラム表面との
密着性を向上せしめ、更に表面欠点の少ない、ないし無
いポリエステルフィルムを高能率で製造し得るポリエス
テル組成物を提供することにある。
An object of the present invention is to provide a polyester composition that improves the adhesion between a sheet-like material and the surface of a rotating cooling drum, and allows for highly efficient production of a polyester film with few or no surface defects.

〈発明の構成・効果〉 本発明の目的は、本発明によれば、エステル交換法で製
造された熱可塑性ポリエステル中に、ポリエステル10
0重四部当り、カリウム元素が0.0020−0.00
72重量部となる割合でカリウム化合物を含有し、かつ
285℃におけるポリマー体積抵抗率が7X106〜4
X107Ω・cmであることを特徴とする異物の量が少
なくかつ高速成膜性を有するフィルム用ポリエステル組
成物によって達成される。
<Configuration/Effects of the Invention> According to the present invention, an object of the present invention is to contain polyester 10 in thermoplastic polyester produced by a transesterification method.
Potassium element per 0 weight 4 parts is 0.0020-0.00
Contains a potassium compound in a proportion of 72 parts by weight, and has a polymer volume resistivity of 7X106 to 4 at 285°C.
This is achieved by a polyester composition for film that has a small amount of foreign matter and has high-speed film forming properties, which is characterized by a resistance of X107 Ω·cm.

本発明における熱可塑性ポリエステルとしては、ポリエ
チレンテレフタレート、ポリエチレン−2゜6−ナフタ
レート、エチレンテレフタレートを主たる繰返し単位と
するコポリエステル及びエチレン−2,6−ナフタレー
トを主たる繰返し単位とするコポリエステルが特に好ま
しい。該コポリエステルの共重合成分としてはイソフタ
ル酸、アジピン酸等の如き芳香族ジカルボン酸や脂肪族
ジカルボン酸、オキシ安息香酸の如きオキシカルボン酸
As the thermoplastic polyester in the present invention, polyethylene terephthalate, polyethylene-2°6-naphthalate, copolyesters having ethylene terephthalate as the main repeating unit, and copolyesters having ethylene-2,6-naphthalate as the main repeating unit are particularly preferred. Copolymerization components of the copolyester include aromatic dicarboxylic acids such as isophthalic acid and adipic acid, aliphatic dicarboxylic acids, and oxycarboxylic acids such as oxybenzoic acid.

トリメチレングリコール、テトラメチレングリコール、
1.4−シクロへキリンジメタツール等の如き脂肪族ジ
ヒドロキシ化合物、ポリエチレングリコール、ポリブチ
レングリコール等の如きポリオキシアルキレングリコー
ルなどが例示できる。熱可塑性ポリ−エステルには安定
剤9着色剤等の添加剤を配合してもよく、また滑り性向
上のために無機微粒子を配合あるいは含有させてもよい
trimethylene glycol, tetramethylene glycol,
Examples include aliphatic dihydroxy compounds such as 1,4-cyclohekyrin dimetatool, and polyoxyalkylene glycols such as polyethylene glycol and polybutylene glycol. The thermoplastic polyester may be blended with additives such as a stabilizer 9 and a colorant, and may also be blended with or contain inorganic fine particles to improve slipperiness.

このような熱可塑性ポリエステルは、エステル交換法に
よって製造される。例えば、テレフタル酸の低級アルキ
ルエステルとエチレングリコールとをエステル交換反応
せしめて単量体または初期重合体を形成し、次にこれを
その融点以上の温度で真空下または不活性ガス流通下に
おいて攪拌を加えながら固有粘度が0.45〜0.75
程度になるまで重縮合反応を行なう。その際、触媒等の
添加剤は必要に応じて任意に使用することができる。
Such thermoplastic polyesters are produced by transesterification. For example, a lower alkyl ester of terephthalic acid and ethylene glycol are transesterified to form a monomer or initial polymer, which is then stirred at a temperature above its melting point under vacuum or under an inert gas flow. While adding, the intrinsic viscosity is 0.45-0.75
The polycondensation reaction is carried out until a certain degree is reached. At that time, additives such as catalysts can be optionally used as necessary.

本発明においてカリウム化合物としては、例えば水酸化
カリウム、酢酸カリウム、プロピオン酸カリウム、醋酸
カリウム、安息香酸カリウム、炭酸カリウム、硫酸カリ
ウム、硝酸カリウムなどが挙げられる。これらのカリウ
ム化合物の1種または2種以上を用いることができる。
Examples of potassium compounds in the present invention include potassium hydroxide, potassium acetate, potassium propionate, potassium acetate, potassium benzoate, potassium carbonate, potassium sulfate, and potassium nitrate. One or more of these potassium compounds can be used.

これらのカリウム化合物は、ポリエステル製造中、良好
な分散状態を保ち、粗大粒子を生成しないあるいは粗大
粒子の生成が少ないことが望ましい。かかる観点からは
、水酸化カリウム、酢酸カリウム、安息香酸カリウムが
特に好ましい。
It is desirable that these potassium compounds maintain a good dispersion state during the production of polyester and do not generate coarse particles or generate only a small amount of coarse particles. From this point of view, potassium hydroxide, potassium acetate, and potassium benzoate are particularly preferred.

また本発明において、カリウム化合物、例えば酢酸カリ
ウム、水酸化カリウム等をポリエステル中に含有させる
方法としては、ポリエステル製造中に、カリウム化合物
を固体のまま添加する方法や、カリウム化合物をグリコ
ール特にエチレングリコールに分散させた状態で添加す
る方法を用いることができる。また、カリウム化合物を
受註の水に溶解させた状態で添加する方法でもよい。カ
リウム化合物を添加する時期は、ポリエステル製造中で
あれば何時でもよいが、好ましくはエステル交換反応が
実質的に完了した時点がら重縮合反応が進行し固有粘度
が0.2を越えない間に添加するのがよい。カリウム化
合物の添加は1回で行なってもよいし、2回以上に分け
て行なってもよい。
In the present invention, methods for incorporating potassium compounds such as potassium acetate and potassium hydroxide into polyester include adding the potassium compound as a solid during polyester production, and adding the potassium compound to glycol, especially ethylene glycol. A method of adding in a dispersed state can be used. Alternatively, the potassium compound may be added in a state dissolved in water. The potassium compound may be added at any time during the production of polyester, but it is preferably added when the transesterification reaction is substantially completed and when the polycondensation reaction has progressed and the intrinsic viscosity does not exceed 0.2. It is better to do so. The potassium compound may be added once or in two or more parts.

また高濃度のカリウム化合物を含有するポリエステルを
別途製造しておき、ポリエステルフィルムを製造する際
の溶融押出しの段階でこれとカリウム化合物を含有しな
いか、低濃度で含有するポリエステルとを溶融混合し、
カリウム含有量を所定回に調整することもできる。この
マスターポリマー方式は好ましい方法である。
In addition, a polyester containing a high concentration of a potassium compound is separately manufactured, and this is melt-mixed with a polyester that does not contain a potassium compound or contains a potassium compound at a low concentration during the melt extrusion stage when manufacturing a polyester film.
The potassium content can also be adjusted at predetermined times. This master polymer approach is the preferred method.

カリウム化合物の添加量は、ポリエステル100千母部
当り、カリウム元素が0.0020〜0.0072重量
部となる割合であって285℃におけるポリマー体積抵
抗率が7X106〜4X107Ω・cmとなる量であり
、好ましくはカリウム元素が0.0031〜0.006
8重量部となる割合であって285℃におけるポリマー
体積抵抗率が8X106〜1.8 x107Ω−cmと
なる量であり、特に好ましくはカリウム元素が0、00
36〜0.0062重量部となる割合であって285℃
におけるポリマー体積抵抗率が1X107〜1.7×1
070・cmとなる間である。カリウム化合物は、伯の
アルカリ金属化合物と違って、かかる量添加してもポリ
マー中での分散性に優れ、粗大粒子を生成しないあるい
は粗大粒子の生成が少ない。しかも、カリウム化合物を
含有するポリエステル組成物は静電密着法によってフィ
ルムを製造すると、以外にもアーク放電がなく、高能率
でフィルムを製造することができる。
The amount of the potassium compound added is such that the potassium element is 0.0020 to 0.0072 parts by weight per 100,000 parts of polyester, and the volume resistivity of the polymer at 285°C is 7 x 10 to 4 x 10 Ω cm. , preferably potassium element is 0.0031 to 0.006
The proportion is 8 parts by weight, and the amount is such that the polymer volume resistivity at 285°C is 8 x 106 to 1.8 x 107 Ω-cm, and particularly preferably the potassium element is 0.00
The ratio is 36 to 0.0062 parts by weight at 285°C
The polymer volume resistivity in is 1×107~1.7×1
070 cm. Unlike the above alkali metal compounds, the potassium compound has excellent dispersibility in the polymer even when added in such an amount, and does not generate coarse particles or generates only a small amount of coarse particles. Furthermore, when a film is produced from a polyester composition containing a potassium compound by an electrostatic adhesion method, there is no arc discharge, and the film can be produced with high efficiency.

本発明においては、かくして1ワられたカリウム化合物
含有熱可塑性ポリエステル組成物をシート状に溶融押出
し、シート状物に静電荷を析出させて、回転冷却ドラム
表面に密着させ、急冷して未延伸のポリエステルフィル
ムとする。溶融押出し条件、静電荷析出手段、冷却手段
等は従来から蓄積された条件2手段を採用することがで
きる。例えば静電荷析出手段として特公昭37−614
2号公報等に記載されている方法を採用することができ
る。
In the present invention, the potassium compound-containing thermoplastic polyester composition thus heated is melt-extruded into a sheet, electrostatic charges are deposited on the sheet, the sheet is brought into close contact with the surface of a rotating cooling drum, and the composition is rapidly cooled to form an unstretched sheet. Use polyester film. As the melt extrusion conditions, electrostatic charge deposition means, cooling means, etc., two conventionally accumulated conditions can be employed. For example, as a means for electrostatic charge deposition,
The method described in Publication No. 2, etc. can be adopted.

本発明で用いる熱可塑性ポリエステルは静電荷析出が極
めて容易であり、本発明によれば従来の条件に比してよ
り緩和された条件でシート状物に静電荷を析出させるこ
とができ、また製膜速度を高めても静電荷を十分に析出
させることができる。
The thermoplastic polyester used in the present invention is extremely easy to deposit electrostatic charges, and according to the present invention, electrostatic charges can be deposited on a sheet-like material under conditions that are more relaxed than those of conventional conditions. Even if the film speed is increased, electrostatic charges can be sufficiently deposited.

かくして得られた未延伸フィルムは少くとも一軸方向に
延伸することができるが、この延伸は従来から蓄積され
た条件2手段で行なうことができる。例えば、未延伸フ
ィルムを1g〜(丁g+70) ’C[ここで、丁qは
ポリエステルのガラス転移温度である]の温度(T1)
で−軸方向に延伸し、次いで■1〜(T++40)’C
の温度で上記延伸方向と直角方向に延伸し、必要であれ
ば熱固定処理を行なうことで二軸配向ポリエステルを得
ることかできる。
The unstretched film thus obtained can be stretched in at least one direction, and this stretching can be carried out under two conventional conditions and methods. For example, the unstretched film is heated to a temperature (T1) of 1 g to (Tg+70)'C [where DQ is the glass transition temperature of polyester].
Stretched in the - axial direction, then ■1~(T++40)'C
A biaxially oriented polyester can be obtained by stretching the polyester in a direction perpendicular to the stretching direction at a temperature of .

延伸倍率は所望のフィルム特性にもよるが、面積倍率で
4倍以上、更には6倍以上、特に8倍以上が好ましい。
Although the stretching ratio depends on the desired film properties, the area ratio is preferably 4 times or more, more preferably 6 times or more, particularly 8 times or more.

熱固定は170〜230℃で、1〜120秒行なうこと
が好ましい。
It is preferable that heat fixation is carried out at 170 to 230°C for 1 to 120 seconds.

本発明のポリニスデル組成物を用いれば、表面欠点の改
善されたフィルムをより一層の高速で安定して製造する
ことができる。
By using the polynisder composition of the present invention, a film with improved surface defects can be produced stably at a higher speed.

〈実施例〉 以下、実施例を挙げて本発明を更に説明する。<Example> The present invention will be further explained below with reference to Examples.

尚、例中の「部」は重量部を意味し、またポリニスデル
の固有粘度、静電キャスト性、ポリマー体積抵抗率、フ
ィルムの表面欠点等の測定、評価は下記の方法で行なっ
た。
In addition, "parts" in the examples mean parts by weight, and measurements and evaluations of polynisdel's intrinsic viscosity, electrostatic castability, polymer volume resistivity, film surface defects, etc. were performed by the following methods.

1、 固有粘度 0−クロロフェノールを溶媒として35℃にて測定した
1. Intrinsic viscosity Measured at 35°C using 0-chlorophenol as a solvent.

2、 静電キャスト性 ポリマーをシート状に溶融押出しする口金部において押
出したシートの上部に設置した電極によりキャスティン
グドラムとの間に7000Vの電圧を印加してキャステ
ィングする際、安定に製膜できる最大のキャスティング
ドラムの速度により、次のようにランク付けして評価し
た。
2. When casting by applying a voltage of 7,000 V between the casting drum and the electrode installed on the top of the extruded sheet in the nozzle that melts and extrudes the electrostatically castable polymer into a sheet, the maximum value that can be stably formed into a film is The casting drum speed was ranked and evaluated as follows.

ランク−A:キャスティングドラムの速度60 m7分
以上で安定に製膜できる。
Rank-A: A film can be stably formed at a casting drum speed of 60 m for 7 minutes or more.

ランク−B:キャスティングドラムの速度55〜60m
/分で安定に製膜できる。
Rank-B: Casting drum speed 55-60m
Films can be stably formed in minutes.

ランク−C:キャスティングドラムの速度55 m7分
以上で安定に製膜できない。
Rank-C: Film cannot be stably formed at a casting drum speed of 55 m for 7 minutes or more.

3、ポリマー体積抵抗率 第1図に示す装置を用い、測定しようとするポリマー(
1)中に一対の電極(2)を挿入した容器(3)を加熱
体(4)中に浸し、ポリマーを温度285℃に加熱溶融
し、この温度に保った。ポリマー中に挿入した電極(2
)に外部より接続した直流電源(5)から所定の電圧を
印加した。この時の電流計(6)と電圧計(7)の指示
値及び電極面積、電極間距離より計詐により、体積抵抗
率を求めた。
3. Polymer volume resistivity Using the apparatus shown in Figure 1, measure the polymer (
1) A container (3) into which a pair of electrodes (2) were inserted was immersed in a heating element (4), and the polymer was melted by heating to a temperature of 285°C and maintained at this temperature. Electrode inserted into the polymer (2
) was applied a predetermined voltage from a DC power supply (5) connected externally. At this time, the volume resistivity was calculated from the indicated values of the ammeter (6) and voltmeter (7), the electrode area, and the distance between the electrodes.

4、 フィルム表面欠点 熱可塑性ポリエステルを290℃で押出し、静電キャス
ト法によって冷却ドラム表面で冷却した後、縦方向に3
.6倍、横方向に3.9倍の延伸を行なって、暑さ15
μのフィルムを製造した。
4. Film surface defects After extruding the thermoplastic polyester at 290℃ and cooling it on the surface of a cooling drum using the electrostatic casting method,
.. Stretched 6 times and 3.9 times in the lateral direction, heat 15
A film of μ was produced.

このフィルムを位相顕微鏡を用いて観察し、画像解析装
置ルーゼックス500  (日本レギュレーター製)で
顕微鏡像内の最大長が10μI11以上の粒子数をカウ
ントした。
This film was observed using a phase microscope, and the number of particles with a maximum length of 10 μI11 or more in the microscope image was counted using an image analyzer Luzex 500 (manufactured by Nippon Regulator).

実施例1 テレフタル酸ジメチル100部とエチレングリコール7
0部の混合物に酢酸マンガン・4水塩0.038部を添
加し、150℃から240℃に徐々に昇温しながらエス
テル交換反応を行なった。)9られた反応物にリン酸ト
リメチル0.025部を添加し、15分間反応させてか
ら三酸化アンデモ20.045部を添加し、更に5分間
反応させてから酢酸カリウム0.138部をエチレング
リコール1.5部に溶解させた状態で添加した。続いて
290℃まで昇温し、0.2 mmHg以下の高真空下
にて重縮合反応を行なって固有粘度0.60のポリエチ
レンテレフタレート(^)を(qた。
Example 1 100 parts of dimethyl terephthalate and 7 parts of ethylene glycol
0.038 part of manganese acetate tetrahydrate was added to 0 part of the mixture, and the transesterification reaction was carried out while gradually raising the temperature from 150°C to 240°C. ) Add 0.025 parts of trimethyl phosphate to the resulting reaction mixture, react for 15 minutes, add 20.045 parts of andemo trioxide, react for an additional 5 minutes, and then add 0.138 parts of potassium acetate to ethylene. It was added in a state dissolved in 1.5 parts of glycol. Subsequently, the temperature was raised to 290° C., and a polycondensation reaction was performed under a high vacuum of 0.2 mmHg or less to obtain polyethylene terephthalate (^) having an intrinsic viscosity of 0.60.

一方、テレフタル酸ジメチル100部とエチレングリコ
ール70部の混合物に酢酸マンガン・4水塩0.038
部を添加し、150’Cから240℃に徐々に昇温しな
がらエステル交換反応を行なった。得られた反応物にリ
ン酸トリメチル01025部を添加し、15分間反応さ
せてから三酸化アンチモン0.045部を添加し、更に
10分間反応させてから平均粒径160μmの炭酸カル
シウム1.0部を5部のエチレングリコールと混合して
添加した。続いて290’Cまで昇温し、0.2 mm
1l(1以下の高真空下にて重縮合反応を行なって固有
粘度0.60のポリエチレンテレフタレート(8)を得
た。
On the other hand, in a mixture of 100 parts of dimethyl terephthalate and 70 parts of ethylene glycol, 0.038 parts of manganese acetate tetrahydrate was added.
The transesterification reaction was carried out while gradually increasing the temperature from 150'C to 240°C. 01025 parts of trimethyl phosphate was added to the obtained reaction product, reacted for 15 minutes, added 0.045 parts of antimony trioxide, reacted for another 10 minutes, and then added 1.0 part of calcium carbonate with an average particle size of 160 μm. was added mixed with 5 parts of ethylene glycol. Subsequently, the temperature was raised to 290'C, and the thickness of 0.2 mm
A polycondensation reaction was carried out under a high vacuum of 1 liter (1 liter or less) to obtain polyethylene terephthalate (8) with an intrinsic viscosity of 0.60.

また、テレフタル酸ジメチル100部とエチレングリコ
ール70部の混合物に酢酸マンガン・4水塩0.038
部を添加し、150℃から250″Cに徐々に昇温しな
がらエステル交換反応を行なった。得られた反応物にリ
ン酸トリメチル0.025部を添加し、15分間反応さ
ヒてから三酸化アンチモン0.045部を添加した。続
いて290℃まで昇温し、0.2 mmf1gmmHg
以下下にて重縮合反応を行なって固有粘度0.60のポ
リエチレンテレフタレート(C)を1qだ。
In addition, 0.038 parts of manganese acetate tetrahydrate was added to a mixture of 100 parts of dimethyl terephthalate and 70 parts of ethylene glycol.
The transesterification reaction was carried out while gradually raising the temperature from 150°C to 250″C. 0.025 parts of trimethyl phosphate was added to the obtained reaction product, and the reaction was continued for 15 minutes. 0.045 part of antimony oxide was added.Then, the temperature was raised to 290°C, and 0.2 mmf1gmmHg
The following polycondensation reaction was performed to obtain 1q of polyethylene terephthalate (C) having an intrinsic viscosity of 0.60.

かくして得られたポリエチレンテレフタレート(A)、
(B)及び(C)を、混合後のポリエチレンテレフタレ
ート(D)中のカリウム元素の含有量がポリマーioo
重ω部当り0.0037重量部、平均粒径1.0μmの
炭酸カルシウムの含有量がポリマー100 i置部当り
0.1重量部となるように混合した。このポリマー(D
)の285℃における体積抵抗率は2.0×107 Ω
・cmであった。
The thus obtained polyethylene terephthalate (A),
(B) and (C) are mixed so that the potassium element content in polyethylene terephthalate (D) after mixing is polymer ioo
The content of calcium carbonate having an average particle size of 1.0 μm was 0.0037 parts by weight per ω part of the polymer and 0.1 parts by weight per 100 i parts of the polymer. This polymer (D
) volume resistivity at 285℃ is 2.0×107 Ω
・It was cm.

このポリマーを用いてポリエステルフィルムをT4aし
た際の静電キャスト性、フィルムの表面欠点は後掲の第
1表に示すとおりである。
When a polyester film was T4a-treated using this polymer, the electrostatic castability and surface defects of the film are as shown in Table 1 below.

比較例1 実施例1においてポリエチレンテレフタレート(A)を
製造する際に酢酸カリウム0.138部を酢酸ナトリウ
ム・3水塩0.191部に変更する以外は実施例1と全
く同様にして固有粘度0.60のポリエチレンテレフタ
レート(E)を得た。
Comparative Example 1 Polyethylene terephthalate (A) was produced in the same manner as in Example 1, except that 0.138 parts of potassium acetate was changed to 0.191 parts of sodium acetate trihydrate, and the intrinsic viscosity was 0. .60 polyethylene terephthalate (E) was obtained.

実施例1で得たポリエチレンテレフタレート(8)及び
ポリエチレンテレフタレート(c)と上記ポリエチレン
テレフタレート(E)とを混合後のポリエチレンテレフ
タレート(F)中のナトリウム元素の含有量がポリマー
100重量部当り0.0030重量部、平均粒径1.0
μmの炭酸カルシウムの含有量がポリマー100重量部
当り0.1重量部となるように混合した。このポリマー
([)の285℃における体積抵抗率は9.0X107
Ω−cmであった。
The content of sodium element in the polyethylene terephthalate (F) after mixing the polyethylene terephthalate (8) and polyethylene terephthalate (c) obtained in Example 1 with the above polyethylene terephthalate (E) is 0.0030 per 100 parts by weight of the polymer. Part by weight, average particle size 1.0
The mixture was mixed so that the content of μm calcium carbonate was 0.1 parts by weight per 100 parts by weight of the polymer. The volume resistivity of this polymer ([) at 285°C is 9.0X107
It was Ω-cm.

このポリマーを用いてポリエステルフィルムを製造した
際の静電キャスト性、フィルムの表面欠点は後掲の第1
表に示すとおりである。
When producing a polyester film using this polymer, the electrostatic castability and surface defects of the film will be discussed in 1 below.
As shown in the table.

比較例2 実施例1においてポリエチレンテレフタレート(A)を
製造する際に酢酸カリウム0.138部を酢酸カルシウ
ム・1水塩0.248部に変更し、該酢酸カルシウム・
1水塩をエチレングリコールのスラリー状態で添加する
以外は実施例1と全く同様にして固有粘190.60の
ポリエチレンテレフタレート(G)を得た。
Comparative Example 2 When producing polyethylene terephthalate (A) in Example 1, 0.138 parts of potassium acetate was changed to 0.248 parts of calcium acetate monohydrate.
Polyethylene terephthalate (G) having an intrinsic viscosity of 190.60 was obtained in exactly the same manner as in Example 1 except that monohydrate was added in the form of an ethylene glycol slurry.

実施例1で(qだポリエチレンテレフタレート(B)及
びポリエチレンテレフタレート(C)と上記ポリエチレ
ンテレフタレート(G)とを、混合後のポリエチレンテ
レフタレート(1中にカルシウム元素の含有量がポリマ
ー100重石部当り0.0038重量部、平均粒径1.
0μmの炭酸カルシウム含有量がポリマー100重量部
当り0.1重量部となるように混合した。このポリマー
(旧の285°Cにおける体積抵抗率は3.5X107
Ω・cmであった。
In Example 1, polyethylene terephthalate (B), polyethylene terephthalate (C), and the above polyethylene terephthalate (G) were mixed into polyethylene terephthalate (with a calcium element content of 0.0% per 100 parts of polymer). 0038 parts by weight, average particle size 1.
The mixture was mixed so that the calcium carbonate content of 0 μm was 0.1 part by weight per 100 parts by weight of the polymer. This polymer (old volume resistivity at 285°C is 3.5X107
It was Ωcm.

このポリマーを用いてポリ1ステルフイルムを製造した
際の静電キ%zスト性、フィルムの表面欠点は後掲の第
1表に示すとおりである。
When a poly-1 stellate film was produced using this polymer, the electrostatic charge resistance and surface defects of the film are as shown in Table 1 below.

実施例2 テレフタル酸ジメチル100部とニブレンゲリコール7
0部の混合物に酢酸マンガン・4水塩0.038部と酢
酸カリウム0.018部を添加し、150℃から240
℃に徐々に昇温しながらエステル交換反応を行なった。
Example 2 100 parts of dimethyl terephthalate and nibrene gelicol 7
0.038 parts of manganese acetate tetrahydrate and 0.018 parts of potassium acetate were added to 0 parts of the mixture, and the mixture was heated from 150°C to 240°C.
The transesterification reaction was carried out while gradually raising the temperature to °C.

得られた反応物にリン酸トリメチル0.025部を添加
し、15分間反応させてから三酸化アンデーピン0.0
45部を添加し、更に5分間反応させてから平均粒径0
.8μmのカオリ大イト0.08部を添加した。続いて
290℃まで!4温し、0.2 mm11g以下の高真
空下にて重縮合反応を行なって固有粘[0,60のポリ
エチレンテレフタレートを得た。このポリマーの285
℃における体積抵抗率は8.0×106 Ω・cmであ
った。
Add 0.025 part of trimethyl phosphate to the obtained reaction product, react for 15 minutes, and then add 0.0 part of andepine trioxide.
After adding 45 parts and reacting for an additional 5 minutes, the average particle size was 0.
.. 0.08 part of 8 μm Kaoriite was added. Then up to 290℃! Polycondensation reaction was carried out under high vacuum to obtain polyethylene terephthalate having an intrinsic viscosity of 0.60. 285 of this polymer
The volume resistivity at ℃ was 8.0×10 6 Ω·cm.

このポリマーを用いてポリエステルフィルムを製造した
際の静電キャスト性、フィルムの表面欠点は後掲の第1
表に示すとおりである。
When producing a polyester film using this polymer, the electrostatic castability and surface defects of the film will be discussed in 1 below.
As shown in the table.

比較例3 実施例2において酢酸カリウム0.018部を酢酸ナト
リウム・3水塩0.0213部に変更する以外は実施例
2と全く同様にして固有粘度0.60のポリエチレンテ
レフタレートを得た。このポリマーの285℃における
体積抵抗率は8.0X107Ω・cmであった。
Comparative Example 3 Polyethylene terephthalate having an intrinsic viscosity of 0.60 was obtained in exactly the same manner as in Example 2, except that 0.018 part of potassium acetate was changed to 0.0213 part of sodium acetate trihydrate. The volume resistivity of this polymer at 285° C. was 8.0×10 7 Ω·cm.

このポリマーを用いてポリエステルフィルムを製造した
際の静電キャスト性、フィルムの表面欠点は後掲の第1
表に示すとおりである。
When producing a polyester film using this polymer, the electrostatic castability and surface defects of the film will be discussed in 1 below.
As shown in the table.

実施例3 テレフタル酸ジメチル100部とエチレングリコール7
0部の混合物に酢酸マンガン・4水塩0.038部を添
加し、150℃から240℃に徐々に昇温しながらエス
テル交換反応を行なった。jqられた反応物にリン酸ト
リメデル0.025部を添加し、15分間反応させてか
ら三酸化アンチモン0.045部を添加し、更に5分間
反応させてから水酸化カリウム0.008重量部をエチ
レングリコール1.0部に溶解させた状態で添加した。
Example 3 100 parts of dimethyl terephthalate and 7 parts of ethylene glycol
0.038 part of manganese acetate tetrahydrate was added to 0 part of the mixture, and the transesterification reaction was carried out while gradually raising the temperature from 150°C to 240°C. 0.025 part of trimedel phosphate was added to the reactant, and after reacting for 15 minutes, 0.045 part of antimony trioxide was added, and after further reacting for 5 minutes, 0.008 part by weight of potassium hydroxide was added. It was added in a state dissolved in 1.0 part of ethylene glycol.

更に平均粒径0.3μmの酸化チタン0.05部をエチ
レングリコール0.5部でスラリー化したものを添加し
、続いて290℃まで胃温し、0.2 mmt1g以下
の高真空下にて重縮合反応を行なって固有粘度0.60
のポリニ[チレンテレフタレートを得た。このポリマー
の285℃における体積抵抗率は1.I X107Ω・
cmであった。
Furthermore, a slurry of 0.05 part of titanium oxide with an average particle size of 0.3 μm in 0.5 part of ethylene glycol was added, followed by heating to 290°C and under high vacuum at a pressure of 0.2 mmt1g or less. By performing polycondensation reaction, the intrinsic viscosity is 0.60.
Polyni[ethylene terephthalate] was obtained. The volume resistivity of this polymer at 285°C is 1. IX107Ω・
It was cm.

このポリマーを用いてポリエチレンテレフタレートフィ
ルムを製造した際の静電キャスト性、フィルムの表面欠
点は後掲第1表に示すとおりである。
When a polyethylene terephthalate film was produced using this polymer, the electrostatic castability and surface defects of the film are as shown in Table 1 below.

比較例4 実施例3において水酸化カリウムo、ooa重量部を酢
酸ナトリウム・3水塩0.055重量部に変更する以外
は実施例3と全く同様にして固有粘度0.60のポリエ
チレンテレフタレートを得た。このポリマーの285℃
における体積抵抗率は7.0x107ΩΦcmであった
Comparative Example 4 Polyethylene terephthalate with an intrinsic viscosity of 0.60 was obtained in the same manner as in Example 3 except that the parts by weight of potassium hydroxide o and ooa in Example 3 were changed to 0.055 parts by weight of sodium acetate trihydrate. Ta. 285℃ of this polymer
The volume resistivity was 7.0×10 7 ΩΦcm.

このポリマーを用いてポリエチレンテレフタレートフィ
ルムを製造した際の静電キャスト性、フィルムの表面欠
点は後掲第1表に示すとおりである。このフィルムは黄
色に着色しており、熱安定性が不十分であった。
When a polyethylene terephthalate film was produced using this polymer, the electrostatic castability and surface defects of the film are as shown in Table 1 below. This film was colored yellow and had insufficient thermal stability.

比較例5 実施例3において水酸化カリウム0.008重量部を0
.029重量部に変更する以外は実施例3と全く同様に
して固有粘度0.60のポリエチレンテレフタレートを
得た。このポリマーの285℃における体積抵抗率は7
.0X106Ω・cmであった。
Comparative Example 5 In Example 3, 0.008 parts by weight of potassium hydroxide was added to 0.
.. Polyethylene terephthalate having an intrinsic viscosity of 0.60 was obtained in exactly the same manner as in Example 3 except that the amount was changed to 0.029 parts by weight. The volume resistivity of this polymer at 285°C is 7
.. It was 0×106 Ω·cm.

このポリマーを用いてポリエチレンテレフタレートフィ
ルムを製造した際の静電キャスト性、フィルムの表面欠
点は後掲第1表に示すとおりである。このフィルムは黄
色に着色しており、熱安定性が不十分であった。
When a polyethylene terephthalate film was produced using this polymer, the electrostatic castability and surface defects of the film are as shown in Table 1 below. This film was colored yellow and had insufficient thermal stability.

比較例6 実施例3において水酸化カリウム0.008重量部を酢
酸マグネシウム・4水塩0.028重吊部に変更し、平
均粒径0.3μmの酸化チタン0.05部を添加しない
こと以外は実施例3と全く同様にして固有粘度0.62
のポリエチレンテレフタレートを得た。
Comparative Example 6 Except that 0.008 parts by weight of potassium hydroxide in Example 3 was changed to 0.028 parts by weight of magnesium acetate/tetrahydrate, and 0.05 parts of titanium oxide with an average particle size of 0.3 μm was not added. was made exactly the same as in Example 3, and the intrinsic viscosity was 0.62.
of polyethylene terephthalate was obtained.

このポリマーの285℃における体積抵抗率は2.5×
107 Ω・cmであった。
The volume resistivity of this polymer at 285°C is 2.5×
It was 107 Ω·cm.

このポリマーを用いてポリエチレンテレフタレートフィ
ルムを製造した際の静電キレスト性、フィルムの表面欠
点は後掲第1表に示すとおりである。
When a polyethylene terephthalate film was produced using this polymer, the electrostatic crest properties and surface defects of the film are as shown in Table 1 below.

比較例7 実施例3において水酸化カリウム0.008重聞都合酢
酸バリウム0.0056重量部に変更する以外は実施例
3と全く同様にして固有粘度0.60のポリエチレンテ
レフタレートを得た。このポリマーの285℃における
体積抵抗率は3.0X108Ω・cmであった。
Comparative Example 7 Polyethylene terephthalate having an intrinsic viscosity of 0.60 was obtained in exactly the same manner as in Example 3, except that potassium hydroxide was changed to 0.008 parts by weight and barium acetate was changed to 0.0056 parts by weight. The volume resistivity of this polymer at 285° C. was 3.0×10 8 Ω·cm.

このポリマーを用いてポリエステルフィルムを製造した
際の静電キレスト性、フィルムの表面欠点は後掲の第1
表に示すとおりである。
When producing a polyester film using this polymer, the electrostatic crystal properties and surface defects of the film will be determined in the following section 1.
As shown in the table.

比較例8 実施例3において水酸化カリウム0.008重量部を酢
酸バリウム0.020重量部に変更し、平均粒径0.3
μmの酸化チタン0.05部を添加しない以外は実施例
3と全く同様にして固有粘度0.61のポリエチレンテ
レフタレートを得た。このポリマーの285℃における
体積抵抗率は7.0X107Ω・cmであった。
Comparative Example 8 In Example 3, 0.008 parts by weight of potassium hydroxide was changed to 0.020 parts by weight of barium acetate, and the average particle size was 0.3.
Polyethylene terephthalate having an intrinsic viscosity of 0.61 was obtained in exactly the same manner as in Example 3, except that 0.05 part of titanium oxide of μm was not added. The volume resistivity of this polymer at 285° C. was 7.0×10 7 Ω·cm.

このポリマーを用いてポリエステルフィルムを製造した
際の静電キャスト性、フィルムの表面欠点は後掲第1表
に示すとおりである。
When a polyester film was produced using this polymer, the electrostatic castability and surface defects of the film are as shown in Table 1 below.

比較例9 実施例3において水酸化カリウムo、 ooa重聞重含
部酸リチウム0.033重量部に変更する以外は実施例
3と全く同様にして固有粘度0.61のポリエチレンテ
レフタレートを得た。このポリマーの285℃における
体積抵抗率は1.2 X108Ω・cmであった。
Comparative Example 9 Polyethylene terephthalate having an intrinsic viscosity of 0.61 was obtained in the same manner as in Example 3, except that the lithium oxide containing potassium hydroxide o, ooa was changed to 0.033 parts by weight. The volume resistivity of this polymer at 285° C. was 1.2×10 8 Ω·cm.

このポリマーを用いてポリエステルフィルムを製造した
際の静電キレスト性、フィルムの表面欠点は後掲の第1
表に示すとおりである。
When producing a polyester film using this polymer, the electrostatic crystal properties and surface defects of the film will be determined in the following section 1.
As shown in the table.

実施例4 2.6−ナフタレンジカルボン酸ジメチル100部と■
ヂレングリコール50部の混合物に酢酸マンガン・4水
塩0.018部を添加し、150℃から240℃に徐々
に昇温しながらエステル交換反応を行なった。エステル
交換反応終了後リン酸トリメチル0.013部を添加し
、5分後に酢酸カリウム0.0097部を添加した。更
に5分後に酢酸チタンo、ooa重量部を添加してから
反応生成物を290 ’Cまで昇温し、0.2111m
HO以下の高真空下で重縮合反応を行ない固有粘度0.
50のポリエチレン−2,6−ナフタレートを得た。こ
のポリマーの285℃における体積抵抗率は1.3X1
07Ω・cmであった。
Example 4 100 parts of dimethyl 2.6-naphthalene dicarboxylate and ■
0.018 part of manganese acetate tetrahydrate was added to a mixture of 50 parts of dylene glycol, and transesterification reaction was carried out while gradually raising the temperature from 150°C to 240°C. After completion of the transesterification reaction, 0.013 part of trimethyl phosphate was added, and 5 minutes later, 0.0097 part of potassium acetate was added. After another 5 minutes, o, ooa parts by weight of titanium acetate were added, and the reaction product was heated to 290'C, and 0.2111 m
The polycondensation reaction is carried out under high vacuum below HO and the intrinsic viscosity is 0.
50 polyethylene-2,6-naphthalate was obtained. The volume resistivity of this polymer at 285°C is 1.3X1
It was 07Ω·cm.

このポリマーを用いてポリエステルフィルムを製造した
際の静電キャスト性、フィルムの表面欠点は後掲第1表
に示すとおりである。
When a polyester film was produced using this polymer, the electrostatic castability and surface defects of the film are as shown in Table 1 below.

比較例10 実施例4において酢酸カリウム0.0097部を酢酸ナ
トリウム・3水塩0.018部に変更する以外は実施例
4と全く同様にして固有粘度0.50のポリエチレン−
2,6−ナフタレートを得た。このポリマーの285℃
における体積抵抗率は1.0X108Ω・cmであった
Comparative Example 10 Polyethylene with an intrinsic viscosity of 0.50 was prepared in the same manner as in Example 4 except that 0.0097 part of potassium acetate was changed to 0.018 part of sodium acetate trihydrate.
2,6-naphthalate was obtained. 285℃ of this polymer
The volume resistivity was 1.0×10 8 Ω·cm.

このポリマーを用いてポリエステルフィルムを製造した
際の静電キャスト性、フィルムの表面欠点は後掲第1表
に示すとおりである。
When a polyester film was produced using this polymer, the electrostatic castability and surface defects of the film are as shown in Table 1 below.

比較例11 実施例4において酢酸カリウム0.0097部を0.0
008部に変更する以外は実施例4と全く同様にして固
有粘度0.50のポリエチレン−2,6−ナフタレート
を得た。このポリマーの285℃における体積抵抗率は
1.り X109Ω・cmであった。
Comparative Example 11 In Example 4, 0.0097 part of potassium acetate was added to 0.0
Polyethylene-2,6-naphthalate having an intrinsic viscosity of 0.50 was obtained in exactly the same manner as in Example 4 except that the amount was changed to 0.008 parts. The volume resistivity of this polymer at 285°C is 1. The resistance was 109Ω・cm.

このポリマーを用いてポリエステルフィルムを製造した
際の静電キ(/スト性、フィルムの表面欠点は後掲第1
表に示すとおりである2゜比較例12 実施例4において1Mカリウム0.0097部を0、1
22部に変更する以外は実施例4と全く同様にして固有
粘度0.45のポリエチレン−2,6−ナフタレートを
得た。このポリマーの285°Cにお番)る体積抵抗率
は1.OX107Ω・cmであった。
The electrostatic properties and surface defects of the film when producing a polyester film using this polymer will be discussed in Section 1 below.
Comparative Example 12 As shown in the table, 0.0097 part of 1M potassium was added to 0,1
Polyethylene-2,6-naphthalate having an intrinsic viscosity of 0.45 was obtained in exactly the same manner as in Example 4 except that the amount was changed to 22 parts. The volume resistivity of this polymer at 285°C is 1. It was OX107Ω·cm.

このポリマーを用いてポリニスデルフィルムを製造した
際の静電キャスト性、フィルムの表面欠点は後掲第1表
に示すとおりである。
The electrostatic castability and surface defects of the film produced using this polymer are as shown in Table 1 below.

実施例5 実施例3において水酸化カリウム0.008車量部を安
息香酸カリウム0.025重量部に変更する以外は実施
例3と全く同様にして固有粘度0.60のポリエチレン
テレフタレートを得た。このポリマーの285℃におC
ノる体積抵抗率は1.0X107Ω・cmであった。
Example 5 Polyethylene terephthalate having an intrinsic viscosity of 0.60 was obtained in the same manner as in Example 3, except that 0.008 parts by weight of potassium hydroxide in Example 3 was changed to 0.025 parts by weight of potassium benzoate. This polymer was heated to 285°C.
The volume resistivity was 1.0×10 7 Ω·cm.

このポリマーを用いてポリエステルフィルムを製造した
際の静電キセスト性、フィルムの表面欠点は後掲の第1
表に示すとおりである。
When producing a polyester film using this polymer, the electrostatic properties and surface defects of the film will be determined in the following section 1.
As shown in the table.

実施例6 実施例2において酢酸カリウム0.018部を炭酸カリ
ウム0.002重母重量び酢酸カリウム0.0043重
量部に変更する以外は実施例2と全く同様にして固有粘
度0.61のポリエチレンテレフタレートを得た。この
ポリマーの285°Cにおける体積抵抗率は2.0X1
07 Ω−cmであった。
Example 6 Polyethylene with an intrinsic viscosity of 0.61 was prepared in the same manner as in Example 2, except that 0.018 parts of potassium acetate was changed to 0.002 parts by weight of potassium carbonate and 0.0043 parts by weight of potassium acetate. Obtained terephthalate. The volume resistivity of this polymer at 285°C is 2.0X1
07 Ω-cm.

このポリマーを用いてポリエステルフィルムを製造した
際の静電キャスト性、フィルムの表面欠点は後掲の第1
表に示すとおりである。
When producing a polyester film using this polymer, the electrostatic castability and surface defects of the film will be discussed in 1 below.
As shown in the table.

比較例13 実施例5において安息香酸カリウA0.025重量部を
0.0042重量部に変更する以外は実施例5と全く同
様にして固有粘度0.60のポリエチレンテレフタレー
トを得た。このポリマーの285°Cにおける体積抵抗
率は3.0X108Ω・cmであった。
Comparative Example 13 Polyethylene terephthalate having an intrinsic viscosity of 0.60 was obtained in exactly the same manner as in Example 5, except that 0.025 parts by weight of potassium benzoate A in Example 5 was changed to 0.0042 parts by weight. The volume resistivity of this polymer at 285°C was 3.0×10 8 Ω·cm.

このポリマーを用いてポリエステルフィルムを装造した
際の静電キャスト性、フィルムの表面欠点は後掲の第1
表に示づとおりである。
The electrostatic castability and surface defects of the film when a polyester film is mounted using this polymer are as described in 1 below.
As shown in the table.

比較例14 実施例5において安息香酸カリウム0.025重量部を
0.225重罪部に変更する以外は実施例5と全く同様
にして固有粘度0.60のポリエチレンテレフタレート
を得た。このポリマーの285°Cにおける体積抵抗率
はe、oxio[iΩ・cmであった。
Comparative Example 14 Polyethylene terephthalate having an intrinsic viscosity of 0.60 was obtained in the same manner as in Example 5 except that 0.025 parts by weight of potassium benzoate was changed to 0.225 parts by weight. The volume resistivity of this polymer at 285°C was e,oxio[iΩ·cm.

このポリマーを用いてポリ1ステルフイルムを製造した
際の静電キャスト性、フィルムの表面欠点は後掲の第1
表に示すとおりである。
The electrostatic castability and surface defects of the film when poly-1 stellate film was produced using this polymer are as described in 1 below.
As shown in the table.

比較例15 テレフタル酸ジメチル100部とエチレングリコール7
0部の混合物に酢酸マンガン・4水塩0.038部を添
加し、150℃から240℃に徐々に4温しながらエス
テル交換反応を行なった。得られた反応物にリン酸トリ
メチル0.025部を添加し、15分間反応させてから
三酸化アンチモン0.045部を添加し、更に5分間反
応ざUてから酢酸カルシウム・1水塩0.165部を添
加し、更に5介接リン酸トリメデル0.027部を添加
し、更に10分後節酸カリウム0.001部を添加した
。続いて290℃まで界温し、0.2 mmt1g以下
の高真空下にて重縮合反応を行なって固有粘度0.60
のポリエチレンテレフタレートを得た。このポリマーの
285°Cにおける体積抵抗率は8.0X106 Ω・
cmであった。
Comparative Example 15 100 parts of dimethyl terephthalate and 7 parts of ethylene glycol
0.038 part of manganese acetate tetrahydrate was added to 0 part of the mixture, and transesterification reaction was carried out while gradually heating the mixture from 150°C to 240°C. 0.025 part of trimethyl phosphate was added to the obtained reaction product, and the reaction was allowed to proceed for 15 minutes. Then, 0.045 part of antimony trioxide was added, and after the reaction was allowed to continue for another 5 minutes, 0.025 part of trimethyl phosphate was added. 165 parts of the solution were added, and further 0.027 parts of 5-intermediate trimedel phosphate were added, and after 10 minutes, 0.001 parts of potassium nosate was added. Subsequently, the temperature was raised to 290°C, and a polycondensation reaction was carried out under a high vacuum of 0.2 mmt1g or less, resulting in an intrinsic viscosity of 0.60.
of polyethylene terephthalate was obtained. The volume resistivity of this polymer at 285°C is 8.0×106 Ω・
It was cm.

このポリマーを用いてポリエステルフィルムを製造した
際の静電キャスト性、フィルムの表面欠点は後掲の第1
表に示すとおりである。
When producing a polyester film using this polymer, the electrostatic castability and surface defects of the film will be discussed in 1 below.
As shown in the table.

比較例16 比較例15において酢酸カルシウム・1水塩0、165
部を酢酸マグネシウム・4水塩0.335部に変更し、
リン酸トリメチル0.027部を添加しない以外は比較
例15と全く同様にして固有粘度0.60のポリエチレ
ンテレフタレー トを19だ。このポリマーの285°
Cにおける体積抵抗率は7.0X106Ω・c+nであ
った。
Comparative Example 16 Calcium acetate monohydrate 0, 165 in Comparative Example 15
part was changed to 0.335 part of magnesium acetate tetrahydrate,
Polyethylene terephthalate having an intrinsic viscosity of 0.60 was prepared in the same manner as in Comparative Example 15 except that 0.027 part of trimethyl phosphate was not added. 285° of this polymer
The volume resistivity in C was 7.0×10 6 Ω·c+n.

このポリマーを用いてポリエステルフィルムを製造した
際の静電キャスト性、フィルムの表面欠点は後掲の第1
表に示すとおりである。
When producing a polyester film using this polymer, the electrostatic castability and surface defects of the film will be discussed in 1 below.
As shown in the table.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はポリマー体積抵抗率を測定する装置の概略図で
ある。
FIG. 1 is a schematic diagram of an apparatus for measuring polymer volume resistivity.

Claims (1)

【特許請求の範囲】[Claims]  エステル交換法で製造された熱可塑性ポリエステル中
に、ポリエステル100重量部当り、カリウム元素が0
.0020〜0.0072重量部となる割合でカリウム
化合物を含有し、かつ285℃におけるポリマー体積抵
抗率が7×10^6〜4×10^7Ω・cmであること
を特徴とする異物の量が少なくかつ高速成膜性を有する
フィルム用ポリエステル組成物。
In the thermoplastic polyester produced by the transesterification method, there is no potassium element per 100 parts by weight of the polyester.
.. The amount of foreign matter is characterized by containing a potassium compound in a proportion of 0020 to 0.0072 parts by weight, and having a polymer volume resistivity of 7 x 10^6 to 4 x 10^7 Ωcm at 285°C. A polyester composition for film that has low and high-speed film forming properties.
JP62330225A 1987-12-28 1987-12-28 Polyester composition for film Expired - Lifetime JPH0721099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62330225A JPH0721099B2 (en) 1987-12-28 1987-12-28 Polyester composition for film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62330225A JPH0721099B2 (en) 1987-12-28 1987-12-28 Polyester composition for film

Publications (2)

Publication Number Publication Date
JPH01172448A true JPH01172448A (en) 1989-07-07
JPH0721099B2 JPH0721099B2 (en) 1995-03-08

Family

ID=18230253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62330225A Expired - Lifetime JPH0721099B2 (en) 1987-12-28 1987-12-28 Polyester composition for film

Country Status (1)

Country Link
JP (1) JPH0721099B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026484A (en) * 2009-07-28 2011-02-10 Toyobo Co Ltd Polyester film
WO2015146183A1 (en) * 2014-03-28 2015-10-01 東レ株式会社 Polyester resin composition and method for producing same
JP2018062574A (en) * 2016-10-13 2018-04-19 東レ株式会社 Polyethylene terephthalate resin composition and film made from the same
JP2021001251A (en) * 2019-06-20 2021-01-07 東洋紡フイルムソリューション株式会社 Polyester film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50143894A (en) * 1974-05-09 1975-11-19
JPS59210936A (en) * 1983-05-16 1984-11-29 Toray Ind Inc Production of polyester
JPS6088029A (en) * 1983-10-19 1985-05-17 Toyobo Co Ltd Production of internal particle-containing polyester
JPS60229920A (en) * 1984-04-27 1985-11-15 Toyobo Co Ltd Production of polyester

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50143894A (en) * 1974-05-09 1975-11-19
JPS59210936A (en) * 1983-05-16 1984-11-29 Toray Ind Inc Production of polyester
JPS6088029A (en) * 1983-10-19 1985-05-17 Toyobo Co Ltd Production of internal particle-containing polyester
JPS60229920A (en) * 1984-04-27 1985-11-15 Toyobo Co Ltd Production of polyester

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026484A (en) * 2009-07-28 2011-02-10 Toyobo Co Ltd Polyester film
WO2015146183A1 (en) * 2014-03-28 2015-10-01 東レ株式会社 Polyester resin composition and method for producing same
US9920180B2 (en) 2014-03-28 2018-03-20 Toray Industries, Inc. Polyester resin composition and method for producing same
JP2018062574A (en) * 2016-10-13 2018-04-19 東レ株式会社 Polyethylene terephthalate resin composition and film made from the same
JP2021001251A (en) * 2019-06-20 2021-01-07 東洋紡フイルムソリューション株式会社 Polyester film

Also Published As

Publication number Publication date
JPH0721099B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
JP2014525491A (en) Polyester resin composition and polyester film using the same
EP0874015B1 (en) Process for producing aromatic polyester
JPH01172448A (en) Polyester composition for film
KR0147690B1 (en) A composite polyester film
JPS6143173B2 (en)
JP4018804B2 (en) Method for producing aromatic polyester
JP5492569B2 (en) Polyester resin, process for producing the same, and biaxially oriented polyester film using the same
JPS5964630A (en) Production of polyester
JPH11348210A (en) Laminated polyester film
JPS62242515A (en) Manufacture of polyester film
JP3582670B2 (en) Polyester film and method for producing the same
JP3075932B2 (en) Polyester film
JPH0713134B2 (en) Method for producing polyester
JPH0410495B2 (en)
JP2018062574A (en) Polyethylene terephthalate resin composition and film made from the same
JPS6266919A (en) Manufacture of polyester film
JPH1192637A (en) Polyester composition and film therefrom
JPH03250043A (en) Production of polyester composition
JP2663563B2 (en) Polyester film manufacturing method
JPH0435490B2 (en)
JPH0198621A (en) Production of polyester
JPH06287289A (en) Preparation of polyethylene naphthalate
JPS63183921A (en) Production of polyester
JPH0622187B2 (en) Capacitor
JPS6140538B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080308

Year of fee payment: 13