JPH0464047A - Apparatus for thermal analysis - Google Patents

Apparatus for thermal analysis

Info

Publication number
JPH0464047A
JPH0464047A JP17589390A JP17589390A JPH0464047A JP H0464047 A JPH0464047 A JP H0464047A JP 17589390 A JP17589390 A JP 17589390A JP 17589390 A JP17589390 A JP 17589390A JP H0464047 A JPH0464047 A JP H0464047A
Authority
JP
Japan
Prior art keywords
sample
heat
temperature
thermal
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17589390A
Other languages
Japanese (ja)
Inventor
Takeshi Sugiyama
毅 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MC SCI KK
Original Assignee
MC SCI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MC SCI KK filed Critical MC SCI KK
Priority to JP17589390A priority Critical patent/JPH0464047A/en
Publication of JPH0464047A publication Critical patent/JPH0464047A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To make it possible to set the speed of rise and fall of the temperature of a sample at a desired speed by varying the degree of thermal contact of a heat-conductive member with heating and cooling means. CONSTITUTION:The temperature of a sample A is raised and lowered by heating and cooling means 10b and 20, a thermal change thereof is observed and the thermal characteristic of this sample A is determined. On the occasion, a heat- conductive furnace 10 holding a heat-sensitive plate 12 on which the sample A is set is supported by a holding means 11 so that it can be moved vertically, and it is constructed of a substantially cylindrical soaking block 10a of a heat- conductive material and of the means 10b outside the block. An outward-facing flange part 13 and an erected wall 14 being vritually perpendicular thereto are formed on the outer periphery in the upper part of the block 10a. They come into contact with the means 20 and detach therefrom with the vertical movement of the furnace 10. Thereby the degree of thermal contact of the means 20 with a heat-conductive member interposed between the means 20 and the sample A can be varied. The degree of heat transmission between the means 10b and 20 and the sample A is varied and the speed of rise and fall of the temperature of the sample A can be set at a desired speed.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、特に、低温域における試料の昇・降温速度
を所望の速度に設定できるようにした熱分析装置に関す
るものである。
The present invention particularly relates to a thermal analysis device that allows the rate of temperature rise and fall of a sample in a low temperature range to be set to a desired rate.

【従来の技術】[Conventional technology]

試料と標準試料とを同時に昇・降温させて、これらの温
度差を測定することにより、試料の熱的変化を観察する
熱分析装置として、示差熱分析装置(DTA ; Di
fferBntial Thermal^nalysi
s )、あるいは、示差走査熱量計(D S C;Di
fferential Scanning Calor
imeter )等が知られている。 これらは、いずれも、試料の転移温度や転移熱等の試料
の熱的性質を定性的あるいは定量的に観測する極めて有
効な手段として広く用いられている。 この種の熱分析においては、試料をあらゆる温度条件の
下で分析する必要があり、例えば、短時間内で2速に冷
却される温度条件の下、あるいは、徐々に冷却される温
度条件の下など区々の温度条件下で実験を行う必要があ
る。 ところで、常温より高い温度域での温度コントロールは
、加熱炉に通ずる電流を周知のPID制御手段等で制御
することで比較的容易に可能であるが、常温近傍や、マ
イナス温度領域でのコントロールは、このような電気的
制御だけでは任意の制御を行うことができない。このよ
うな温度領域では液体窒素等の冷媒で試料を冷却しつつ
加熱炉に通ずる電流を制御することで行うが、従来は、
この冷媒と試料との間の熱結合は常に最良の状態に固定
されていた。これは、試料を常に最高の冷却能力で冷却
しておけば、加熱炉に通ずる電流を制御することで、原
理的にその最高の冷却能力の範囲内での任意の温度コン
トロールが可能であろうとの想定に基づいている。
A differential thermal analyzer (DTA; Di
fferBntial Thermal^nalysi
s ), or differential scanning calorimeter (D S C; Di
fferential Scanning Color
imeter) etc. are known. All of these are widely used as extremely effective means for qualitatively or quantitatively observing the thermal properties of a sample, such as its transition temperature and heat of transition. In this type of thermal analysis, it is necessary to analyze the sample under various temperature conditions, such as under two-speed cooling within a short time or under gradual cooling. It is necessary to conduct experiments under different temperature conditions. By the way, temperature control in a temperature range higher than room temperature is relatively easily possible by controlling the current flowing through the heating furnace using well-known PID control means, but control near room temperature or in a negative temperature range is difficult. However, it is not possible to perform arbitrary control using only such electrical control. In this temperature range, this is done by cooling the sample with a refrigerant such as liquid nitrogen and controlling the current flowing through the heating furnace, but conventionally,
The thermal coupling between this refrigerant and the sample was always fixed in the best condition. This is because if the sample is always cooled at the maximum cooling capacity, then by controlling the current flowing through the heating furnace, it would be theoretically possible to control the temperature to any desired temperature within the range of the maximum cooling capacity. It is based on the assumption that

【発明が解決しようとする課題】[Problem to be solved by the invention]

ところが、例えば、試料を常温からマイナス温度に降温
する場合において、冷媒の最高の冷却能力で冷却した場
合の冷却速度に近い降温速度で降温する場合は問題ない
が、この冷媒の最高の冷却能力で冷却した場合の冷却速
度より著しく遅い降温速度で降温する場合には次のよう
な問題が生ずる。 すなわち、この場合には、試料が冷媒によって急激に冷
却されないように加熱炉に大量の電流が流されることに
なる。このため、冷媒が加熱され、沸騰して著しく無駄
に消耗されるとともに、この沸騰による振動等が試料に
伝わって測定ノイズ等を生じさせるおそれがある。また
、冷媒の消耗が激しいため、測定の途中で冷媒を補給す
る等の必要が生じ、補給により冷却状態が急激に変化し
てこれに伴うノイズが発生するおそれがある。さらには
、補給の際の機械的振動の影響も考えられる。 このような事情は、低温から昇温させる場合も同じであ
る。 この発明は上記事情に鑑みなされたもので、簡単な構成
によって特に低温域での試料の昇・降温速度を所望の速
度に設定できるようにした熱分析装置を提供しようとす
るものである。
However, for example, when cooling a sample from room temperature to minus temperature, there is no problem if the temperature is lowered at a cooling rate close to the cooling rate when cooling with the maximum cooling capacity of the refrigerant, but if the sample is cooled with the maximum cooling capacity of this refrigerant, When the temperature is lowered at a rate significantly lower than the cooling rate when cooling, the following problem occurs. That is, in this case, a large amount of current is passed through the heating furnace to prevent the sample from being rapidly cooled by the refrigerant. For this reason, the refrigerant is heated and boiled, resulting in significant wasted consumption, and vibrations caused by the boiling may be transmitted to the sample, causing measurement noise and the like. In addition, since the refrigerant is consumed rapidly, it becomes necessary to replenish the refrigerant during the measurement, and the replenishment may cause a sudden change in the cooling state, which may generate noise. Furthermore, the influence of mechanical vibration during replenishment is also considered. This situation is the same when the temperature is raised from a low temperature. The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a thermal analysis apparatus that has a simple configuration and is capable of setting the rate of temperature rise and fall of a sample to a desired rate, especially in a low temperature range.

【課題を解決するための手段】[Means to solve the problem]

本発明は、以下の構成とすることにより、上述の課馳を
解決している。 試料を加熱・冷却手段によって昇・降温させてその熱的
変化を観測することにより、上記試料の熱的特性を求め
る熱分析装置において、上記加熱・冷却手段と試料との
熱伝達経路中に介在される熱伝導性部材と、上記加熱・
冷却手段との熱接触度合を変えることにより、上記加熱
・冷却手段と試料との熱伝達の度合を変えて試料の昇・
降温速度を所望の速度に設定できるようにしたことを特
徴とする構成。
The present invention solves the above problems by having the following configuration. In a thermal analysis device that determines the thermal characteristics of the sample by raising and lowering the temperature of the sample using a heating/cooling means and observing the thermal changes, a heat exchanger that is interposed in the heat transfer path between the heating/cooling means and the sample is used. The thermally conductive member that is heated and
By changing the degree of thermal contact with the cooling means, the degree of heat transfer between the heating/cooling means and the sample can be changed to raise or lower the sample.
A configuration characterized in that the temperature decreasing rate can be set to a desired rate.

【作 用】[For use]

上述の構成によれば、上記加熱・冷却手段と試料との熱
伝達経路中に介在される熱伝導性部材と上記加熱・冷却
手段との熱接触度合を変えることにより、上記加熱・冷
却手段と試料との熱伝達の度合が変えられるから、これ
により試料の昇・降温速度を所望の速度に設定できる。
According to the above configuration, by changing the degree of thermal contact between the heating/cooling means and the thermally conductive member interposed in the heat transfer path between the heating/cooling means and the sample, the heating/cooling means and Since the degree of heat transfer with the sample can be changed, the rate of temperature rise and fall of the sample can be set to a desired rate.

【実施例】【Example】

以下にこの発明の実施例を図面に基いて詳細に説明する
。 第1図はこの発明の一実施例にかかる熱分析装置の概略
断面図である。 熱分析装置は試料Aと標準試料Bとを載置する感熱板1
2を保持する伝熱性炉10と、液体窒素等の冷媒を収容
して伝熱性炉10の周囲を覆うことにより伝熱性炉10
及び試料A、Bを冷却する冷却手段20とで主要部が構
成されている。 伝熱性炉10は、この伝熱性炉10を上・下に移動自在
に保持する保持手段11によって支持され、はぼ円筒状
をなした伝熱性の材料(例えば銀製)で構成された均熱
ブロック10aと、この均熱ブロック10aの外周部に
設けられた加熱手段10bとで構成されている9均熱ブ
ロツク10aの上部外周側には、外向きフランジ部13
と、この外向きフランジ部13からほぼ直角に起立する
起立壁14とが形成されている。 また、この起立壁14と前記外向きフランジ部13とで
形成される切欠部22内に熱伝導性の材質、例えばステ
ンレス鋼、銅、あるいは、フッ素樹脂等にて形成される
伝熱リング24が着脱自在に取り付けられている。そし
て、伝熱性炉10を上方に移動したとき、前記起立壁1
4の上面及び伝熱リング24の上面が冷却手段20の上
部内面20aに接触し、伝熱性炉10を下方に移動した
とき、冷却手段20の上部内面20aから離れるように
なっている(なお、第1図では、伝熱性炉10が下方に
移動されて、冷却手段20の上部内面20aから離れて
いる状態が示されている)。 すなわち、これにより、冷却手段2oと試料Aとの間に
介在される熱伝導性部材(伝熱リング24及び均熱ブロ
ック10a)と、冷却手段2oとの熱接触の度合が変え
られるものである。なお、伝熱リング24の材質を熱伝
導の異なる材質に変えることにより、接触したときにお
ける熱伝達の度合を調節することができ、より適切な状
態を選ぶことが可能となる。さらには、この伝熱リング
24のリング幅を変えることによっても熱伝達の度合を
変えることができる。 さて、均熱ブロック10aの内周面側には後述する熱電
対30.31を案内する透孔15を有する区画壁16を
介して上部空間17と下部空間18とに区画されており
、上部空間17において、上方側の大径部17aと下方
側の小径部17bとの間に段差17cが形成され、この
段差17cに感熱板12が載置されている。なお、感熱
板12は段差17c上に載置された固定リング18にて
外周部が挾持された状態で均熱ブロック10a内に保持
されている。この場合、固定リング18の上部には蓋1
9が被せられるようになっている。 感熱板12は、円板状をなした熱伝導性の材料で形成さ
れ、この感熱板12の中心を対称として円形状に突出さ
れる2つの突出部12a、12bにそれぞれ試料A、標
準試料Bが載置されるようになっている。また、感熱板
12の半径方向外周よりの円環状の領域には、外周から
中心に向ってスリット状の切込み(図示せず)が形成さ
れ、更に、感熱板12はその外周部を残した中央部が一
方の側すなわち図面において下方側にテーパ状部12c
を介して断面はぼ台形状となるように突出されている。 また、感熱板12の突出部12a、12bの裏面側のほ
ぼ中心部にはそれぞれ温度検出手段としての熱電対30
及び31が接続され、これら熱電対30.31は均熱ブ
ロック1′0の区画壁16に穿設された透孔15を介し
て外部に導かれ、制御回路32に接続されている。 制御回路32は、演算処理回路や温度コントロール回路
等を内蔵するもので、熱電対30の起電力を検出して試
料Aの温度に対応する信号を変換すると共に、熱電対3
0.31の起電力の差をとってこの差に対応する信号に
変換し、これらを記録・表示手段33に送出して試料A
の温度及び試料Aと標準試料Bとの温度差の表示をさせ
、更に、加熱・冷却手段20を制御してその温度をコン
トロールするものである。なお、熱電対30.31と制
御回路32とで、試料Aと標準試料Bとの温度差を測定
する温度差測定装置が構成されている3第2図は、冷却
手段20に供給する冷媒としてフロンガス冷凍機で冷却
した間接冷媒(例えば、アルコール等)を用いて上述の
装置によって降温実験を行った結果、得られた冷却曲線
を示すグラフである。 第2図において、縦軸が温度(単位;℃)、横軸が時間
(単位;分)であり、曲線下が伝熱性類10を上方に移
動して伝熱リング24を冷却手段20の上部内面20a
に接触させた場合であり、曲線■が伝熱性類10を下方
に移動して伝熱リング24を冷却手段20の上部内面2
0aから離した場合(第1図に示される状態)である。 第2図に示される各曲線から、各温度領域における降温
速度(単位;℃/m1n)を読みとって比較列記すると
大略以下の通りであった。 温度領域    非接触     接触(℃)    
 (’C/min )    (’C/min )15
0〜100    21      37100〜50
    15      3050〜0918 0〜−5036 また、第3図は、冷却手段20に供給する冷媒として液
体窒素(直接冷媒)を用いて上述の装置によって降温実
験を行った結果得られた冷却曲線を示すグラフである。 第3図において、縦軸が温度(単位;℃)、横軸が時間
(単位;分)であり、曲線■が伝熱性類10を上方に移
動して伝熱リング24を冷却手段20の上部内面20a
に接触させた場合であり、曲線■が伝熱性類10を下方
に移動して伝熱リング24を冷却手段20の上部内面2
0aから離した場合(第1図に示される状態)である。 第3図に示される各曲線から、各温度領域における降温
速度く単位;”C/l1in)を読みとって比較列記す
ると大略以下の通りであった。 温度領域     非接触    接触(’C)   
   (”C/min )   (’C/min >1
50〜100     31      58100〜
50     24     −5250〜0    
 18      380〜−50     13  
    26−50〜−100     8     
 15−ioo〜−15034 以上の結果から明らかなように、この実施例によれば、
伝熱性炉10を冷却手段20に接触させるかさせないか
の極めて簡単な構成により、降温速度を著しく異ならし
めることができる。 また、この実施例では、熱伝導性部材として着脱自在な
伝熱リング24を設けているいることがら、この材質を
変えたり、あるいは、リング幅を変えなりすることによ
り、接触させた場合の降温速度をより適切な速度に調節
することも可能である。 なお、上記実施例では、冷却手段との間で伝熱性部材を
接触または非接触させる例を掲げたが、この冷却手段の
代わりに、加熱もできる手段を用いてもよいことは勿論
である。 【発明の効果] 以上詳述したように、本発明は、要するに、加熱・冷却
手段と試料との熱伝達経路中に介在される熱伝導性部材
と、上記加熱・冷却手段との熱接触の度合を変えること
により、上記加熱・冷却手段と試料との熱伝達の度合を
変えて試料の昇・降温速度を所望の速度に設定できるよ
うにしたものであり、これにより、簡単な構成によって
特に低温域での試料の昇・降温速度を所望の速度に設定
できるようにした熱分析装置を得ているものである。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic sectional view of a thermal analysis apparatus according to an embodiment of the present invention. The thermal analyzer has a heat sensitive plate 1 on which sample A and standard sample B are placed.
2 and a refrigerant such as liquid nitrogen to cover the periphery of the heat transfer furnace 10.
and a cooling means 20 for cooling the samples A and B. The heat transfer furnace 10 is supported by a holding means 11 that holds the heat transfer furnace 10 movably up and down, and is a heat soaking block made of a heat conductive material (for example, silver) and having a substantially cylindrical shape. 10a and a heating means 10b provided on the outer periphery of the 9 heat soaking block 10a.
and an upright wall 14 that stands up from the outward flange portion 13 at a substantially right angle. Furthermore, a heat transfer ring 24 made of a thermally conductive material such as stainless steel, copper, or fluororesin is provided in the notch 22 formed by the upright wall 14 and the outward flange 13. It is detachably attached. When the heat transfer furnace 10 is moved upward, the upright wall 1
4 and the upper surface of the heat transfer ring 24 contact the upper inner surface 20a of the cooling means 20, and when the heat transfer furnace 10 is moved downward, the upper surface of the heat transfer ring 24 separates from the upper inner surface 20a of the cooling means 20. In FIG. 1, the heat transfer furnace 10 is shown moved downwardly away from the upper inner surface 20a of the cooling means 20). That is, this changes the degree of thermal contact between the cooling means 2o and the thermally conductive members (heat transfer ring 24 and soaking block 10a) interposed between the cooling means 2o and the sample A. . Note that by changing the material of the heat transfer ring 24 to a material with different thermal conductivity, the degree of heat transfer upon contact can be adjusted, and a more appropriate state can be selected. Furthermore, the degree of heat transfer can also be changed by changing the ring width of the heat transfer ring 24. Now, the inner circumferential surface side of the heat equalizing block 10a is divided into an upper space 17 and a lower space 18 via a partition wall 16 having through holes 15 for guiding thermocouples 30 and 31, which will be described later. 17, a step 17c is formed between the upper large diameter portion 17a and the lower small diameter portion 17b, and the heat sensitive plate 12 is placed on this step 17c. Note that the heat-sensitive plate 12 is held in the heat-uniforming block 10a with its outer circumferential portion being clamped by a fixing ring 18 placed on the step 17c. In this case, a lid 1 is placed on the top of the fixing ring 18.
9 can be covered. The heat-sensitive plate 12 is formed of a thermally conductive material in the shape of a disc, and has two protrusions 12a and 12b that protrude in a circular shape symmetrically about the center of the heat-sensitive plate 12, respectively. is now placed. In addition, a slit-like cut (not shown) is formed in the annular region from the outer periphery in the radial direction of the heat-sensitive plate 12 from the outer periphery toward the center, and furthermore, the heat-sensitive plate 12 has a slit-like cut (not shown) formed in the annular region from the outer periphery in the radial direction. The tapered portion 12c is tapered on one side, that is, on the lower side in the drawing.
The cross section is protruded so as to have a trapezoidal shape. Furthermore, thermocouples 30 are provided as temperature detection means at approximately the center of the back side of the protrusions 12a and 12b of the heat-sensitive plate 12, respectively.
and 31 are connected, and these thermocouples 30, 31 are led to the outside through a through hole 15 bored in the partition wall 16 of the heat equalizing block 1'0, and are connected to the control circuit 32. The control circuit 32 has a built-in arithmetic processing circuit, a temperature control circuit, etc., and detects the electromotive force of the thermocouple 30 and converts a signal corresponding to the temperature of the sample A.
The difference in electromotive force of 0.31 is taken, converted into a signal corresponding to this difference, and these are sent to the recording/display means 33 to record sample A.
and the temperature difference between sample A and standard sample B, and further controls the heating/cooling means 20 to control the temperature. Note that the thermocouple 30, 31 and the control circuit 32 constitute a temperature difference measuring device that measures the temperature difference between the sample A and the standard sample B. It is a graph showing a cooling curve obtained as a result of a temperature lowering experiment conducted using the above-mentioned apparatus using an indirect refrigerant (for example, alcohol, etc.) cooled by a fluorocarbon gas refrigerator. In FIG. 2, the vertical axis is temperature (unit: °C), the horizontal axis is time (unit: minutes), and the bottom of the curve is when the heat transfer ring 24 is moved upward to the top of the cooling means 20. Inner surface 20a
This is the case where the heat transfer ring 24 is brought into contact with the upper inner surface 2 of the cooling means 20 by moving the heat transfer member 10 downward.
This is the case when it is separated from 0a (the state shown in FIG. 1). The temperature decreasing rate (unit: °C/m1n) in each temperature range was read from each curve shown in FIG. 2 and compared and listed as follows. Temperature range Non-contact Contact (℃)
('C/min) ('C/min)15
0~100 21 37100~50
15 3050~0918 0~-5036 Moreover, FIG. 3 is a graph showing a cooling curve obtained as a result of a temperature reduction experiment conducted with the above-mentioned apparatus using liquid nitrogen (direct refrigerant) as the refrigerant supplied to the cooling means 20. It is. In FIG. 3, the vertical axis is temperature (unit: °C), the horizontal axis is time (unit: minutes), and the curve ■ moves the heat transfer class 10 upwards to move the heat transfer ring 24 to the upper part of the cooling means 20. Inner surface 20a
This is the case where the heat transfer ring 24 is brought into contact with the upper inner surface 2 of the cooling means 20 by moving the heat transfer member 10 downward.
This is the case when it is separated from 0a (the state shown in FIG. 1). From each curve shown in Figure 3, the temperature decreasing rate in units of "C/l1in" in each temperature range was read and compared and listed as follows.Temperature range Non-contact Contact ('C)
('C/min) ('C/min >1
50~100 31 58100~
50 24 -5250~0
18 380~-50 13
26-50~-100 8
15-ioo~-15034 As is clear from the above results, according to this example,
With an extremely simple configuration in which the heat transfer furnace 10 is brought into contact with the cooling means 20 or not, the temperature reduction rate can be made to be significantly different. In addition, in this embodiment, since a removable heat transfer ring 24 is provided as a thermally conductive member, it is possible to change the material or ring width to reduce the temperature drop when they are brought into contact. It is also possible to adjust the speed to a more appropriate speed. In the above embodiments, an example is given in which the heat conductive member is in contact or not in contact with the cooling means, but it goes without saying that a means capable of heating may be used instead of the cooling means. Effects of the Invention As detailed above, the present invention basically provides thermal contact between a thermally conductive member interposed in a heat transfer path between the heating/cooling means and the sample and the heating/cooling means. By changing the degree of heat transfer between the heating/cooling means and the sample, it is possible to set the rate of temperature rise and fall of the sample to a desired rate. This provides a thermal analysis device in which the rate of temperature rise and fall of a sample in a low temperature range can be set to a desired rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例にかかる熱分析装置の概略
断面図、第2図は間接冷媒による冷却曲線を示すグラフ
、第3図は液体窒素による冷却曲線を示すグラフである
。 A・・・試料、B・・・標準試料、10・・・伝熱性炉
、12・・・感熱板、13・・・外向きフランジ部、1
4・・・起立壁、20・・・冷却手段、22・・・切欠
部、24・・・伝熱リング、30・・・熱電対。 入試軸 20冷却手段 14起立壁 出願人  株式会社マックサイエンス 第1図
FIG. 1 is a schematic sectional view of a thermal analysis apparatus according to an embodiment of the present invention, FIG. 2 is a graph showing a cooling curve using an indirect refrigerant, and FIG. 3 is a graph showing a cooling curve using liquid nitrogen. A... Sample, B... Standard sample, 10... Heat transfer furnace, 12... Heat sensitive plate, 13... Outward flange portion, 1
4... Standing wall, 20... Cooling means, 22... Notch, 24... Heat transfer ring, 30... Thermocouple. Entrance examination shaft 20 Cooling means 14 Standing wall Applicant Mac Science Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】 試料を加熱・冷却手段によって昇・降温させてその熱的
変化を観測することにより、上記試料の熱的特性を求め
る熱分析装置において、 上記加熱・冷却手段と試料との熱伝達経路中に介在され
る熱伝導性部材と、上記加熱・冷却手段との熱接触度合
を変えることにより、上記加熱・冷却手段と試料との熱
伝達の度合を変えて試料の昇・降温速度を所望の速度に
設定できるようにしたことを特徴とする熱分析装置。
[Scope of Claims] A thermal analysis apparatus for determining the thermal characteristics of the sample by raising and lowering the temperature of the sample using a heating/cooling means and observing the thermal changes, comprising: By changing the degree of thermal contact between the thermally conductive member interposed in the heat transfer path and the heating/cooling means, the degree of heat transfer between the heating/cooling means and the sample can be changed to raise or lower the temperature of the sample. A thermal analysis device characterized in that the speed can be set to a desired speed.
JP17589390A 1990-07-03 1990-07-03 Apparatus for thermal analysis Pending JPH0464047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17589390A JPH0464047A (en) 1990-07-03 1990-07-03 Apparatus for thermal analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17589390A JPH0464047A (en) 1990-07-03 1990-07-03 Apparatus for thermal analysis

Publications (1)

Publication Number Publication Date
JPH0464047A true JPH0464047A (en) 1992-02-28

Family

ID=16004071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17589390A Pending JPH0464047A (en) 1990-07-03 1990-07-03 Apparatus for thermal analysis

Country Status (1)

Country Link
JP (1) JPH0464047A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159976A (en) * 2013-02-19 2014-09-04 Shimadzu Corp Heat transfer mechanism, and thermal analysis device including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159976A (en) * 2013-02-19 2014-09-04 Shimadzu Corp Heat transfer mechanism, and thermal analysis device including the same

Similar Documents

Publication Publication Date Title
JP7089631B2 (en) Probe system and method for collecting optical images of the device under test
JPH01500295A (en) Temperature control device for automated clinical analyzers
CN101275921A (en) Differential scanning calorimeter
JP5709160B2 (en) Thermal analyzer
US6708554B2 (en) Rotational rheometer
JPH0464047A (en) Apparatus for thermal analysis
JP4135181B2 (en) Thermocouple system for heating measurement
US3187556A (en) Automatic recording vicat type apparatus for heat distortion and melting point determinations
JPH07274938A (en) Temperature control device for observing cell and biological ingredient
WO1994006000A1 (en) Differential scanning calorimeter
JP3200808B2 (en) Friction evaluation device
JPH0282145A (en) Differential scanning calorimeter
JP2004020509A (en) Calorimeter
JP3539662B2 (en) Temperature control plate for semiconductor wafer
JP2015092171A (en) Thermal analysis device
JPH0514202Y2 (en)
RU99116925A (en) METHOD FOR RESEARCH OF LOW-TEMPERATURE PROPERTIES OF MULTICOMPONENT LIQUIDS AND DEVICE FOR ITS IMPLEMENTATION
JPH10132770A (en) Thermal analysis apparatus
JPH06201622A (en) Differential scanning calorimeter
JP2999295B2 (en) Thermal analyzer
US20230273241A1 (en) Semiconductor laser inspection apparatus
JP2006308335A (en) Differential scanning calorimeter capable of performing high-pressure measurement and differential scanning calorimeter apparatus using same
CN208984562U (en) A kind of standard melting point apparatus for chemical agents
JPH06213841A (en) Equipment for differential thermal analysis
JPH0510680A (en) Hot isotropic pressurizing apparatus