JPH0510680A - Hot isotropic pressurizing apparatus - Google Patents

Hot isotropic pressurizing apparatus

Info

Publication number
JPH0510680A
JPH0510680A JP3148915A JP14891591A JPH0510680A JP H0510680 A JPH0510680 A JP H0510680A JP 3148915 A JP3148915 A JP 3148915A JP 14891591 A JP14891591 A JP 14891591A JP H0510680 A JPH0510680 A JP H0510680A
Authority
JP
Japan
Prior art keywords
gas
flow path
pressure medium
medium gas
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3148915A
Other languages
Japanese (ja)
Inventor
Tomomitsu Nakai
友充 中井
Toshikatsu Naoi
利勝 直井
Kazuya Suzuki
一也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3148915A priority Critical patent/JPH0510680A/en
Publication of JPH0510680A publication Critical patent/JPH0510680A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
    • B30B11/002Isostatic press chambers; Press stands therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To eliminate irregularities in upper and lower temperatures of a material to be treated and to accelerate a cooling speed by forming a gas subpassage between a plurality of guide cylinders, and variously altering a height in which pressure medium gas is brought into contact with the material to be treated by passage switching means. CONSTITUTION:A valve body 32 of passage switching means 30 is gradually displaced upward to switch the position of the body 32, and a passage of pressure medium gas 7 is switched from a gas main passage 21 to a gas subpassage 22. Then, since the upper part of a material 24 to be treated is brought into direct contact with part of the cooled gas 7, a decrease in a cooling speed is prevented. On the other hand, the gas 7 rising in the subpassage 22 is shorter at its rising stroke than the passage 21, its temperature does not rise even it reaches near the upper end of a second guide cylinder 20, and the passage 2 is nearer to the material 24 to be treated. Thus, a density flow is generated near the upper end of the cylinder 20, and part of the gas 7 in the subpassage 22 flows down into a treating chamber 25 to cool the material 24 to be treated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱間等方圧加圧(以
下、HIPと略称する。)装置に関し、各種粉末の加圧
焼結、焼結品や鋳造品の欠陥除去、異種材料の拡散接合
等に利用されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot isostatic pressing (hereinafter abbreviated as HIP) apparatus, which is used for pressure sintering of various powders, removal of defects in sintered products and cast products, and different materials. It is used for diffusion bonding and the like.

【0002】[0002]

【従来の技術】かかるHIP装置において、HIP処理
後の被処理体の冷却時間はHIP処理全体のサイクルタ
イムを律速するため、高圧容器内の圧媒ガスを自然対流
によって又は強制的に循環させ、この圧媒ガスの循環流
を介して被処理体と高圧容器との熱交換を促進すること
により、冷却速度を可及的に速めようとする技術が知ら
れている(例えば、特開昭59−87032 号公報、実開昭63
−123999号公報参照) 。
2. Description of the Related Art In such a HIP apparatus, since the cooling time of the object to be processed after the HIP processing determines the cycle time of the entire HIP processing, the pressure medium gas in the high pressure vessel is circulated by natural convection or forcedly, There is known a technique for increasing the cooling rate as much as possible by promoting heat exchange between the object to be processed and the high-pressure container through the circulating flow of the pressure medium gas (for example, Japanese Patent Laid-Open No. 59-59). -87032, Gazette of Shokai 63
(See Japanese Patent No. 123999).

【0003】このうち、特開昭59−87032 号公報に開示
の技術では、図5に示すように、被処理体47を冷却する
ための圧媒ガス48が被処理体47の周囲で上昇するように
循環しているため、比較的低温である被処理体の下部か
ら冷却されることになり、被処理体47内部の上下温度差
に伴う内部組成の不均一化を招来する欠点がある。これ
に対して、実開昭63−123999号公報に開示の技術は、上
記した不都合を解決すべく考案されたものである。
Among these, in the technique disclosed in Japanese Patent Laid-Open No. 59-87032, as shown in FIG. 5, the pressure medium gas 48 for cooling the object 47 to be processed rises around the object 47 to be processed. Because of such circulation, it is cooled from the lower part of the object to be processed, which has a relatively low temperature, and there is a drawback that the internal composition becomes nonuniform due to the difference in vertical temperature inside the object to be processed 47. On the other hand, the technique disclosed in Japanese Utility Model Laid-Open No. 63-123999 is devised to solve the above-mentioned inconvenience.

【0004】即ち、この技術では、図6に示すように、
高圧容器49内の倒立コップ状の断熱層50の内部に、上端
が開放されかつ内部が被処理体51の処理室52とされた案
内筒53が配設されていて、その案内筒53と断熱層50との
間には、被処理体51を冷却する圧媒ガス54を案内筒53の
外側で上昇させるべく、圧媒ガス54のガス流路55が形成
されている。また、案内筒53の下部には、案内筒53の上
端にまで上昇した圧媒ガス54を案内筒53と被処理体51と
の間の間隔に引き込ませるためのファン56が設けられて
いる。
That is, in this technique, as shown in FIG.
Inside the inverted cup-shaped heat insulating layer 50 in the high-pressure container 49, a guide tube 53 having an open upper end and an inside serving as a processing chamber 52 of the object 51 to be processed is arranged, and is insulated from the guide tube 53. A gas channel 55 for the pressure medium gas 54 is formed between the layer 50 and the layer 50 in order to raise the pressure medium gas 54 for cooling the object 51 to be processed outside the guide cylinder 53. A fan 56 is provided below the guide cylinder 53 to draw the pressure medium gas 54 that has risen to the upper end of the guide cylinder 53 into the space between the guide cylinder 53 and the object 51 to be processed.

【0005】従って、この技術によれば、圧媒ガス54は
案内筒53の外側から内側に入り込み、被処理体51を比較
的高温である上部から冷却することができるので、被処
理体51の内部組成の不均一を招くことなくHIP処理後
の急速冷却が可能となるとされている。
Therefore, according to this technique, the pressure medium gas 54 can enter from the outer side to the inner side of the guide cylinder 53, and the object 51 to be processed can be cooled from the upper part having a relatively high temperature. It is said that rapid cooling after HIP treatment is possible without causing nonuniformity of the internal composition.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の技術では、案内筒53の高さが一定であり、従って被
処理体51は常にその上端側から冷却されることになるの
で、冷却当初は被処理体51の上下温度差がなくても、冷
却工程が急速に進行するにつれて逆に下部の方が高温と
なる場合があり、被処理体51の上下方向における温度の
不均一を完全に解決したものとはなっていない。
However, in the above-mentioned conventional technique, the height of the guide tube 53 is constant, and therefore the object 51 to be processed is always cooled from the upper end side thereof. Even if there is no difference in the vertical temperature of the object to be processed 51, the lower part may become hotter as the cooling process progresses rapidly, which completely solves the uneven temperature in the vertical direction of the object to be processed 51. It is not what was done.

【0007】本発明は、かかる実情に鑑み、被処理体の
上下温度の不均一をほとんど完全に防止して、HIP処
理後の冷却時間を従来より短縮することを目的とする。
即ち、より具体的には、本発明の第一の目的は、複数の
案内筒間に圧媒ガスの流路を構成し、循環する圧媒ガス
が被処理体に最初に接触する高さを種々に変更すること
により、被処理体の上下温度の不均一を解消することで
ある。
In view of the above situation, it is an object of the present invention to almost completely prevent the unevenness of the upper and lower temperatures of the object to be processed and to shorten the cooling time after the HIP processing as compared with the conventional case.
That is, more specifically, the first object of the present invention is to configure the flow path of the pressure medium gas between the plurality of guide cylinders, and to determine the height at which the circulating pressure medium gas first contacts the object to be processed. By making various changes, it is possible to eliminate the unevenness of the vertical temperature of the object to be processed.

【0008】また、本発明の第二の目的は、圧媒ガスの
各流路内における温度を測定し、案内筒の下方に設けた
流路切換手段に被処理体の冷却に最も適した流路を自動
的に選択させることにより、冷却効率の向上と冷却時間
の短縮を図ることである。
A second object of the present invention is to measure the temperature of each pressure medium gas in each flow passage, and to use a flow passage switching means provided below the guide cylinder, which is most suitable for cooling the object to be processed. It is intended to improve the cooling efficiency and shorten the cooling time by automatically selecting the path.

【0009】[0009]

【課題を解決するための手段】上記目的を達成すべく、
本発明は次のような技術的手段を講じた。即ち、請求項
1記載の発明は、高圧容器1 で画成された高圧室5 内
に、上板部15にガス流通孔16を有する倒立コップ状の断
熱層6 が配置され、該断熱層6 の内側にヒータ9 が周設
され、該ヒータ9 の内側に、上端が開放されかつ内部が
被処理体24の処理室25とされた案内筒が前記断熱層6 と
間隔をおいて配置され、その案内筒と前記断熱層6 との
間に、該断熱層6 の下方から前記ガス流通孔16に連通す
る圧媒ガス7 のメインガス流路21が形成された熱間等方
圧加圧装置において、前記案内筒は径方向に間隔をおい
て複数層配設され、この各案内筒19,20 間の間隔が圧媒
ガス7 のサブガス流路22とされ、その各案内筒19,20 は
より内側のものが外側のものよりも順次高さが低くなる
ように形成され、当該案内筒19,20 の下方には、圧媒ガ
ス7 の流路を前記メインガス流路21又はサブガス流路22
に切換える流路切換手段30が設けられていることを特徴
とする。
[Means for Solving the Problems] In order to achieve the above object,
The present invention has taken the following technical means. That is, according to the invention of claim 1, an inverted cup-shaped heat insulating layer 6 having a gas passage hole 16 in the upper plate portion 15 is arranged in the high pressure chamber 5 defined by the high pressure container 1, and the heat insulating layer 6 is provided. A heater 9 is provided around the inside of the heater 9, and inside the heater 9, a guide cylinder having an open upper end and an inside serving as a processing chamber 25 of the object to be processed 24 is arranged at a distance from the heat insulating layer 6, A hot isotropic pressurizing device in which a main gas passage 21 for the pressure medium gas 7 communicating with the gas flow hole 16 from below the heat insulating layer 6 is formed between the guide cylinder and the heat insulating layer 6. In the above, the guide cylinders are arranged in a plurality of layers at intervals in the radial direction, and the interval between the guide cylinders 19 and 20 serves as a sub gas flow path 22 for the pressure medium gas 7. The inner one is formed so that its height becomes lower than that of the outer one in sequence, and the flow path of the pressure medium gas 7 is provided below the guide tubes 19 and 20. Passage 21 or Sabugasu passage 22
It is characterized in that a flow path switching means 30 for switching to is provided.

【0010】また、請求項2記載の発明は、流路切換手
段30は、メインガス流路21及びサブガス流路22への圧媒
ガス7 の流量を任意の割合で調整できるように構成され
ていることを特徴とする。請求項3記載の発明は、全部
又は一部の案内筒19,20 の内側上部及び内側下部にそれ
ぞれ温度センサー38,39 が設けられ、高圧容器1 の外部
に、その温度センサー38,39 が検知する温度T1,2
差に基づいて流路切換手段30に圧媒ガス7の流路を切換
えさせる制御装置40が設置されていることを特徴とす
る。
Further, in the invention according to claim 2, the flow path switching means 30 is constructed so that the flow rate of the pressure medium gas 7 to the main gas flow path 21 and the sub gas flow path 22 can be adjusted at an arbitrary ratio. It is characterized by being In the invention according to claim 3, temperature sensors 38 and 39 are provided respectively on the inner upper part and the inner lower part of all or part of the guide tubes 19 and 20, and the temperature sensors 38 and 39 are detected on the outside of the high-pressure vessel 1. A control device 40 for switching the flow path of the pressure medium gas 7 to the flow path switching means 30 based on the difference between the temperatures T 1 and T 2 is set.

【0011】更に、請求項4記載の発明は、流路切換手
段30の下方でかつ断熱層6 の外部に、圧媒ガス7 の上昇
を励起するポンプ44が設けられていることを特徴とす
る。
Further, the invention according to claim 4 is characterized in that a pump 44 for exciting the rise of the pressure medium gas 7 is provided below the flow path switching means 30 and outside the heat insulating layer 6. .

【0012】[0012]

【作用】本発明では、HIP処理後の冷却過程の初期に
おいては、図2に示す如く、流路切換手段30を被処理体
24を冷却する圧媒ガス7 がメインガス流路21に通ずるよ
うにセットしておく。すると、その圧媒ガス7 は、後続
して流下する圧媒ガスに押されてメインガス流路21内を
上昇し、最外側の案内筒 (第一案内筒) 19の上端に至っ
たところでその一部が処理室25内に流入し、被処理体25
を上部から冷却する。尚、この処理室25内への圧媒ガス
7 の流入は、図6に示す従来例のようにファン56を利用
して行なうこともできるが、本発明は特にこれに限定さ
れない。即ち、後述の実施例で詳述するように、案内筒
19内側上下方向の圧媒ガス7 の温度差に起因する密度差
によって密度流が発生するため(図2矢印A)、かかる
ファン56を設けないでも処理室25内へ冷却用の圧媒ガス
7 を十分流入させることができるからである。
In the present invention, in the initial stage of the cooling process after the HIP process, as shown in FIG.
The pressure medium gas 7 for cooling 24 is set so as to pass through the main gas passage 21. Then, the pressure medium gas 7 is pushed by the pressure medium gas that flows down subsequently, rises in the main gas flow path 21, and reaches the upper end of the outermost guide cylinder (first guide cylinder) 19. Part of the material flows into the processing chamber 25
Is cooled from the top. The pressure medium gas into the processing chamber 25
The inflow of 7 can be performed using the fan 56 as in the conventional example shown in FIG. 6, but the present invention is not particularly limited to this. That is, as described in detail in Examples below, the guide tube
19 Since the density flow is generated due to the density difference caused by the temperature difference of the pressure medium gas 7 in the vertical direction inside (arrow A in FIG. 2), even if the fan 56 is not provided, the pressure medium gas for cooling can be introduced into the processing chamber 25.
This is because it is possible to sufficiently inflow 7.

【0013】そして、ファン56を設けないで自然対流に
よって圧媒ガス7 を循環させる場合において、前記密度
流を発生させるためには、案内筒19の内側下部の温度が
案内筒19の内側上部の温度よりも高いことが必要となる
が、本発明ではこの条件を維持するために次のようにし
て圧媒ガス7 の流路の切換えを行う。即ち、冷却過程が
進行すると、断熱層6外部を循環する圧媒ガス7 の流量
が減少するため、メインガス流路21内を上昇する圧媒ガ
ス7 は最外側の案内筒19の上端に至るまでに温められ、
最外側の案内筒19の上端近傍ではもはや密度流が発生し
なくなる時点がある。そこで、本発明では、図3に示す
ように、この時点において圧媒ガス7 の流路をサブガス
流路22に切換えるようにする。このサブガス流路22はよ
り内側の案内筒 (第二案内筒) 20の外側に沿って形成さ
れていて、前記メインガス流路21よりは上昇行程が短
い。従って、圧媒ガス7 はメインガス流路21を上昇する
場合よりもさほど高温にならない間により内側の案内筒
20の上端にまで達し、しかも、このサブガス流路22はよ
り被処理体24に近く、処理室25内との温度差が著しいの
で、当該圧媒ガス7 の一部が第二案内筒20の上端近傍に
おいて前記密度流の作用によって処理室25内に流入する
ようになる。一方、処理室25内に流入しない残りの圧媒
ガス7 は、被処理体24の上部 (当該内側の案内筒20の上
端よりも上部) に接触しながら上昇して、これを直接冷
却させる。
When the pressure medium gas 7 is circulated by natural convection without providing the fan 56, in order to generate the density flow, the temperature of the inner lower portion of the guide cylinder 19 is set to the inner upper portion of the guide cylinder 19. Although it is necessary that the temperature is higher than the temperature, in the present invention, in order to maintain this condition, the flow path of the pressure medium gas 7 is switched as follows. That is, as the cooling process progresses, the flow rate of the pressure medium gas 7 circulating outside the heat insulating layer 6 decreases, so that the pressure medium gas 7 rising in the main gas passage 21 reaches the upper end of the outermost guide cylinder 19. Warmed up to
There is a point at which density flow no longer occurs near the upper end of the outermost guide cylinder 19. Therefore, in the present invention, as shown in FIG. 3, the flow path of the pressure medium gas 7 is switched to the sub gas flow path 22 at this time. The sub gas passage 22 is formed along the outer side of the inner guide cylinder (second guide cylinder) 20 and has a shorter rising stroke than the main gas passage 21. Therefore, the pressure medium gas 7 does not become much hotter than when it rises in the main gas flow path 21, and the inner guide tube
Since it reaches the upper end of 20 and the sub gas flow path 22 is closer to the object to be processed 24 and the temperature difference between the inside of the processing chamber 25 is significant, a part of the pressure medium gas 7 is in the second guide cylinder 20. In the vicinity of the upper end, the density flow causes the gas to flow into the processing chamber 25. On the other hand, the remaining pressure medium gas 7 that does not flow into the processing chamber 25 rises while coming into contact with the upper part of the object to be processed 24 (above the upper end of the inner guide cylinder 20) and directly cools it.

【0014】また、本発明において、上記した流路切換
のタイミングは、案内筒19の内側上部及び内側下部に設
けた温度センサー38,39 が検知する温度差T1,2 に基
づいて行なう。即ち、上側に設けた温度センサー38によ
る温度T1,と下側に設けた温度センサー39による温度T
2 とに余り差がない場合には、その温度センサー38,39
を設けた案内筒19の外方で圧媒ガス7 を通過させる意義
がないので、その温度差T2 −T1 が予め設定した温度
ΔT以下になったときに、より内側の流路へ切換えるよ
うにする。尚、この温度差ΔTは、圧媒ガスの成分や高
圧容器1 の大きさ等により変動するので、予め実験等に
よって設定すればよい。
Further, in the present invention, the above-mentioned flow path switching timing is performed based on the temperature differences T 1, T 2 detected by the temperature sensors 38, 39 provided on the inner upper part and the inner lower part of the guide cylinder 19. That is, the temperature T 1 by the temperature sensor 38 provided on the upper side and the temperature T 1 by the temperature sensor 39 provided on the lower side
If there is not much difference with 2 , the temperature sensor 38,39
Since there is no significance to pass pressure medium gas 7 at the outside of the guide tube 19 provided with, when the temperature difference T 2 -T 1 is below the temperature ΔT set in advance, switching more to the inside of the flow path To do so. Since this temperature difference ΔT varies depending on the components of the pressure medium gas, the size of the high-pressure container 1, and the like, it may be set in advance by experiments or the like.

【0015】また、本発明では、流路切換手段30に各流
路21,22 への圧媒ガス7 の流量を任意に調整し得るよう
にしたので、外側のより高い案内筒19上端が処理室25内
に流入する比較的高温のガス流量と、内側のより低い案
内筒20上端から処理室25内に流下する比較的低温のガス
流量とを無段階に調節できるので、処理室25内の温度の
均熱性を保ったまま、比較的低温域まで冷却速度をほぼ
一定で冷却することができる。
Further, in the present invention, since the flow passage switching means 30 can arbitrarily adjust the flow rate of the pressure medium gas 7 to each of the flow passages 21 and 22, the upper end of the outer higher guide cylinder 19 is treated. Since the flow rate of the relatively high temperature gas flowing into the chamber 25 and the flow rate of the relatively low temperature gas flowing into the processing chamber 25 from the lower end of the inner guide cylinder 20 can be adjusted steplessly, It is possible to cool to a relatively low temperature range at a constant cooling rate while maintaining the temperature uniformity.

【0016】更に、ガス循環をポンプで行う場合等では
循環流量を低く抑えた冷却や、逆に大きな流量で急速冷
却する場合があるが、本発明では、これらに応じて案内
筒高さ及び各案内筒へのガス流量を無段階調整できるの
で、種々の冷却速度レベルに対応可能である。
Further, when the gas is circulated by a pump, there may be a case where the circulation flow rate is kept low, or conversely, a rapid flow rate is used for the rapid cooling. Since the gas flow rate to the guide tube can be adjusted steplessly, it is possible to cope with various cooling rate levels.

【0017】[0017]

【実施例】以下、本発明の実施例を図面に基づいて詳述
する。図1乃至図3は、本発明の第一実施例であるHI
P装置の概要を示している。同図において、高圧容器1
は、その側部を構成する高圧筒2 と、該高圧筒2 の上下
端開口部をそれぞれ気密に施蓋する上蓋3 および下蓋4
とを備え、これら高圧筒2 、上蓋3 および下蓋4 の内面
によって高圧室5 が画成されている。
Embodiments of the present invention will now be described in detail with reference to the drawings. 1 to 3 show a HI which is a first embodiment of the present invention.
The outline of P apparatus is shown. In the figure, the high-pressure container 1
Is a high-pressure cylinder 2 forming its side portions, and an upper lid 3 and a lower lid 4 that hermetically cover the upper and lower end openings of the high-pressure cylinder 2, respectively.
And the inner surfaces of the high pressure cylinder 2, the upper lid 3 and the lower lid 4 define a high pressure chamber 5.

【0018】前記高圧室5 内には、倒立コップ状の断熱
層6 が前記高圧容器1 と間隔をおいて配置されていて、
このことによって、高圧容器1 と断熱層6 との間に、圧
媒ガス7 の外ガス流路8 が形成されている。また、断熱
層6 の内側には、ヒータ9 が周設され、当該断熱層6 の
内側が炉室10とされている。前記断熱層6 は、倒立コッ
プ状の内外ケーシング11,12 を二重に重ね、かつこのケ
ーシング11,12 の下端にリング部材13を固着することに
より構成されていて、その内外ケーシング11,12 間には
断熱材14が充填されている。断熱層6 の上板部15中央に
は、圧媒ガス7 のガス流通孔16が開設され、このガス流
通孔16は、上蓋3 に装着したシリンダ17により上下動さ
せられるロッド18を介して開閉自在に構成されている。
In the high-pressure chamber 5, an inverted cup-shaped heat-insulating layer 6 is arranged at a distance from the high-pressure container 1,
As a result, the outer gas flow path 8 for the pressure medium gas 7 is formed between the high-pressure container 1 and the heat insulating layer 6. A heater 9 is provided inside the heat insulating layer 6, and a furnace chamber 10 is provided inside the heat insulating layer 6. The heat-insulating layer 6 is constructed by stacking inverted cup-shaped inner and outer casings 11 and 12 in a double manner, and fixing a ring member 13 to the lower end of the casings 11 and 12, and between the inner and outer casings 11 and 12. It is filled with a heat insulating material 14. A gas circulation hole 16 for the pressure medium gas 7 is formed in the center of the upper plate portion 15 of the heat insulating layer 6, and this gas circulation hole 16 is opened and closed via a rod 18 which is vertically moved by a cylinder 17 mounted on the upper lid 3. It is freely configured.

【0019】本実施例では、前記ヒータ9 の内側に、径
の異なる二層の案内筒19,20 がそれぞれ径方向に一定の
間隔をおいて配設されていて、これらの案内筒19,20
は、共にその上端が開放されている。この二層の案内筒
19,20 のうち、外側層をなす第一案内筒19は、その上端
および周囲において前記断熱層6 と間隔をおいて配置さ
れていて、このことによって、この第一案内筒19と断熱
層6 との間に、該断熱層6 の下方から前記ガス流通孔16
にまで至る圧媒ガス7 のメインガス流路21が形成されて
いる。また、本実施例では、第一および第二案内筒19,2
0 間の間隔をおいて、圧媒ガス7 のサブガス流路22が一
つ形成されている。
In this embodiment, inside the heater 9, two-layer guide cylinders 19 and 20 having different diameters are arranged at regular intervals in the radial direction, and these guide cylinders 19 and 20 are provided.
Both have their upper ends open. This two-layer guide tube
Of the 19,20, the first guide tube 19 which is the outer layer is arranged at a distance from the heat insulating layer 6 at the upper end and the periphery thereof, whereby the first guide tube 19 and the heat insulating layer 6 are provided. And the gas circulation hole 16 from below the heat insulating layer 6.
A main gas flow path 21 for the pressure medium gas 7 is formed up to. Further, in this embodiment, the first and second guide tubes 19, 2 are
One sub gas passage 22 for the pressure medium gas 7 is formed at intervals of 0.

【0020】一方、内側層をなす第二案内筒20の下端は
底板23によって密閉され、内部が被処理体24の処理室25
とされていて、この第二案内筒20の底板23下方には、内
部に断熱材26が充填された処理台27が設けられている。
この処理台27の下端部は、後で詳述する流路切換手段30
を構成する弁箱31の上端に固定されており、この弁箱31
は支持台28を介して高圧容器1 の下蓋4 に支持されてい
る。尚、図1に示すHIP装置は、いわゆる下方取出し
タイプのものであり、従って、図外のプレスフレームを
解除して下蓋4 を高圧筒2 から下方に離脱させると、下
蓋4 に支持される弁箱31、処理台27および案内筒19,20
がその下蓋4 に伴って貫き出せるようになっている。ま
た、前記第一案内筒19の下端部は、リング状のフランジ
部29を介して弁箱31の側面に気密に固着されている。
On the other hand, the lower end of the second guide cylinder 20 forming the inner layer is sealed by the bottom plate 23, and the inside is the processing chamber 25 of the object 24 to be processed.
Under the bottom plate 23 of the second guide cylinder 20, a processing table 27 having a heat insulating material 26 filled therein is provided.
The lower end of the processing table 27 has a flow path switching means 30 which will be described in detail later.
Is fixed to the upper end of the valve box 31 that constitutes
Is supported by the lower lid 4 of the high-pressure container 1 via a support base 28. The HIP device shown in FIG. 1 is of a so-called downward extraction type. Therefore, when the lower cover 4 is released from the high pressure cylinder 2 by releasing the press frame (not shown), the HIP device is supported by the lower cover 4. Valve box 31, processing table 27 and guide tubes 19, 20
Can be pierced with its lower lid 4. The lower end of the first guide cylinder 19 is airtightly fixed to the side surface of the valve box 31 via a ring-shaped flange 29.

【0021】更に、前記第二案内筒20は、その高さが第
一案内筒19の高さよりも低くなるように形成されてい
て、本実施例では、第二案内筒20の底板23からの高さで
比較すると、第一案内筒19の高さが第二案内筒20の高さ
の略二倍となるように設定されている。尚、本実施例で
HIP処理する被処理体24は、図1に示すように、処理
室25内にセットした際に、その上端が第一案内筒19の上
端よりもやや低い位置になるものが採用されている。
Further, the second guide cylinder 20 is formed so that its height is lower than the height of the first guide cylinder 19, and in this embodiment, the height of the second guide cylinder 20 from the bottom plate 23 is smaller. When compared in terms of height, the height of the first guide cylinder 19 is set to be approximately twice the height of the second guide cylinder 20. It should be noted that, as shown in FIG. 1, the object 24 to be subjected to the HIP processing in this embodiment has its upper end positioned slightly lower than the upper end of the first guide cylinder 19 when set in the processing chamber 25. Has been adopted.

【0022】本実施例で採用する流路切換手段30は、金
属性の有底筒状体よりなる弁箱31と、該弁箱31内部に上
下に摺動自在に内装された中空筒状の弁体32とを備え、
その弁体32は、弁箱31の下板33上に設けたアクチュエー
タ34により上下動されるように構成されている。弁箱31
の側部には、上下に離隔してガス孔35,36 が開設されて
いて、このうち、下側に位置する第一ガス孔35は前記第
一案内筒19のフランジ部29よりも下側に、かつ上側に位
置する第二ガス孔36は同フランジ部29よりも上側に配置
されている。また、弁体32の側部にもガス孔37が設けら
れていて、弁体32の上下動に伴ってこのガス孔37が前記
第一ガス孔35又は第二ガス孔36と連通し、圧媒ガス7 の
流路を前記メインガス流路21又はサブガス流路22のいず
れかに切換えられるようになっている。
The flow path switching means 30 employed in the present embodiment is a valve box 31 made of a metal bottomed tubular body, and a hollow tubular body internally slidably mounted inside the valve box 31. And a valve body 32,
The valve body 32 is configured to be vertically moved by an actuator 34 provided on a lower plate 33 of the valve box 31. Valve box 31
The gas holes 35 and 36 are vertically spaced apart from each other, and the lower first gas hole 35 is lower than the flange portion 29 of the first guide cylinder 19. And the second gas hole 36 located on the upper side is arranged on the upper side of the flange portion 29. Further, a gas hole 37 is also provided on the side of the valve body 32, and this gas hole 37 communicates with the first gas hole 35 or the second gas hole 36 as the valve body 32 moves up and down. The flow path of the medium gas 7 can be switched to either the main gas flow path 21 or the sub gas flow path 22.

【0023】また、本実施例では、前記弁体32側のガス
孔37は、弁箱31側の第一および第二ガス孔35,36 間の縦
距よりも大きく開設されており、従って、当該弁体32を
中間的に位置させて、その高さを微調整することによ
り、メインガス流路21およびサブガス流路22への圧媒ガ
ス7 の流量を任意の割合で調整できるようになってい
る。
Further, in the present embodiment, the gas hole 37 on the side of the valve body 32 is opened larger than the vertical distance between the first and second gas holes 35, 36 on the side of the valve box 31. By arranging the valve element 32 in the middle and finely adjusting the height, the flow rate of the pressure medium gas 7 to the main gas passage 21 and the sub gas passage 22 can be adjusted at an arbitrary ratio. ing.

【0024】前記第一案内筒19の内側上部および内側下
部には、サブガス流路22内の圧媒ガス7 の温度を測定す
るための温度センサー(熱電対)38,39がそれぞれ取付け
られていて、高圧容器1 の外部には、その温度センサー
38,39 が検知する温度T1, 2 の差に基づいて前記流路
切換手段30を最適制御する制御装置40が配備されてい
る。
Upper inner part and lower inner part of the first guide cylinder 19
In this section, the temperature of the pressure medium gas 7 in the sub gas flow path 22 is measured.
Temperature sensors (thermocouples) 38 and 39 for mounting
The temperature sensor is installed outside the high-pressure vessel 1.
Temperature T detected by 38,391,T 2The flow path based on the difference of
A control device 40 for optimally controlling the switching means 30 is provided.
It

【0025】この制御装置40は、温度センサー38,39 か
らの信号を数値化する測定部41と、この数値化した温度
データT1,2 の差をとってその差と予め設定しておい
た温度ΔTとを比較する演算部42と、この演算部42での
演算結果の評価に基づいて弁体32の上下位置を調整すべ
くアクチュエータ34を操作する操作部43とを備えてい
る。尚、HIP処理温度に耐える前記温度センサー38,3
9としては、例えば、W−Re 5 %/26%又はJIS規
格のB型等の熱電対が知られている。
The control unit 40 takes a difference between the measuring unit 41 for digitizing the signals from the temperature sensors 38, 39 and the digitized temperature data T 1, T 2 and presets the difference. The operating unit 43 is provided for comparing the temperature ΔT with the operating temperature 43, and the operating unit 43 for operating the actuator 34 to adjust the vertical position of the valve body 32 based on the evaluation of the operation result of the operating unit 42. The temperature sensors 38,3 that can withstand the HIP processing temperature
As 9, a thermocouple of W-Re 5% / 26% or JIS standard B type is known.

【0026】上記構成に係る本実施例において、HIP
処理終了後に行い得る冷却過程について説明する。先
ず、HIP処理終了後に、断熱層6 のガス流通孔16を開
くと、炉室10内の圧媒ガス7 は対流作用によってそのガ
ス流通孔16から断熱層6 外側へ流出し、高圧容器1 の上
蓋3 および高圧筒2 との熱交換を介して冷却されつつ、
外ガス流路8を流下して断熱層6 の下方に至る。
In the present embodiment having the above structure, the HIP
The cooling process that can be performed after the processing is described. First, after the HIP treatment is completed, when the gas circulation hole 16 of the heat insulation layer 6 is opened, the pressure medium gas 7 in the furnace chamber 10 flows out from the gas circulation hole 16 to the outside of the heat insulation layer 6 by the convection action, and While being cooled through heat exchange with the upper lid 3 and high pressure cylinder 2,
It flows down through the outer gas flow path 8 and reaches below the heat insulating layer 6.

【0027】冷却初期においては、流路切換手段30はそ
の弁体32が最下方に位置する状態 (図2の状態)にセッ
トされていて、従って、断熱層6 下方にある熱交換によ
って冷やされた圧媒ガス7 は、弁箱31の第一ガス孔35を
通過してメインガス流路21を上昇することになる。この
メインガス流路21を通って第一案内筒19の上端にまで達
した圧媒ガス7 は、その第一案内筒19の上端付近では処
理室25内の圧媒ガス7 に比べて温度が低いため、処理室
25内の圧媒ガスよりは密度が高く、従ってこの第一案内
筒19の上端近傍でガス密度の差に伴う密度流が発生し、
図2矢印Aで示すように冷却された圧媒ガス7の一部が
処理室25内に自然に下降流入することになる。
At the initial stage of cooling, the flow path switching means 30 is set in a state where the valve body 32 is located at the lowermost position (the state shown in FIG. 2), and is therefore cooled by heat exchange below the heat insulating layer 6. The pressure medium gas 7 passes through the first gas holes 35 of the valve box 31 and rises in the main gas passage 21. The pressure medium gas 7 that has reached the upper end of the first guide cylinder 19 through the main gas passage 21 has a temperature near the upper end of the first guide cylinder 19 as compared with the pressure medium gas 7 in the processing chamber 25. Processing room because it is low
Since the density is higher than that of the pressure medium gas in 25, a density flow due to the difference in gas density occurs near the upper end of the first guide cylinder 19,
As shown by an arrow A in FIG. 2, a part of the cooled pressure medium gas 7 naturally flows down into the processing chamber 25.

【0028】その後、処理室25内に流入した圧媒ガス7
は、処理室25内の圧媒ガスと混合されつつ、被処理体24
を上部から冷却する。そして、被処理体24との熱交換に
よって逆に温められた圧媒ガス7は、今度は密度が低く
なるため、かつ後に続いて流入してくる冷却用の圧媒ガ
ス7 によって押し出されるため、処理室25内で上昇流に
転じ、断熱層6 のガス流通孔16に向かって上昇する。
After that, the pressure medium gas 7 flowing into the processing chamber 25
While being mixed with the pressure medium gas in the processing chamber 25,
Is cooled from the top. Then, the pressure medium gas 7 that has been warmed in the opposite direction by heat exchange with the object to be processed 24 has a lower density this time, and is pushed out by the pressure medium gas 7 for cooling that subsequently flows in, In the processing chamber 25, it changes to an upward flow and rises toward the gas flow holes 16 of the heat insulating layer 6.

【0029】次に、ある程度冷却過程が進行すると、上
記のようにメインガス流路21を循環する圧媒ガス7 と第
一案内筒19内の圧媒ガスの温度差が小さくなるので、循
環ガス流の大半は第一案内筒19内に下降流入することな
く断熱層6 外部に流出してしまう。その結果、このまま
の状態では、第一案内筒19内の被処理体24の冷却速度は
著しく低下して、処理室25内の上下に渡る対流攪拌が十
分に起こらなくなるので、被処理体24に上下の温度差を
生じる。
Next, when the cooling process progresses to some extent, the temperature difference between the pressure medium gas 7 circulating in the main gas passage 21 and the pressure medium gas in the first guide cylinder 19 becomes small as described above. Most of the flow does not flow down into the first guide cylinder 19 but flows out of the heat insulating layer 6. As a result, in this state, the cooling rate of the object to be processed 24 in the first guide cylinder 19 is remarkably reduced, and the convective stirring vertically in the processing chamber 25 does not sufficiently occur. There is a temperature difference between the upper and lower sides.

【0030】そこで、本実施例では、かかる事態が生じ
る前に流路切換手段30の弁体32を徐々に上方に変位させ
て、図2の状態から図3の状態に弁体32の位置を切換
え、圧媒ガス7 の流路をメインガス流路21からサブガス
流路22に切換えるようにする。すると、図3に示すよう
に、被処理体24の上部は冷却された圧媒ガス7 の一部と
直接接触することになるので、冷却速度の低下を防止す
ることができるようになる。一方、このサブガス流路22
を上昇する圧媒ガス7 は、メインガス流路21に比べてそ
の上昇行程が短いので第二案内筒20上端近傍に至っても
さほど温度が上昇していないこと、および、このサブガ
ス流路22は、メインガス流路21に比べて被処理体24によ
り近いことの二点から、当該第二案内筒20の上端近傍で
前記と同様に密度流 (図3の矢印B)が発生し、サブガ
ス流路22内の圧媒ガス7 の一部が処理室25内に下降流入
し、被処理体24を冷却することになる。
Therefore, in the present embodiment, before such a situation occurs, the valve body 32 of the flow path switching means 30 is gradually displaced upward, and the position of the valve body 32 is changed from the state of FIG. 2 to the state of FIG. The flow path of the pressure medium gas 7 is switched from the main gas flow path 21 to the sub gas flow path 22. Then, as shown in FIG. 3, the upper portion of the object to be processed 24 comes into direct contact with a part of the cooled pressure medium gas 7, so that the cooling rate can be prevented from decreasing. On the other hand, this sub gas passage 22
Since the pressure medium gas 7 that rises above has a shorter ascending stroke than the main gas passage 21, the temperature does not rise so much even when it reaches the vicinity of the upper end of the second guide cylinder 20, and the sub gas passage 22 The density flow (arrow B in FIG. 3) is generated in the vicinity of the upper end of the second guide cylinder 20 in the same manner as described above from the two points that it is closer to the object to be processed 24 compared to the main gas flow path 21, and the sub gas flow is generated. A part of the pressure medium gas 7 in the passage 22 flows down into the processing chamber 25 and cools the object to be processed 24.

【0031】また、本実施例では、上記圧媒ガス7 の流
路の切換えの判断は、第一案内筒19に設けた温度センサ
ー38,39 が検知する温度に基づいて行なう。即ち、い
ま、例えば上側の温度センサー38による温度をT1 、下
側の温度センサー39による温度をT2 とすると、それら
の温度の差、即ちT2 −T1 が大きいほど前記した密度
流が発生しやすく、小さいほど発生しにくいことが明ら
かにされている。そこで、T2 −T1 がどの程度まで低
下すると密度流が生じなくなるかを予め実験等により検
証し、その温度をΔTとして演算部42に入力しておく。
そして、T2 −T 1 >ΔTの間は、メインガス流路21を
採用し、T2 −T1 ≦ΔTになる時点でサブガス流路22
を採用するようにすればよい。
Further, in this embodiment, the flow of the pressure medium gas 7 is
The judgment of the switching of the road is made by the temperature sensor provided in the first guide cylinder 19.
-Based on the temperature detected by 38, 39. That is, yes
For example, the temperature measured by the upper temperature sensor 38 is set to T1,under
The temperature measured by the temperature sensor 39 on the side is T2And then those
Temperature difference, ie T2-T1The larger is the above density
It is clear that the flow tends to occur, and the smaller the flow, the harder it occurs.
It has been overlooked. So T2-T1How low
It is preliminarily tested by experiments to see if density flow will stop when it is lowered.
Then, the temperature is input to the calculation unit 42 as ΔT.
And T2-T 1The main gas flow path 21 should be
Adopted, T2-T1Sub gas passage 22 when ≦ ΔT
Should be adopted.

【0032】尚、本実施例で採用した流路切換手段30の
弁体32は、メインガス流路21およびサブガス流路22への
切換えを無段階に調整し得るようになっているので、そ
の切換えは一度に行なう必要はなく、サブガス流路22へ
の圧媒ガス7 の流量を徐々に増加させることができる。
この場合には、各流路21,22 への流量を無段階に調整で
きるので、流路切換時に起こりがちな過度の温度変化を
防ぎ処理室25内の温度の均熱性を保持したまま、低温域
まで冷却速度をほぼ一定に保ちながら冷却することがで
きる。
The valve element 32 of the flow path switching means 30 employed in this embodiment is capable of steplessly adjusting the switching to the main gas flow path 21 and the sub gas flow path 22. The switching does not have to be performed all at once, and the flow rate of the pressure medium gas 7 to the sub gas passage 22 can be gradually increased.
In this case, since the flow rate to each of the flow paths 21 and 22 can be adjusted steplessly, it is possible to prevent an excessive temperature change that tends to occur at the time of switching the flow paths and to maintain the temperature uniformity in the processing chamber 25 at a low temperature. It is possible to cool to the region while keeping the cooling rate almost constant.

【0033】次に、図4は本発明の第二実施例を示して
いる。このHIP装置において前記第一実施例と異なる
点は、流路切換手段30の下方でかつ断熱層6 の外部に、
圧媒ガス7 の上昇を励起するポンプ44が設けられている
ところにある。このポンプ44は、例えば遠心ファンで構
成されていて、下蓋4 上面に設けた凹部に内装した電動
機45に支持されている。また、この電動機45の回転数は
可変で、高圧容器1 の外部から制御できるようになって
いる。尚、本実施例のその他の点は、前記第一実施例と
同様である。また、図4においては、制御装置40および
温度センサー38,39 の描写は省略している。
Next, FIG. 4 shows a second embodiment of the present invention. This HIP device differs from the first embodiment in that it is below the flow path switching means 30 and outside the heat insulating layer 6.
A pump 44 for exciting the rise of the pressure medium gas 7 is provided. The pump 44 is composed of, for example, a centrifugal fan, and is supported by an electric motor 45 installed in a recess provided on the upper surface of the lower lid 4. The rotation speed of the electric motor 45 is variable and can be controlled from outside the high-pressure container 1. The other points of this embodiment are the same as those of the first embodiment. Further, in FIG. 4, the depiction of the control device 40 and the temperature sensors 38, 39 is omitted.

【0034】この第二実施例よれば、ポンプ44によって
圧媒ガス7の循環が増長されるので、より急速な冷却が
可能となる。また、ポンプ44は断熱層6 の外部に設けら
れているので、HIP処理時における高温の影響が伝わ
りにくく、ポンプ44自体の耐久性を向上させることがで
きる。以上、本発明の実施例について詳述したが、本発
明はこれに限定されるものではなく、例えば、案内筒は
三層以上設けることにしてもよい。即ち、高圧容器1や
被処理体24が大型で縦長の場合には、外側から順次高さ
が低くなる三層以上の案内筒を配設し、高さの異なるサ
ブガス流路22を複数構成して選択し得る圧媒ガスの流路
を増加するようにすることが好ましい。尚、この場合に
は、上下一対の温度センサー38,39 は、各案内筒の内側
に設け、各サブガス流路22について密度流が発生するか
否かを検討するようにすることが好ましい。
According to this second embodiment, the circulation of the pressure medium gas 7 is increased by the pump 44, so that more rapid cooling is possible. Further, since the pump 44 is provided outside the heat insulating layer 6, the influence of high temperature during the HIP process is difficult to be transmitted, and the durability of the pump 44 itself can be improved. Although the embodiment of the present invention has been described in detail above, the present invention is not limited to this, and for example, the guide cylinder may be provided in three or more layers. That is, when the high-pressure container 1 and the object to be processed 24 are large and vertically long, three or more layers of guide cylinders whose height gradually decreases from the outside are arranged, and a plurality of sub gas passages 22 having different heights are formed. It is preferable to increase the number of pressure medium gas passages that can be selected. In this case, it is preferable that the pair of upper and lower temperature sensors 38, 39 be provided inside each guide tube to examine whether or not a density flow is generated in each sub gas passage 22.

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば、
複数の案内筒19,20 間にサブガス流路22が形成され、流
路切換手段30により圧媒ガス7 が被処理体24に接する高
さを種々に変更し得るようにしたので、被処理体24の上
下温度の不均一を発生させることなく、冷却速度を速め
ることができる。
As described above, according to the present invention,
Since the sub gas flow path 22 is formed between the plurality of guide cylinders 19 and 20, and the height at which the pressure medium gas 7 contacts the object to be processed 24 can be changed variously by the flow path switching means 30, the object to be processed can be changed. The cooling rate can be increased without causing non-uniformity of the upper and lower temperatures of 24.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例を示すHIP装置の正面断
面図である。
FIG. 1 is a front sectional view of a HIP device showing a first embodiment of the present invention.

【図2】同拡大断面図である。FIG. 2 is an enlarged sectional view of the same.

【図3】同拡大断面図である。FIG. 3 is an enlarged sectional view of the same.

【図4】本発明の第二実施例を示すHIP装置の正面断
面図である。
FIG. 4 is a front sectional view of a HIP device showing a second embodiment of the present invention.

【図5】従来のHIP装置の正面断面図である。FIG. 5 is a front sectional view of a conventional HIP device.

【図6】同正面断面図である。FIG. 6 is a front sectional view of the same.

【符号の説明】 1 高圧容器 5 高圧室 6 断熱層 7 圧媒ガス 9 ヒータ 15 上板部 16 ガス流通孔 19 (第一) 案内筒 20 (第二) 案内筒 21 メインガス流路 22 サブガス流路 24 被処理体 25 処理室 30 流路切換手段 38 温度センサー 39 温度センサー 40 制御装置 44 ポンプ[Explanation of symbols] 1 high pressure vessel 5 High pressure chamber 6 Insulation layer 7 Pressure medium gas 9 heater 15 Upper plate 16 Gas distribution hole 19 (First) Guide tube 20 (Second) Guide tube 21 Main gas flow path 22 Sub gas flow path 24 Object 25 Processing room 30 Flow path switching means 38 Temperature sensor 39 Temperature sensor 40 controller 44 pumps

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高圧容器(1) で画成された高圧室(5) 内
に、上板部(15)にガス流通孔(16)を有する倒立コップ状
の断熱層(6) が配置され、該断熱層(6) の内側にヒータ
(9) が周設され、該ヒータ(9) の内側に、上端が開放さ
れかつ内部が被処理体(24)の処理室(25)とされた案内筒
が前記断熱層(6) と間隔をおいて配置され、その案内筒
と前記断熱層(6) との間に、該断熱層(6) の下方から前
記ガス流通孔(16)に連通する圧媒ガス(7)のメインガス
流路(21)が形成された熱間等方圧加圧装置において、 前記案内筒は径方向に間隔をおいて複数層配設され、こ
の各案内筒(19)(20)間の間隔が圧媒ガス(7) のサブガス
流路(22)とされ、その各案内筒(19)(20)はより内側のも
のが外側のものよりも順次高さが低くなるように形成さ
れ、当該案内筒(19)(20)の下方には、圧媒ガス(7) の流
路を前記メインガス流路(21)又はサブガス流路(22)に切
換える流路切換手段(30)が設けられていることを特徴と
する熱間等方圧加圧装置。
1. An inverted cup-shaped heat insulation layer (6) having a gas flow hole (16) in the upper plate (15) is arranged in a high pressure chamber (5) defined by the high pressure container (1). , A heater inside the heat insulation layer (6)
(9) is provided around the inside of the heater (9), the upper end of which is open, and the inside of which is a processing chamber (25) for the object to be processed (25), and a guide tube is spaced apart from the heat insulating layer (6). Between the guide cylinder and the heat insulating layer (6), the main gas flow of the pressure medium gas (7) communicating with the gas flow hole (16) from below the heat insulating layer (6). In the hot isostatic pressurizing device in which the passage (21) is formed, the guide tubes are arranged in a plurality of layers at intervals in the radial direction, and the intervals between the guide tubes (19) and (20) are compressed. It is used as a sub gas flow path (22) for the medium gas (7), and each of the guide tubes (19) (20) is formed so that the inner one is gradually lower in height than the outer one. (19) Below the (20), a flow path switching means (30) for switching the flow path of the pressure medium gas (7) to the main gas flow path (21) or the sub gas flow path (22) is provided. A hot isostatic pressing device characterized by the above.
【請求項2】 流路切換手段(30)は、メインガス流路(2
1)及びサブガス流路(22)への圧媒ガス(7) の流量を任意
の割合で調整できるように構成されていることを特徴と
する請求項1記載の熱間等方圧加圧装置。
2. The flow path switching means (30) comprises a main gas flow path (2).
The hot isostatic pressurization device according to claim 1, characterized in that the flow rate of the pressure medium gas (7) to the sub gas flow channel (22) and the sub gas flow channel (22) can be adjusted at an arbitrary ratio. .
【請求項3】 全部又は一部の案内筒(19)(20)の内側上
部及び内側下部にそれぞれ温度センサー(38)(39)が設け
られ、高圧容器(1) の外部に、その温度センサー(38)(3
9)が検知する温度 (T1) (T2)の差に基づいて流路切換
手段(30)に圧媒ガス(7) の流路を切換えさせる制御装置
(40)が設置されていることを特徴とする請求項1又は2
記載の熱間等方圧加圧装置。
3. A temperature sensor (38) (39) is provided on the inside upper part and the inside lower part of all or part of the guide tubes (19) (20), and the temperature sensor is provided outside the high-pressure container (1). (38) (3
Control device for switching the flow path of the pressure medium gas (7) to the flow path switching means (30) based on the difference in temperature (T 1 ) (T 2 ) detected by 9)
(40) is provided, Claim 1 or 2 characterized by the above-mentioned.
The hot isostatic pressing device described.
【請求項4】 流路切換手段(30)の下方でかつ断熱層
(6) の外部に、圧媒ガス(7) の上昇を励起するポンプ(4
4)が設けられていることを特徴とする請求項1,2又は
3記載の熱間等方圧加圧装置。
4. A heat insulating layer below the flow path switching means (30)
External to (6), a pump (4
4. The hot isostatic pressing device according to claim 1, wherein the hot isostatic pressing device is provided with 4).
JP3148915A 1991-06-20 1991-06-20 Hot isotropic pressurizing apparatus Pending JPH0510680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3148915A JPH0510680A (en) 1991-06-20 1991-06-20 Hot isotropic pressurizing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3148915A JPH0510680A (en) 1991-06-20 1991-06-20 Hot isotropic pressurizing apparatus

Publications (1)

Publication Number Publication Date
JPH0510680A true JPH0510680A (en) 1993-01-19

Family

ID=15463508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3148915A Pending JPH0510680A (en) 1991-06-20 1991-06-20 Hot isotropic pressurizing apparatus

Country Status (1)

Country Link
JP (1) JPH0510680A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022048739A1 (en) * 2020-09-02 2022-03-10 Quintus Technologies Ab A press apparatus
KR20220072315A (en) * 2020-11-25 2022-06-02 동우에이치에스티 주식회사 Hot isostatic pressing device
KR20220072314A (en) * 2020-11-25 2022-06-02 동우에이치에스티 주식회사 Hot isostatic pressing device
CN116379767A (en) * 2022-12-26 2023-07-04 无锡海古德新技术有限公司 Three-dimensional hot-pressing vibration sintering furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022048739A1 (en) * 2020-09-02 2022-03-10 Quintus Technologies Ab A press apparatus
KR20220072315A (en) * 2020-11-25 2022-06-02 동우에이치에스티 주식회사 Hot isostatic pressing device
KR20220072314A (en) * 2020-11-25 2022-06-02 동우에이치에스티 주식회사 Hot isostatic pressing device
CN116379767A (en) * 2022-12-26 2023-07-04 无锡海古德新技术有限公司 Three-dimensional hot-pressing vibration sintering furnace
CN116379767B (en) * 2022-12-26 2023-10-10 无锡海古德新技术有限公司 Three-dimensional hot-pressing oscillation sintering furnace

Similar Documents

Publication Publication Date Title
JP5615019B2 (en) Hot isostatic press
JP5662845B2 (en) Heat treatment apparatus and control method thereof
JP5894967B2 (en) Hot isostatic press
US4359336A (en) Isostatic method for treating articles with heat and pressure
KR100639141B1 (en) Press forming machine for glass
US4217087A (en) Isostatic apparatus for treating articles with heat and pressure
JP2013543796A (en) Pressure vessel and method for cooling a pressure vessel
JPH09178577A (en) Calorimeter having structure for quickly cooling down built-in heating container
JP2012080080A (en) Vertical heat treatment apparatus and control method therefor
JPH0510680A (en) Hot isotropic pressurizing apparatus
JP2010133852A (en) Cold and hot impact testing machine and method for cold and hot impact testing
KR102240648B1 (en) Hot isostatic pressing system
JP5356172B2 (en) Hot isostatic pressing apparatus and hot isostatic pressing method
US4702696A (en) High temperature vacuum furnace
JPH0625711A (en) Hot isostatic pressing device
US4509729A (en) Hot isostatic pressing apparatus
KR101512874B1 (en) Vertical heat processing apparatus and control method of the same
JPH09133470A (en) Hot isotropic pressure application device and cooling method of the device
JPH0829069A (en) Cooling method for hot isotropic pressure device
JPH04240389A (en) Hot and isotropic pressurizing device
JPH0726787B2 (en) Hot isostatic pressurizing device and cooling operation method of the device
KR20090112407A (en) Vertical type vacuum furnace with elevation apparatus
JPH1183338A (en) Hot isotropic pressing apparatus
KR20150054486A (en) Monocrystal sublimation apparatus using resistance heating means and method thereof
JPH05312478A (en) Hot isotropic pressurizer