JPH0463848A - Flame-retarding resin composition - Google Patents

Flame-retarding resin composition

Info

Publication number
JPH0463848A
JPH0463848A JP17137890A JP17137890A JPH0463848A JP H0463848 A JPH0463848 A JP H0463848A JP 17137890 A JP17137890 A JP 17137890A JP 17137890 A JP17137890 A JP 17137890A JP H0463848 A JPH0463848 A JP H0463848A
Authority
JP
Japan
Prior art keywords
polyolefin
weight
component
resin composition
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17137890A
Other languages
Japanese (ja)
Inventor
Akira Morii
森井 暁
Shunichi Fujimura
俊一 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP17137890A priority Critical patent/JPH0463848A/en
Publication of JPH0463848A publication Critical patent/JPH0463848A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a resin composition capable of water cross-linking and excellent in mechanical properties, flame retardancy, high-temperature steam resistance and radiation resistance by mixing a silane-modified polyolefin with a polyolefin, an inorganic flame retardant and a specified dihydroquinoline polymer. CONSTITUTION:A resin composition comprising a resin mixture composed of 100 pts.wt. silane-modified polyolefin (a) and polyolefin (b), 50-400 pts.wt. inorganic flame retardant and 3-20 pts.wt. poly(2,2,4-trimethyl-1,2-dihydroquinoline), wherein 0.7-7 pts.wt. component (b) is present per pt.wt. component (a). The polyolefin (a) can be obtained by grafting a silane compound onto a polyolefin. As the inorganic flame retardant, magnesium hydroxide is particularly desirable.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、原子力発電所用電線若しくはケーブルの外被
材又は絶縁材として有用な難燃性樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a flame-retardant resin composition useful as a jacket material or insulating material for electric wires or cables for nuclear power plants.

(従来の技術) 原子力発電所用電線若しくはケーブルの外被材(シース
材)又は絶縁材には、火災や冷却材喪失事故(LOCA
)等が起こった場合の重大性を考虜して、高い難燃性や
耐高温水蒸気性か要求される。また、用途から当然に耐
放射線性が優れていることも要求される。
(Prior art) The sheath material or insulation material of electric wires or cables for nuclear power plants is susceptible to fire and loss of coolant accidents (LOCA).
), high flame retardancy and high temperature steam resistance are required, taking into account the seriousness of the situation. In addition, it is naturally required to have excellent radiation resistance due to its intended use.

この外被材又は絶縁材としては、従来、熱可塑性樹脂に
、水酸化アルミニウムや水酸化マグネシウムのような金
属水酸化物、各種の炭酸塩などの無機系難燃剤を混和し
た樹脂組成物が知られている。
Conventionally, resin compositions made of thermoplastic resins mixed with metal hydroxides such as aluminum hydroxide and magnesium hydroxide, and inorganic flame retardants such as various carbonates have been known as the outer covering material or insulating material. It is being

(発明か解決しようとする課題) 上記樹脂組成物は、水酸化アルミニウム等の難燃剤の配
合量を増加させることでICEA S 61−402の
垂直燃焼試験及びIEEE std、 383の垂直ト
レイ燃焼試験に合格させることができる。しかし、その
場合には機械的特性が低下し、特に、大量の放射線に曝
されると非常に脆くなり、伸び特性が大幅に低下する。
(Problems to be Solved by the Invention) The above resin composition passes the vertical combustion test of ICEA S 61-402 and the vertical tray combustion test of IEEE std, 383 by increasing the amount of flame retardant such as aluminum hydroxide. You can pass the test. However, in that case the mechanical properties are reduced, especially when exposed to large amounts of radiation, it becomes very brittle and the elongation properties are significantly reduced.

また、熱可塑性樹脂に無機系難燃剤を配合したものは、
高温の水蒸気に触れると溶融するため架橋構造にする必
要がある。しかし、電子線架橋ては厚内材料の架橋が不
十分となり、過酸化物を用いた化学架橋では、絶縁体か
再加熱されるため熱変形するなどの問題が生じる。
In addition, thermoplastic resins containing inorganic flame retardants,
It melts when exposed to high-temperature steam, so it needs to have a cross-linked structure. However, electron beam crosslinking results in insufficient crosslinking of the Atsunai material, and chemical crosslinking using peroxide causes problems such as thermal deformation because the insulator is reheated.

本発明は、優れた機械的特性及び難燃性を有しており、
耐高温水蒸気性及び耐放射線性も優れている水架橋によ
る架橋体の形成が可能な難燃性樹脂組成物を提供するこ
とを目的とする。
The present invention has excellent mechanical properties and flame retardancy,
It is an object of the present invention to provide a flame-retardant resin composition capable of forming a crosslinked product by water crosslinking, which also has excellent high-temperature steam resistance and radiation resistance.

(課題を解決するための手段) 上記目的を達成するため本発明は、(a)シラン変性ポ
リオレフィン並びに(b)ポリオレフィン100重量部
、無機系難燃剤50〜400重量部及びポリ(2,2,
4−トリメチル−1,,2−ジヒドロキノリン)3〜2
0重量部を含有する樹脂混和物からなり、(a)成分と
(b)成分の配合比が、重量比で(a)成分1に対して
(b)成分が0.7〜7であることを特徴とする難燃性
樹脂組成物を提供する。
(Means for Solving the Problems) To achieve the above objects, the present invention provides (a) a silane-modified polyolefin, and (b) 100 parts by weight of a polyolefin, 50 to 400 parts by weight of an inorganic flame retardant, and a poly(2,2,
4-trimethyl-1,,2-dihydroquinoline) 3-2
It consists of a resin mixture containing 0 parts by weight, and the blending ratio of component (a) and component (b) is 0.7 to 7 of component (b) to 1 of component (a) by weight. A flame-retardant resin composition is provided.

本発明で用いる(a)成分のシラン変性ポリオレフィン
は、ラジカル発生剤の存在下、ポリオレフィンにシラン
化合物をグラフト反応させて得ることかできる。
The silane-modified polyolefin as component (a) used in the present invention can be obtained by grafting a silane compound onto a polyolefin in the presence of a radical generator.

ポリオレフィンとしては、高、中又は低密度ポリエチレ
ン、エチレン−酢酸ビニル共重合体、エチレン−アクリ
ル酸エチル共重合体、エチレンと極性基含有モノマーと
の共重合体を挙げることかでき、これらは単独で又は二
種以上を用いることができる。これらの中でもエチレン
−アクリル酸エチル共重合体が特に好ましい。
As polyolefins, mention may be made of high, medium or low density polyethylene, ethylene-vinyl acetate copolymers, ethylene-ethyl acrylate copolymers, copolymers of ethylene and polar group-containing monomers; Or two or more types can be used. Among these, ethylene-ethyl acrylate copolymer is particularly preferred.

シラン化合物としては、ビニルトリメトキシシラン、ビ
ニルトリエトキシシラン、ビニルトリス(β−メトキシ
エトキシ)シランなどを挙げることができる。
Examples of the silane compound include vinyltrimethoxysilane, vinyltriethoxysilane, and vinyltris(β-methoxyethoxy)silane.

シラン化合物の使用量は、ポリオレフィン100重量部
に対して0.1〜20重量部が好ましい。0.1重量部
未満であると充分な架橋度が得られず、20重量部を超
えて使用しても架橋度が飽和状態になるために好ましく
ない。特に好ましい使用量は0.3〜8重量部である。
The amount of the silane compound used is preferably 0.1 to 20 parts by weight per 100 parts by weight of the polyolefin. If it is less than 0.1 part by weight, a sufficient degree of crosslinking cannot be obtained, and if it exceeds 20 parts by weight, the degree of crosslinking will be saturated, which is not preferable. A particularly preferred amount used is 0.3 to 8 parts by weight.

ラジカル発生剤としては、ベンゾイルペルオキシド、ジ
クミルペルオキシドなどを挙げることがてき、特にジク
ミルペルオキシドか好ましい。
Examples of the radical generator include benzoyl peroxide and dicumyl peroxide, with dicumyl peroxide being particularly preferred.

ラジカル発生剤の使用量は、ポリオレフィン100重量
部に対して0.05〜0.5重量部か好ましい。0.0
5重量部未満であると充分な架橋度か得られず、0.5
重量部を超えると押出成形時に焼けが生じるため好まし
くない。特に好ましい使用量は0.1〜0.2重量部で
ある。
The amount of the radical generator used is preferably 0.05 to 0.5 parts by weight per 100 parts by weight of the polyolefin. 0.0
If it is less than 5 parts by weight, a sufficient degree of crosslinking cannot be obtained, and 0.5 parts by weight.
If it exceeds 1 part by weight, it is not preferable because it causes burning during extrusion molding. A particularly preferred amount used is 0.1 to 0.2 parts by weight.

(a)成分のシラン変性ポリオレフィンには、必要に応
して老化防止剤、滑剤などを配合することができる。
The silane-modified polyolefin of component (a) may contain an anti-aging agent, a lubricant, etc., if necessary.

本発明で用いる(b)成分の樹脂混和物は、ポリオレフ
ィンに、所定量の無機系難燃剤及びポリ(2,2,4−
トリメチル−1,2−ジヒドロキノリン)を配合してな
るものである。
The resin mixture of component (b) used in the present invention consists of polyolefin, a predetermined amount of an inorganic flame retardant, and poly(2,2,4-
trimethyl-1,2-dihydroquinoline).

ポリオレフィンとしては、上記したポリオレフィンと同
じものを用いることができる。これらの中でもエチレン
−酢酸ビニル共重合体、エチレン−アクリル酸エチル共
重合体が好ましく、これらの共重合体の中でも酢酸ビニ
ル単位又はアクリル酸エチル単位含有量が10重量%以
上のものが特に好ましい。
As the polyolefin, the same polyolefins as described above can be used. Among these, ethylene-vinyl acetate copolymers and ethylene-ethyl acrylate copolymers are preferred, and among these copolymers, those containing 10% by weight or more of vinyl acetate units or ethyl acrylate units are particularly preferred.

無機系難燃剤としては、水酸化マグネシウム、水酸化ア
ルミニウムのような水酸化物、炭酸カルシウム、塩基性
炭酸マグネシウム、ドロマイト、ハンタイトのような炭
酸塩、硼酸塩、赤リンなどを挙げることができる。これ
らの中でも水酸化マグネシウムが好ましい。
Examples of inorganic flame retardants include hydroxides such as magnesium hydroxide and aluminum hydroxide, carbonates such as calcium carbonate, basic magnesium carbonate, dolomite and huntite, borates, and red phosphorus. Among these, magnesium hydroxide is preferred.

無機系難燃剤の配合量は、ポリオレフィン100重量部
に対して50〜400重量部である。50重量部未満で
あると樹脂組成物の難燃性か充分に向上せず、400重
量部を超えると機械的性質、耐放射線性及び耐高温水蒸
気性のいずれもが著しく低下する。好ましい配合量は1
00〜300重量部である。
The blending amount of the inorganic flame retardant is 50 to 400 parts by weight per 100 parts by weight of the polyolefin. If it is less than 50 parts by weight, the flame retardance of the resin composition will not be sufficiently improved, and if it exceeds 400 parts by weight, all of the mechanical properties, radiation resistance and high temperature steam resistance will be significantly reduced. The preferred amount is 1
00 to 300 parts by weight.

ポリ(2,2,4−トリメチル−1,2−ジヒドロキノ
リン)の配合量は、ポリオレフィン100重量部に対し
て3〜20重量部である。3重量未満であると耐放射線
性の付与効果が充分ではなく、20重量部を超えると配
合による効果が飽和に達し、却って、機械的特性や電気
的特性の低下が生しる。好ましい配合量は5〜10重量
部である。
The blending amount of poly(2,2,4-trimethyl-1,2-dihydroquinoline) is 3 to 20 parts by weight per 100 parts by weight of polyolefin. If it is less than 3 parts by weight, the effect of imparting radiation resistance will not be sufficient, and if it exceeds 20 parts by weight, the effect of the blend will reach saturation, and on the contrary, the mechanical properties and electrical properties will deteriorate. The preferred amount is 5 to 10 parts by weight.

上記(a)成分のシラン変性ポリオレフィンと(b)成
分の樹脂混和物の配合比は、重量比で(a)成分1に対
して(b)成分か0.7〜7である。この配合比が0.
7未満であると難燃性か不十分となり、7超えると架橋
度か低下して押出被覆後に著しい凹凸が発生する。好ま
しい配合比は(a)成分1に対して(b)成分が1〜4
である。
The blending ratio of the silane-modified polyolefin as the component (a) and the resin mixture as the component (b) is 1 part of the component (a) to 0.7 to 7 parts of the component (b) by weight. This blending ratio is 0.
If it is less than 7, the flame retardancy will be insufficient, and if it exceeds 7, the degree of crosslinking will decrease and significant unevenness will occur after extrusion coating. The preferred blending ratio is 1 to 4 components (b) to 1 component (a).
It is.

本発明の難燃性樹脂組成物には、必要に応じて本発明の
目的を損なわない量のジブチル錫ジラウレートなどの有
機錫化合物のような架橋促進剤、熱可塑性樹脂、難燃剤
、合成ゴム、天然ゴム又は有機若しくは無機の充填剤、
酸化防止剤、滑剤、有機又は無機顔料、紫外線防止剤、
熱又は光安定剤、分散剤、銅害防止剤、中和剤、発泡剤
、可塑剤、気泡防止剤などを配合することができる。
The flame-retardant resin composition of the present invention optionally includes a crosslinking accelerator such as an organotin compound such as dibutyltin dilaurate, a thermoplastic resin, a flame retardant, synthetic rubber, in an amount that does not impair the object of the present invention. natural rubber or organic or inorganic fillers,
Antioxidants, lubricants, organic or inorganic pigments, ultraviolet inhibitors,
Heat or light stabilizers, dispersants, copper inhibitors, neutralizing agents, foaming agents, plasticizers, antifoaming agents, and the like can be blended.

本発明の難燃性樹脂組成物は、使用時において(a)成
分と(b)成分を混合し、押出成形した後、水中に浸漬
することにより架橋させるものである。このため電子線
架橋法や加熱による架橋法などを適用した場合のような
問題か生しることはない。
At the time of use, the flame-retardant resin composition of the present invention mixes components (a) and (b), extrudes the mixture, and then crosslinks it by immersing it in water. Therefore, the problems that occur when electron beam crosslinking or heating crosslinking are applied do not occur.

(実施例) 実施例1〜3及び比較例1〜6 まず、(a)成分を次の方法で製造した。エチレン−ア
クリル酸エチル共重合体100重量部(日本ユニカー製
、WN−170)に対して、ビニルトリメトキシシラン
2重量部、ジクミルペルオキシド0.15重量部、老化
防止剤(チバカイキー製、イルガノックス1010) 
 1重量部をヘンシェルミキサーで混合した後、200
℃で押出して(a)成分のシラン変性エチレン−アクリ
ル酸エチル共重合体を得た。これを第1表において(a
) −1と表示した。なお、比較とじてシラン変性して
いないエチレン−アクリル酸エチル共重合体を用い、第
1表中(a)−2と表示した。
(Example) Examples 1 to 3 and Comparative Examples 1 to 6 First, component (a) was manufactured by the following method. 100 parts by weight of ethylene-ethyl acrylate copolymer (WN-170, manufactured by Nippon Unicar), 2 parts by weight of vinyltrimethoxysilane, 0.15 parts by weight of dicumyl peroxide, anti-aging agent (manufactured by Ciba-Ky, Irganox) 1010)
After mixing 1 part by weight with a Henschel mixer, 200 parts by weight
C. to obtain a silane-modified ethylene-ethyl acrylate copolymer as component (a). This is shown in Table 1 (a
) -1 is displayed. For comparison, an ethylene-ethyl acrylate copolymer that had not been modified with silane was used, and it was indicated as (a)-2 in Table 1.

次に、第1表に示す各成分をバンバリーミキサ−により
混練りし、ペレット化して、(b)成分の樹脂混和物を
得た。
Next, each component shown in Table 1 was kneaded using a Banbury mixer and pelletized to obtain a resin mixture of component (b).

これらの(a)−1成分又は(a) −2成分と(b)
成分を、第1表に示す割合でブレンダーにより混合し、
本発明の難燃性樹脂組成物を得た。
These (a)-1 component or (a)-2 component and (b)
The ingredients are mixed in a blender in the proportions shown in Table 1,
A flame retardant resin composition of the present invention was obtained.

この樹脂組成物を、160°Cで6.6 k V、断面
積100mm2のケーブルコア上に、厚さか2.1mm
となるように押出し被覆してシースを形成した。その後
、これを80°Cの温水に24時間浸漬し、試料ケーブ
ルを得た。
This resin composition was applied to a cable core of 6.6 kV and a cross-sectional area of 100 mm2 at 160°C with a thickness of 2.1 mm.
A sheath was formed by extrusion coating. Thereafter, this was immersed in warm water at 80°C for 24 hours to obtain a sample cable.

この試料ケーブルについて、第1表に示す各試験をした
。試験方法は次のとおりである。なお、(a)成分1に
対する(b)成分の配合比が8である比較例8は、押出
被覆後のシース表面に著しい凹凸が生じ、各特性評価が
不能だった。
Each test shown in Table 1 was conducted on this sample cable. The test method is as follows. In addition, in Comparative Example 8 in which the blending ratio of component (b) to component (a) was 8, significant unevenness occurred on the sheath surface after extrusion coating, making it impossible to evaluate each characteristic.

引張強度及び伸び率:試料ケーブルから採取したシース
をJISa号ダンベルで打ち抜き、厚さ1mmにした後
、20°Cの恒温室内に1日放置し、東洋ボールドウィ
ン社製のテンシロンにより200mm/minの速度で
測定した。
Tensile strength and elongation rate: The sheath taken from the sample cable was punched out with a JISa dumbbell to a thickness of 1 mm, left in a constant temperature room at 20°C for 1 day, and punched at a speed of 200 mm/min using Tensilon manufactured by Toyo Baldwin. It was measured with

垂直トレイ燃焼試験: IEEE std、383に準
拠し、垂直トレイに長さ2.4mのケーブル5本を付設
し、燃焼試験をした。バーナーでの燃焼後に自己消火し
、ケーブルの破損長さが1.8m未満のものを合格(○
と表示)とし、1.8m以上のものを不合格(×と表示
)とした。
Vertical tray combustion test: In accordance with IEEE standard 383, a combustion test was conducted using five cables each having a length of 2.4 m attached to a vertical tray. Passes the test if it self-extinguishes after combustion in the burner and the cable breakage length is less than 1.8m (○
(indicated as ), and those of 1.8 m or more were rejected (indicated as x).

γ線照射試験・試料ケーブルに対し、Co60線源によ
り、線量率I X 10 ’ rad/hrにて総線量
1X10’radまで照射した。その後、このケーブル
から採取したシースについて、引張試験をし、初期値に
対する残率を測定した。
γ-ray irradiation test/sample cable was irradiated with a Co60 source at a dose rate of I x 10' rad/hr to a total dose of 1 x 10' rad. Thereafter, a tensile test was performed on the sheath taken from this cable, and the residual ratio relative to the initial value was measured.

水蒸気暴露試験:試料ケーブルを171’cの水蒸気雰
囲気に9時間放置した後に、シースの外観の変化を目視
で観察した。はとんど変化のないものを合格(○と表示
)とし、溶融したり変形の激しいものを不合格(×と表
示)とした。
Water vapor exposure test: After the sample cable was left in a 171'c water vapor atmosphere for 9 hours, changes in the appearance of the sheath were visually observed. A sample with almost no change was judged as a pass (indicated by ○), and a case with severe melting or deformation was judged as a fail (indicated by an x).

(以下余白) (発明の効果) 本発明の難燃性樹脂組成物を架橋したものは、高い機械
的特性を保持したまま、垂直トレイ試験に合格する優れ
た難燃性を有しており、電気学会推奨案による環境試験
においても、放射線照射後の機械的特性(耐放射線性)
及び耐高温水蒸気性のいずれもが優れている。
(The following is a blank space) (Effects of the invention) The crosslinked flame-retardant resin composition of the present invention has excellent flame retardancy that passes a vertical tray test while maintaining high mechanical properties. Even in environmental tests recommended by the Institute of Electrical Engineers of Japan, mechanical properties (radiation resistance) after irradiation were
and high-temperature steam resistance.

また、本発明の難燃性樹脂組成物は、構成成分であるシ
ラン架橋ポリオレフィンと樹脂混和物とを別々に製造保
管しておき、使用時に両成分を混合して難燃性樹脂組成
物とすることにより、前記両成分を混合した状態で保管
した場合のように、保管時に架橋反応が進行するという
不都合が防止できる。このため品質が安定した難燃性樹
脂組成物を継続して供給できる。
Furthermore, the flame-retardant resin composition of the present invention is prepared by separately manufacturing and storing the constituent components, silane-crosslinked polyolefin and the resin mixture, and mixing both components at the time of use to form the flame-retardant resin composition. By doing so, it is possible to prevent the inconvenience that the crosslinking reaction progresses during storage, which occurs when the two components are stored in a mixed state. Therefore, a flame retardant resin composition with stable quality can be continuously supplied.

本発明の難燃性樹脂組成物は、厳しい品質基準が設定さ
れた原子力発電所用の電線やケーブルの外被材や絶縁材
用として、特に厚肉材料用として好適である。
The flame-retardant resin composition of the present invention is suitable for use in sheathing materials and insulating materials for electric wires and cables for nuclear power plants where strict quality standards are set, particularly for use in thick-walled materials.

Claims (1)

【特許請求の範囲】[Claims] (a)シラン変性ポリオレフィン並びに(b)ポリオレ
フィン100重量部、無機系難燃剤50〜400重量部
及びポリ(2,2,4−トリメチル−1,2−ジヒドロ
キノリン)3〜20重量部を含有する樹脂混和物からな
り、(a)成分と(b)成分の配合比が、重量比で(a
)成分1に対して(b)成分が0.7〜7であることを
特徴とする難燃性樹脂組成物。
Contains (a) silane-modified polyolefin and (b) 100 parts by weight of polyolefin, 50 to 400 parts by weight of an inorganic flame retardant, and 3 to 20 parts by weight of poly(2,2,4-trimethyl-1,2-dihydroquinoline). It consists of a resin mixture, and the blending ratio of component (a) and component (b) is (a) by weight.
) A flame-retardant resin composition characterized in that component (b) is 0.7 to 7 with respect to component 1.
JP17137890A 1990-06-30 1990-06-30 Flame-retarding resin composition Pending JPH0463848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17137890A JPH0463848A (en) 1990-06-30 1990-06-30 Flame-retarding resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17137890A JPH0463848A (en) 1990-06-30 1990-06-30 Flame-retarding resin composition

Publications (1)

Publication Number Publication Date
JPH0463848A true JPH0463848A (en) 1992-02-28

Family

ID=15922072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17137890A Pending JPH0463848A (en) 1990-06-30 1990-06-30 Flame-retarding resin composition

Country Status (1)

Country Link
JP (1) JPH0463848A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615006A (en) * 1984-06-19 1986-01-10 Sanki Shoji Kk Agent for skin
JP2014111721A (en) * 2012-11-09 2014-06-19 Sumitomo Electric Ind Ltd Silane crosslinkable resin composition, insulated wire and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726696A (en) * 1980-07-25 1982-02-12 Nippon Kayaku Co Ltd Preparation of 2-chloro-1- 2,4,5-trichlorophenyl venyldimethylphosphate
JPS62177046A (en) * 1986-01-31 1987-08-03 Nippon Telegr & Teleph Corp <Ntt> Acid-resistant flame-retardant resin composition
JPS63286450A (en) * 1987-05-20 1988-11-24 Agency Of Ind Science & Technol Non-halogenated flame-retardant composition for electrical insulation with improved radiation resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726696A (en) * 1980-07-25 1982-02-12 Nippon Kayaku Co Ltd Preparation of 2-chloro-1- 2,4,5-trichlorophenyl venyldimethylphosphate
JPS62177046A (en) * 1986-01-31 1987-08-03 Nippon Telegr & Teleph Corp <Ntt> Acid-resistant flame-retardant resin composition
JPS63286450A (en) * 1987-05-20 1988-11-24 Agency Of Ind Science & Technol Non-halogenated flame-retardant composition for electrical insulation with improved radiation resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615006A (en) * 1984-06-19 1986-01-10 Sanki Shoji Kk Agent for skin
JPH0469123B2 (en) * 1984-06-19 1992-11-05 Sanki Shoji Kk
JP2014111721A (en) * 2012-11-09 2014-06-19 Sumitomo Electric Ind Ltd Silane crosslinkable resin composition, insulated wire and method for producing the same

Similar Documents

Publication Publication Date Title
KR101601286B1 (en) Highly flame-resistant polymer composition for electrical wire insulation and electrical wire produced therewith
KR100857175B1 (en) Cross-linkable, halogen-free flame-resistant plastic mixture, especially for cables
JPWO2012124589A1 (en) Non-halogen flame retardant resin composition and insulated wire and tube using the same
JP3358228B2 (en) Resin composition and insulated wire and insulated tube therefrom
KR100239581B1 (en) Insulating material for electric wire
US5650205A (en) Flame-retardant resin composition, electric wire using same, and tube made of same
JPH0463848A (en) Flame-retarding resin composition
JPH03203123A (en) Fire-resistant electric wire-cable
JP2681195B2 (en) Flame retardant polyolefin composition
JP2811970B2 (en) Flame retardant electrical cable
JPH09320358A (en) Flame resistant insulated wire
JPH052927A (en) Electric wire with heat-resistant, fire retardant insulation and manufacture of the same
JPH0345638A (en) Flame-retardant electrical insulation composition
JPS6326906A (en) Flame resisting electrically insulating composition
JPH04334811A (en) Flame retardant electric insulating composite
JP2011054283A (en) Electric wire-cable coating fire-retardant composition, and electric wire and cable
JPH03197539A (en) Flame-retardant resin composition
JP2000265011A (en) Flame-retarded resin composition
JPH0337909A (en) Incombustible coated electric wire/cable
JPH04253747A (en) Flame-retarding electrical-insulating composition
JP2887965B2 (en) Flame retardant wires and cables
JPH03190013A (en) Flame resistant electrical insulating compound
WO2023062062A1 (en) Halogen-free flame retardant polymer composition
CN116364339A (en) Flame retardant cable with self-extinguishing layer
JPH04154853A (en) Flame retardant composition