JPH0463379B2 - - Google Patents

Info

Publication number
JPH0463379B2
JPH0463379B2 JP57126673A JP12667382A JPH0463379B2 JP H0463379 B2 JPH0463379 B2 JP H0463379B2 JP 57126673 A JP57126673 A JP 57126673A JP 12667382 A JP12667382 A JP 12667382A JP H0463379 B2 JPH0463379 B2 JP H0463379B2
Authority
JP
Japan
Prior art keywords
oxide
ecd
mol
layer
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57126673A
Other languages
Japanese (ja)
Other versions
JPS5917539A (en
Inventor
Masanori Sakamoto
Juko Nakajima
Masataka Myamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP12667382A priority Critical patent/JPS5917539A/en
Publication of JPS5917539A publication Critical patent/JPS5917539A/en
Publication of JPH0463379B2 publication Critical patent/JPH0463379B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、固体電解質を用いたエレクトロクロ
ミツク素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to an electrochromic device using a solid electrolyte.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

無機材料を用いたエレクトロクロミツク素子
(ECDと略記する。)に用いられるエレクトロク
ロミツク(EC)材料としては、従来WO3
M0O3などの遷移金属酸化物が知られている。こ
のようなECDの典型的な例としては、透明導電
膜からなる電極上にWO3を蒸着して表示電極と
し、これに対向電極を対向配置させ、その間に電
解液又は固体電解質を介在させた構造を有する素
子がある。この種のECDにおいては、表示電極
を負にバイアスすると電子とプロトンとがWO3
中にとりこまれ青色に発色する。
Conventional electrochromic (EC) materials used in electrochromic devices (abbreviated as ECD) using inorganic materials include WO 3 ,
Transition metal oxides such as M 0 O 3 are known. A typical example of such an ECD is that WO 3 is vapor-deposited on an electrode made of a transparent conductive film to form a display electrode, and a counter electrode is placed facing this, with an electrolytic solution or solid electrolyte interposed in between. There are elements that have a structure. In this type of ECD, when the display electrode is negatively biased, electrons and protons are converted into WO 3
It is absorbed inside and turns blue.

固体電解質を用いた素子として、従来シリコン
酸化膜およびスパツタ膜あるいは酸化ジルコニウ
ム蒸着膜およびスパツタ膜などを固体電解質とし
て用いたものが知られており、このような素子
は、電解液を用いたものと比較して液漏れがない
こと、素子の形成が容易であることなどの長所を
有している。
Devices using solid electrolytes are conventionally known in which silicon oxide films and sputtered films, zirconium oxide vapor deposited films and sputtered films are used as solid electrolytes. In comparison, it has advantages such as no liquid leakage and easy device formation.

しかし、これらの固体電解質、特に酸化ジルコ
ニウム膜を用いた素子は、素子形成時にはSiO2
SiO等に比較して高コントラスト、速応答速度、
低発消色電圧等著しく良好な特性を示すものの、
経時劣化が著しく、素子寿命が短いという欠点を
有していた。
However, devices using these solid electrolytes, especially zirconium oxide films, use SiO 2 ,
Higher contrast and faster response speed than SiO etc.
Although it shows extremely good characteristics such as low color development/decolorization voltage,
It has the disadvantage that it deteriorates significantly over time and has a short element life.

〔発明の目的〕[Purpose of the invention]

本発明は、酸化ジルコニウム固体電解質層を有
するECDの上記問題点を改善するためになされ
たもので、コントラスト、応答速度、発消色電圧
の特性において優れ、かつ長期間にわたり、特性
の安定したエレクトロクロミツク素子を提供する
ことにある。
The present invention was made to improve the above-mentioned problems of ECDs having a zirconium oxide solid electrolyte layer. The purpose of the present invention is to provide a chromic element.

〔発明の概要〕[Summary of the invention]

本発明は、酸化ジルコニウムを主成分として、
酸化イツトリウム、酸化イツテルビウム、酸化ス
カンジウム、酸化ガドリウムからなる群から選ば
れる少なくとも一種の酸化物を1モル%以上50モ
ル%以下添加した固体電解質層を、遷移金属酸化
物系エレクトロクロミツク材料層と共に透明電極
と対向電極間に配置したエレクトロミツク素子に
関するものである。
The present invention uses zirconium oxide as the main component,
A solid electrolyte layer containing at least 1 mol % and 50 mol % of at least one oxide selected from the group consisting of yttrium oxide, ytterbium oxide, scandium oxide, and gadolinium oxide, together with a transition metal oxide-based electrochromic material layer. This invention relates to an electromic element arranged between a transparent electrode and a counter electrode.

本発明のECDを、図面を用いて詳細に説明す
る。
The ECD of the present invention will be explained in detail using the drawings.

ECDは、第1図にみられるように透明電極層
1、遷移金属酸化物系エレクトロクロミツク材料
層(発色層)3、固体電解質層4、対向電極5、
を順次積層形成し、透明電極と対向電極間に任意
の極性で電圧を印加できるようにしたものであ
る。透明電極側外側には、ガラスのような透明基
体2を配置することが好ましい。透明電極と対向
電極間に所望極性の電圧を印加できるように、外
部電源接続間のリード線が両電極から引出され
る。
As shown in FIG. 1, the ECD consists of a transparent electrode layer 1, a transition metal oxide electrochromic material layer (coloring layer) 3, a solid electrolyte layer 4, a counter electrode 5,
are sequentially laminated so that a voltage of arbitrary polarity can be applied between the transparent electrode and the counter electrode. It is preferable to arrange a transparent substrate 2 such as glass on the outer side of the transparent electrode. A lead between the external power connections is drawn from both electrodes so that a voltage of desired polarity can be applied between the transparent electrode and the counter electrode.

本発明において酸化ジルコニウムに添加して用
いられる周期律表族および族の酸化物として
は、酸化イツテルビウム(Yb2O3)、酸化スカン
ジウム(Sc2O3)、酸化イツトリウム(Y2O3)、酸
化テルビウム(Tb2O3)、酸化ジスプロシウム
(Dy2O3)、酸化ユーロビウム(Eu2O3)、酸化ツ
リウム(Tm2O3)、酸化ランタン(La2O3)、酸化
ガドリウム(Gd2O3)、酸化カルシウム(CaO)、
酸化ネオジウム(Nd2O3)、酸化マグネシウム
(MgO)、酸化バリウム(BaO)、酸化セリウム
(Ce2O3,CeO2)および酸化サマリウム
(Sm2O3)が挙げられる。これらは単独で酸化ジ
ルコニウムに添加することもできるが、2種以上
を併用してもよい。かかる添加成分は、固体電解
質層全体に対して、1〜50モル%の割合で添加す
るのが好ましい。この割合が1モル%を下まわる
と、本発明の特性改善効果が生じないし、50モル
%を上まわるともはや電解質としての機能を果さ
ず、素子に組み込んでもEC特性は発現しない。
In the present invention, the periodic table groups and group oxides used in addition to zirconium oxide include ytterbium oxide (Yb 2 O 3 ), scandium oxide (Sc 2 O 3 ), and yttrium oxide (Y 2 O 3 ). , terbium oxide (Tb 2 O 3 ), dysprosium oxide (Dy 2 O 3 ), eurobium oxide (Eu 2 O 3 ), thulium oxide (Tm 2 O 3 ), lanthanum oxide (La 2 O 3 ), gadolinium oxide (Gd 2 O 3 ), calcium oxide (CaO),
Examples include neodymium oxide (Nd 2 O 3 ), magnesium oxide (MgO), barium oxide (BaO), cerium oxide (Ce 2 O 3 , CeO 2 ) and samarium oxide (Sm 2 O 3 ). These can be added alone to zirconium oxide, but two or more types may be used in combination. It is preferable that such additive components be added in a proportion of 1 to 50 mol % with respect to the entire solid electrolyte layer. If this proportion is less than 1 mol %, the property improvement effect of the present invention will not occur, and if it exceeds 50 mol %, it will no longer function as an electrolyte and will not exhibit EC characteristics even if incorporated into a device.

本発明で用いることのできる遷移金属酸化物系
エレクトロクロミツク材料としては、従来公知の
WO3,M0O3,V2O5,TiO2,V2O3,等を用いる
ことができるが、発消色特性や膜形成の容易さ、
透明度等の点でWO3が好ましい。また、透明電
極材料としては、酸化インジウム、酸化スズ等従
来公知の透明導電膜材料を用いることができる。
対向電極材料としては、金、銀、アルミニウム、
ニツケル等の金属薄膜のほかに、上記の透明導電
膜材料も用いることができる。対向電極として透
明導電膜を用いた場合には透視型のECDが得ら
れる。
As transition metal oxide-based electrochromic materials that can be used in the present invention, conventionally known
WO 3 , M 0 O 3 , V 2 O 5 , TiO 2 , V 2 O 3 , etc. can be used, but the color development and fading properties, ease of film formation
WO 3 is preferred in terms of transparency and the like. Further, as the transparent electrode material, conventionally known transparent conductive film materials such as indium oxide and tin oxide can be used.
Counter electrode materials include gold, silver, aluminum,
In addition to metal thin films such as nickel, the above-mentioned transparent conductive film materials can also be used. When a transparent conductive film is used as the counter electrode, a see-through type ECD can be obtained.

本発明のECDは、外部電源を接続し、発色層
側を負にバイアスすると、固体電解質層より陽イ
オンが発色層に注入され発色する。また発色した
ECDの発色層側を正にバイアスすると陽イオン
が発色層から固体電解質層に移行して消色する。
In the ECD of the present invention, when an external power source is connected and the coloring layer side is negatively biased, cations are injected into the coloring layer from the solid electrolyte layer and coloring occurs. The color has developed again
When the coloring layer side of the ECD is positively biased, cations migrate from the coloring layer to the solid electrolyte layer and disappear.

本発明のECDは、例えば次のような方法によ
つて製造することができる。まず、ガラス等の基
体表面を清浄にし、次いで、透明電極層、エレク
トロクロミツク材料層層、固体電解質層、対向電
極層を順次形成する。これらの層を形成するの
は、従来公知のスパツタリング法、蒸着法等の薄
膜形成法を採用することができる。また、基体を
用いない場合には、自己保持性のある材料例えば
50μ以上の厚さを有する金属薄板を対向電極と
し、この上に順次固体電解質層、エレクトロクロ
ミツク材料層、透明電極層を上記と同様の方法で
形成することによつてECDを製造することがで
きる。
The ECD of the present invention can be manufactured, for example, by the following method. First, the surface of a substrate such as glass is cleaned, and then a transparent electrode layer, an electrochromic material layer, a solid electrolyte layer, and a counter electrode layer are sequentially formed. To form these layers, conventionally known thin film forming methods such as sputtering and vapor deposition can be used. In addition, if a substrate is not used, a self-retaining material such as
An ECD can be manufactured by using a thin metal plate with a thickness of 50μ or more as a counter electrode, and sequentially forming a solid electrolyte layer, an electrochromic material layer, and a transparent electrode layer thereon in the same manner as above. can.

〔発明の実施例〕[Embodiments of the invention]

実施例 1 透明電極1を設けたガラス基板2の上に酸化タ
ングステン発色層3を蒸着形成した。蒸着室内の
圧力は10-5〜10-6Torr、蒸着膜厚は0.1〜1μとし
た。
Example 1 A tungsten oxide coloring layer 3 was formed by vapor deposition on a glass substrate 2 on which a transparent electrode 1 was provided. The pressure in the deposition chamber was 10 -5 to 10 -6 Torr, and the thickness of the deposited film was 0.1 to 1 μm.

次に、ZrO2とY2O3の粉末を乳ばちにとり、充
分に粉砕混合した。この際、Y2O3の配合割合が
2モル%、5モル%、および20モル%となるよう
に3種のバツチを作成した。また、比較例として
Y2O3を添加しないバツチを同様に作成した。粉
砕混合した粉末を加圧成形用金型に入れて圧縮成
形する。得られたペレツトをルツボに入れ真空中
で電子衝撃によつて加熱し蒸発させて、先に基板
上に形成した発色層の上に膜厚0.3μに積層形成し
た。このようにして形成された固体電解質層4の
上に金(Au)からなる対向電極5を形成し、引
出しリードを各電極に接続してECDを得た。得
られたECDの特性を第2図に示す。同図は、
ECDを1Hz、デユーテイ比50/50の±4Vの矩形
波で着消色し、着色時のコントラストの時間変化
を示したものである。
Next, powders of ZrO 2 and Y 2 O 3 were taken in a mortar and thoroughly ground and mixed. At this time, three types of batches were prepared so that the proportions of Y 2 O 3 were 2 mol %, 5 mol %, and 20 mol %. Also, as a comparative example
A batch without the addition of Y 2 O 3 was similarly prepared. The pulverized and mixed powder is placed in a pressure mold and compression molded. The obtained pellets were placed in a crucible, heated and evaporated by electron impact in a vacuum, and laminated to a thickness of 0.3 μm on the coloring layer previously formed on the substrate. A counter electrode 5 made of gold (Au) was formed on the solid electrolyte layer 4 thus formed, and lead leads were connected to each electrode to obtain an ECD. Figure 2 shows the characteristics of the obtained ECD. The figure is
The ECD is colored and bleached using a ±4V square wave with a duty ratio of 50/50 at 1Hz, and the contrast over time during coloring is shown.

実施例 2 ZrO2に添加する成分としてYb2O3を用い、そ
の配合割合を1〜40モル%としたほかは実施例1
と同様してECDを形成した。第3図に、この素
子の特性を示す。
Example 2 Example 1 except that Yb 2 O 3 was used as a component added to ZrO 2 and the blending ratio was 1 to 40 mol%.
ECD was formed in the same manner. FIG. 3 shows the characteristics of this device.

実施例 3 Yb2O3に代えてSc2O3を用いたほかは、実施例
2と同様の方法でECDを形成した。第4図に、
この素子の特性を示す。
Example 3 An ECD was formed in the same manner as in Example 2, except that Sc 2 O 3 was used in place of Yb 2 O 3 . In Figure 4,
The characteristics of this device are shown below.

実施例 4 Yb2O3に代えてGd2O3を用いたほかは、実施例
2と同様の方法でECDを形成した。第5図に、
この素子の特性を示す。
Example 4 An ECD was formed in the same manner as in Example 2, except that Gd 2 O 3 was used instead of Yb 2 O 3 . In Figure 5,
The characteristics of this device are shown below.

以上の実施例から明らかなようにZrO2
Y2O3,Yb2O3,Sc2O3,Gd2O3を添加した固体電
解質を用いたEDCは、初期の性能を長期にわた
り維持することがわかつた。実施例としては特に
挙げなかつたが、この他MgO,CaO,BaO,
Ce2O3,CeO2,Sm2O3,Tb2O3,Dy2O3
Eu2O3,Tm2O3,Nd2O3,La2O3についても同様
の効果が認められた。
As is clear from the above examples, ZrO 2
It was found that EDC using a solid electrolyte containing Y 2 O 3 , Yb 2 O 3 , Sc 2 O 3 , and Gd 2 O 3 maintains its initial performance over a long period of time. Although not specifically mentioned as examples, other examples include MgO, CaO, BaO,
Ce 2 O 3 , CeO 2 , Sm 2 O 3 , Tb 2 O 3 , Dy 2 O 3 ,
Similar effects were observed for Eu 2 O 3 , Tm 2 O 3 , Nd 2 O 3 , and La 2 O 3 .

〔発明の効果〕〔Effect of the invention〕

以上に示したように本発明においては、酸化ジ
ルコニウム単体の固体電解質を用いたECDと比
較して、発消色応答性、コントラスト等の特性に
優れかつ長寿命のECDを提供できる効果を有す
るものであり、ECDの実用上、極めて有用であ
る。
As shown above, the present invention has the effect of providing an ECD with excellent characteristics such as color development/decolorization response and contrast, and a long lifespan, compared to an ECD using a solid electrolyte of zirconium oxide alone. Therefore, it is extremely useful in practical use of ECD.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のエレクトロクロミツク素子
の断面図、第2図〜第5図は、本発明のエレクト
ロクロミツク素子の特性を示す図である。 1……透明電極層、3……エレクトロクロミツ
ク材料層、4……固体電解質層、5……対向電
極。
FIG. 1 is a sectional view of the electrochromic device of the present invention, and FIGS. 2 to 5 are diagrams showing the characteristics of the electrochromic device of the present invention. DESCRIPTION OF SYMBOLS 1... Transparent electrode layer, 3... Electrochromic material layer, 4... Solid electrolyte layer, 5... Counter electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 透明電極と、対向電極と、これら電極間に配
置された遷移金属酸化物系エレクトロクロミツク
性材料層、および該エレクトロクロミツク性材料
層に陽イオンを供給する電解質層とからなるエレ
クトロクロミツク素子において、前記電解質層
が、酸化ジルコニウムを主成分として、酸化イツ
トリウム、酸化イツテルビウム、酸化スカンジウ
ム、酸化ガドリウムからなる群から選ばれる少な
くとも一種の酸化物を1モル%以上50モル%以下
添加したものであることを特徴とするエレクトロ
クロミツク素子。
1. An electrochromic device consisting of a transparent electrode, a counter electrode, a transition metal oxide-based electrochromic material layer disposed between these electrodes, and an electrolyte layer that supplies cations to the electrochromic material layer. In the element, the electrolyte layer has zirconium oxide as a main component, and 1 mol% or more and 50 mol% or less of at least one oxide selected from the group consisting of yttrium oxide, ytterbium oxide, scandium oxide, and gadolinium oxide is added. An electrochromic device characterized by:
JP12667382A 1982-07-22 1982-07-22 Electrochromic element Granted JPS5917539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12667382A JPS5917539A (en) 1982-07-22 1982-07-22 Electrochromic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12667382A JPS5917539A (en) 1982-07-22 1982-07-22 Electrochromic element

Publications (2)

Publication Number Publication Date
JPS5917539A JPS5917539A (en) 1984-01-28
JPH0463379B2 true JPH0463379B2 (en) 1992-10-09

Family

ID=14941023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12667382A Granted JPS5917539A (en) 1982-07-22 1982-07-22 Electrochromic element

Country Status (1)

Country Link
JP (1) JPS5917539A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644155A (en) * 1994-09-06 1997-07-01 Integrated Device Technology, Inc. Structure and fabrication of high capacitance insulated-gate field effect transistor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578524A (en) * 1980-06-19 1982-01-16 Nippon Kogaku Kk <Nikon> Electrochromic display element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578524A (en) * 1980-06-19 1982-01-16 Nippon Kogaku Kk <Nikon> Electrochromic display element

Also Published As

Publication number Publication date
JPS5917539A (en) 1984-01-28

Similar Documents

Publication Publication Date Title
KR100240432B1 (en) Fabrication methods and device structures of ac power electroluminescence devices
JPH04267227A (en) Electrochromic glass
US4294520A (en) Electrochromic display device
JP2008216744A (en) Electrochromic film
JPS631566B2 (en)
JPH0463379B2 (en)
JPS5956391A (en) El display unit
US20020195927A1 (en) Liquid crystal picture screen with improved backlighting
JPS5849995B2 (en) EL display device
JPS5829880A (en) Electric field luminescent element
JP2686170B2 (en) Thin film EL element
Tanaka et al. Temperature dependence improvement of luminance in powder electroluminescent cells by modified BaTiO3 powders
JPH0578805B2 (en)
JPS6315719B2 (en)
JP2501553B2 (en) Electrochromic element
JPS6337477B2 (en)
JPH0460317B2 (en)
KR100631501B1 (en) Clear dielectric of semiconductor display device and fabricating method thereof
JPH11250809A (en) Plasma display panel
JPH02132791A (en) Thin-film el element
JPS61203426A (en) Liquid crystal display device
JPS6238838B2 (en)
JPS61103982A (en) Electrochromic element
JPS61188895A (en) Thin film el panel
JPH05182767A (en) Thin film el element