JPH0463249A - Soft magnetic stainless steel having high magnetic flux density and low coercive force - Google Patents

Soft magnetic stainless steel having high magnetic flux density and low coercive force

Info

Publication number
JPH0463249A
JPH0463249A JP2173350A JP17335090A JPH0463249A JP H0463249 A JPH0463249 A JP H0463249A JP 2173350 A JP2173350 A JP 2173350A JP 17335090 A JP17335090 A JP 17335090A JP H0463249 A JPH0463249 A JP H0463249A
Authority
JP
Japan
Prior art keywords
flux density
less
coercive force
magnetic flux
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2173350A
Other languages
Japanese (ja)
Inventor
Yoshinobu Motokura
義信 本蔵
Hitokatsu Usami
宇佐美 仁克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP2173350A priority Critical patent/JPH0463249A/en
Publication of JPH0463249A publication Critical patent/JPH0463249A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a soft magnetic stainless steel having the characteristics of high magnetic flux density and low coercive force and excellent in corrosion resistance by specifying the compsn. constituted of C, Si, Mn, S, Ni, Cr, Cu, Al, O, N and Fe. CONSTITUTION:This is a soft magnetic stainless steel contg., by weight, <=0.010% C, <=0.10% Si, <=0.10% Mn, <=0.010% S, <=0.10% Ni, 11 to 13% Cr, <=0.10% Cu, 0.05 to 0.15% Al, <=0.0070% O, <=0.0100% N, <=0.015% C+N and the balance Fe with impurity elements and having high magnetic flux density and low coercive force. By using this steel, the miniaturization of a magnetic circuit for a solenoid valve or the like is permitted.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は自動車などの電子燃料噴射装置(EFI)、電
磁弁、磁気センサーなどに使用される磁気特性、電気特
性、耐食性に優れた高磁束密度低保磁力軟磁性ステンレ
ス鋼に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is a high magnetic flux device with excellent magnetic properties, electrical properties, and corrosion resistance that is used in electronic fuel injection devices (EFI), solenoid valves, magnetic sensors, etc. of automobiles, etc. It concerns low density, coercive force, soft magnetic stainless steel.

(従来技術) 昭和50年以前においては、自動車などに使用される電
子燃料噴射装置、電磁弁、磁気センサ等で耐食性の必要
な部分の磁芯材料には、JIS@の5VS430.5t
lS410などが使用されてきた。その後、昭和50年
代始めに前記JIS綱の耐食性、電磁特性を改善したF
e43Cr−ISi−0,25八1針が開発され、現在
まで使用されている。しかしながら、最近電磁弁等アク
チュエータの小型化の動向に沿って、磁気回路の小型化
に対する要求が非常に強(なり、Fe13Cr−ISi
−0,25AI鋼では対応ができなくなってきている。
(Prior art) Before 1975, JIS@5VS430.5t was used as the magnetic core material for parts that required corrosion resistance in electronic fuel injection devices, solenoid valves, magnetic sensors, etc. used in automobiles.
IS410 etc. have been used. Later, in the early 1970s, F
The e43Cr-ISi-0,2581 needle was developed and is in use to date. However, in line with the recent trend toward miniaturization of actuators such as solenoid valves, there is a strong demand for miniaturization of magnetic circuits (fe13Cr-ISi
-0.25AI steel is no longer suitable.

このような状況から、ステンレス鋼としての耐食性を保
有しつつ、Fe−13Cr−ISi−0,25Al11
tijlに比べさらに高い磁束密度と優れた軟磁性特性
を有する新しい材料の開発が強(望まれていた。
Under these circumstances, we developed Fe-13Cr-ISi-0,25Al11 while maintaining the corrosion resistance of stainless steel.
There was a strong desire to develop a new material with even higher magnetic flux density and superior soft magnetic properties than tijl.

(発明が解決しようとする問題点) 本発明は従来鋼の前記のごとき欠点を解決すべくなされ
たもので、最近非常に強く要求されつつある電子燃料噴
射装置、電磁弁等すべての耐食性を必要とする磁気回路
の小型化を可能にするために必要な高磁束密度、低保磁
力の特性を有し、かつ耐食性に優れた軟磁性ステンレス
鋼を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention was made in order to solve the above-mentioned drawbacks of conventional steel, and it is necessary to provide corrosion resistance for electronic fuel injection devices, solenoid valves, etc., which have recently become very strongly required. The object of the present invention is to provide a soft magnetic stainless steel that has the characteristics of high magnetic flux density and low coercive force necessary to make it possible to downsize magnetic circuits, and has excellent corrosion resistance.

(課題を解決するための手段) 電子燃料噴射装置、電磁弁等に使われる材料は、部品を
製造する際に冷間加工されるため、加工歪の影響による
磁気特性の劣化を防止するために熱処理を施し、磁気特
性を高めている。優れた磁気特性、特に低い保磁力を得
るためには、900°C以上の高温で熱処理を施す必要
があるが、5US430.5U3410等の従来鋼では
、800〜1100°C付近でγループが存在し、80
0°C以上で熱処理すると、加工歪は消失するが、変態
が起きるため、冷却後に変態歪が残存し、磁気特性が劣
化してしまう。逆に熱処理温度を800°C未満の低い
温度で施した場合には、加工歪が完全に消失せず、低い
保磁力を得ることができなかった。一方Fe−13Cr
4Si−0,25Allilは、高温でのγ変態は存在
しないが、Si、 AIの含有により磁束密度が低下し
、満足できる磁気特性を得られないでいた。
(Means for solving the problem) Materials used for electronic fuel injection devices, solenoid valves, etc. are cold worked when manufacturing the parts, so in order to prevent deterioration of magnetic properties due to the effects of processing strain, Heat treated to improve magnetic properties. In order to obtain excellent magnetic properties, especially low coercive force, it is necessary to perform heat treatment at a high temperature of 900°C or higher, but in conventional steels such as 5US430.5U3410, a γ loop exists at around 800 to 1100°C. 80
When heat treated at 0° C. or higher, the processing strain disappears, but since transformation occurs, the transformation strain remains after cooling and the magnetic properties deteriorate. On the other hand, when the heat treatment was performed at a low temperature of less than 800°C, the processing strain did not completely disappear and a low coercive force could not be obtained. On the other hand, Fe-13Cr
Although 4Si-0,25Allil does not undergo γ transformation at high temperatures, the magnetic flux density decreases due to the inclusion of Si and AI, making it impossible to obtain satisfactory magnetic properties.

本発明者等は従来鋼がSi、 Alの複合添加によりT
ループ領域を小さくし、フェライト相を安定化させてい
るために優れた磁束密度を得ることができなかったこと
に注目し、より効率的な成分調整によりTループ領域を
小さくし、900〜1200″Cという高温での熱処理
を可能とすることによる低保磁力を得ることと、高い磁
束密度の両方を得ることを可能にすることにより、優れ
た磁気特性を得ることを可能にする成分添加量について
鋭意研究を重ねた結果本発明に到ったものである。
The present inventors have discovered that conventional steel can be improved by the combined addition of Si and Al.
Noting that it was not possible to obtain excellent magnetic flux density by reducing the loop area and stabilizing the ferrite phase, we made the T-loop area smaller by more efficient component adjustment, and the T-loop area was reduced from 900 to 1200''. About the amount of addition of the component that makes it possible to obtain excellent magnetic properties by making it possible to obtain both low coercive force and high magnetic flux density by enabling heat treatment at a high temperature called C. As a result of extensive research, we have arrived at the present invention.

γループ領域を小さくするためには、オーステナイトフ
ォーマ−元素であるNi、 Cu、 C+N 、 Mn
などを低減し、フェライトフォーマ−元素であるSi、
AI等を添加すればよいことは従来がら言われている。
In order to reduce the γ loop region, austenite former elements such as Ni, Cu, C+N, Mn
Si, which is a ferrite former element,
It has been conventionally said that it is sufficient to add AI or the like.

しかしながら、各元素が個々にどの程度効果があるのか
については正確に把握されていないのが現状である。ま
た、高い磁束密度を得るためには、耐食性を確保するC
rを除いた全ての元素をできるだけ低減する必要がある
。本発明者等は最近の優れた製網技術を活用することに
より、従来の冶金的手法では達し得なかったレベルまで
Crを除(C+N 、 Si、、Mn、 Ni、 Cu
、 AI、 0等の元素を低減し、Tループの有無を測
定した。しかしながら、Crを除く元素を下げるのみで
は、Tループはある程度小さくなるが、依然として熱処
理温度領域に存在することがわかった。そこで、フェラ
イトフォーマ−元素であるSi、 AI、MO,、Ti
の効果についてさらに研究した結果、他の元素に比べて
AIはγループ領域を小さくする効果が最も大きく、オ
ーステナイトフォーマ−元素の低減による効果と合わせ
て、800°C以上の全ての温度領域においてフェライ
ト単相が得られることを発見した。また、AIはSiに
比べて磁束密度低下に及ぼす悪影響が小さいこともわか
り、かつ脱酸材としての役目も果たすことから、少量の
添加により非常に大きな効果が得られることを見出した
ものである。
However, it is currently not known exactly how effective each element is individually. In addition, in order to obtain high magnetic flux density, C
It is necessary to reduce all elements except r as much as possible. By utilizing recent excellent net-making technology, the present inventors were able to remove Cr (C+N, Si, Mn, Ni, Cu) to a level that could not be reached with conventional metallurgical methods.
, AI, 0, etc. were reduced, and the presence or absence of T loops was measured. However, it was found that if only the elements other than Cr were lowered, the T-loop would become smaller to some extent, but it would still exist in the heat treatment temperature range. Therefore, the ferrite former elements Si, AI, MO, Ti
As a result of further research on the effect of AI, compared to other elements, AI has the greatest effect of reducing the γ-loop region, and together with the effect of reducing the austenite former element, it has been found that AI has the greatest effect on reducing the γ-loop region. It was discovered that a single phase could be obtained. It was also found that AI has a smaller negative effect on reducing magnetic flux density than Si, and it also serves as a deoxidizing agent, so it was discovered that a very large effect can be obtained by adding a small amount. .

すなわち、本発明者等は13Cr系ステンレス鋼に及ぼ
す合金の影響を徹底的に調査、研究した結果、耐食性を
確保するCrを除き、他の元素を可能な限り低減し、T
ループ領域縮小と脱酸効果を得るために必要最小限のA
Iを添加することによって、従来では予想できないレベ
ルの磁気特性(高磁束密度低保磁力)を確保することに
成功したものである。
That is, as a result of thorough investigation and research into the influence of alloys on 13Cr stainless steel, the present inventors have reduced other elements as much as possible except for Cr, which ensures corrosion resistance, and
The minimum amount of A necessary to reduce the loop area and obtain the deoxidizing effect.
By adding I, we succeeded in securing magnetic properties (high magnetic flux density and low coercive force) at a level that could not be predicted conventionally.

すなわち、本発明は、重量比でC:0.010%以下、
Si:0.10%以下、Mn:0.10Z以下、S:0
.010X以下、Ni:0.10X以下、Cr: 11
〜13% 、Cu:0.10%以下、Al:0.05〜
0.15%、O:0.0070X以下、N:0.010
0Z以下、C+N:0.015%以下を含有し、残部F
eならびに不純物元素からなることを特徴とする高磁束
密度低保磁力軟磁性ステンレス鋼である。
That is, in the present invention, C: 0.010% or less in weight ratio,
Si: 0.10% or less, Mn: 0.10Z or less, S: 0
.. 010X or less, Ni: 0.10X or less, Cr: 11
~13%, Cu: 0.10% or less, Al: 0.05~
0.15%, O: 0.0070X or less, N: 0.010
Contains 0Z or less, C+N: 0.015% or less, and the remainder F
This is a soft magnetic stainless steel with high magnetic flux density and low coercive force, characterized by comprising e and impurity elements.

次に本発明である高磁束密度軟磁性ステンレス鋼の成分
組成の限定理由について説明する。
Next, the reasons for limiting the composition of the high magnetic flux density soft magnetic stainless steel of the present invention will be explained.

C、0,010%以下 Cは磁気特性、耐食性に悪影響を与える元素であり、本
発明においてはできるだけ低下させることが望ましく、
その上限を0.010χとした。なお、さらに磁気特性
を向上させるためには0.005%以下にすることが望
ましい。
C, 0,010% or less C is an element that adversely affects magnetic properties and corrosion resistance, and in the present invention, it is desirable to reduce it as much as possible.
The upper limit was set to 0.010χ. Note that in order to further improve magnetic properties, it is desirable that the content be 0.005% or less.

Si ; 0.10%以下 Siは脱酸元素であるが、磁気特性を劣化させるため、
できるだけ低下させることが望ましく、その上限を0.
10χとした。
Si: 0.10% or lessSi is a deoxidizing element, but it deteriorates magnetic properties, so
It is desirable to reduce it as much as possible, and the upper limit is 0.
It was set to 10χ.

Mn ; 0.10%以下 Mnの含有は耐食性、磁気特性を著しく損なうので、で
きるだけ低減することが望ましく、その上限を0.10
Xとした。
Mn: 0.10% or less Since the content of Mn significantly impairs corrosion resistance and magnetic properties, it is desirable to reduce it as much as possible, and the upper limit is set at 0.10%.
I set it as X.

s ; o、oioz以下 Sは鋼中の不純物として含有されるが、磁気特性を損な
う元素であるので、その上限を0.010χとした。
s ; o, oioz S is contained as an impurity in steel, but since it is an element that impairs magnetic properties, its upper limit was set to 0.010χ.

Cr ; 11〜131 Crは必要な耐食性、電気抵抗を確保するのに不可欠な
基本元素であると同時に、T相の温度領域を狭くする効
果もある。前記効果を十分に得るためには少なくとも1
1%以上含有させる必要がある。しかし13Xを越えて
含有させても耐食性向上効果は大きくなく、磁気特性も
損なうのでその上限を13χとした。
Cr; 11-131 Cr is an essential basic element for ensuring the necessary corrosion resistance and electrical resistance, and at the same time has the effect of narrowing the temperature range of the T phase. In order to fully obtain the above effect, at least 1
It is necessary to contain 1% or more. However, even if the content exceeds 13X, the effect of improving corrosion resistance is not large and the magnetic properties are also impaired, so the upper limit was set at 13χ.

AI 、 0.05〜0.15χ AIは本発明の特徴を最大限に生かす重要元素であり、
γループ領域を狭くし、熱処理温度領域でフェライト単
相を得るために最適な元素であるとともに脱酸剤として
の効果も大きい。この効果を得るためには0.05%以
上の含有が必要である。しかし、0.15χを越えて含
有させると、磁束密度、保磁力を劣化させるので、その
上限を0.15χとした。
AI, 0.05-0.15χ AI is an important element that makes the most of the features of the present invention,
It is an optimal element for narrowing the γ-loop region and obtaining a single ferrite phase in the heat treatment temperature range, and is also highly effective as a deoxidizing agent. In order to obtain this effect, the content must be 0.05% or more. However, if the content exceeds 0.15χ, the magnetic flux density and coercive force deteriorate, so the upper limit was set at 0.15χ.

0 ; 0.0070%以下 0は磁束密度を低下させ、磁気特性を悪化させるのでで
きるだけ少ない方が望ましいが実際の製造性を考慮して
その上限を0.0070χとした。
0; 0.0070% or less Since 0 lowers the magnetic flux density and worsens the magnetic properties, it is desirable to have as little as possible, but in consideration of actual manufacturability, the upper limit was set at 0.0070χ.

N 、 0.0100%以下 Nは鋼中に不純物として含まれるが、0.0100%以
下に制限することにより、磁気特性の改善に効果的であ
るので、その上限を0.0100χとした。
N, 0.0100% or less N is contained in steel as an impurity, but limiting it to 0.0100% or less is effective in improving magnetic properties, so the upper limit was set to 0.0100χ.

C+N ; 0.015%以下 C及びNはCrと結びついて炭窒化物を形成し、耐食性
を低下させるとともに、磁束密度、保磁力も劣化させる
元素である。また、オーステナイトフォーマ−元素とし
ての効果もあり、Tループ領域を拡大するため、C+N
をできるだけ低下させることが必要であり、その上限を
0.015χとした。
C+N: 0.015% or less C and N are elements that combine with Cr to form carbonitrides, lowering corrosion resistance and also deteriorating magnetic flux density and coercive force. It also has the effect of being an austenite former element and expands the T-loop region.
It is necessary to reduce as much as possible, and the upper limit is set to 0.015χ.

Ni ; 0.10%以下、Cu ; 0.10%以下
Ni、 Cuは耐食性を改善する元素ではあるが、オー
ステナイトフォーマ−元素であり、Tループ領域を拡大
し、磁気特性を悪化させる元素である。
Ni: 0.10% or less, Cu: 0.10% or less Ni and Cu are elements that improve corrosion resistance, but they are austenite former elements that expand the T-loop region and worsen magnetic properties. .

本発明では、磁気特性を最重要視しているため、できる
だけ低下させる必要があり、その上限をともに0.10
χとした。
In the present invention, since the magnetic properties are the most important, it is necessary to reduce them as much as possible, and the upper limit is 0.10 for both.
It was set as χ.

(実施例) 次に本発明の特徴を従来鋼、比較鋼と比べて実施例でも
って明らかにする。第1表は供試鋼の化学成分を示すも
のである。
(Example) Next, the features of the present invention will be clarified by comparing them with conventional steel and comparative steel through examples. Table 1 shows the chemical composition of the test steel.

(以下余白) 第1表において、1〜7綱は本発明網、8〜14鋼は比
較鋼であり、15鋼は従来網であるFe−13Cr−I
Si−0,25A]Mである。
(Left below) In Table 1, steels 1 to 7 are the inventive mesh, steels 8 to 14 are comparative steels, and steel 15 is the conventional mesh, Fe-13Cr-I.
Si-0,25A]M.

第1表の供試鋼は電気炉で溶製し、熱間圧延後、110
0°CX2時間、冷却速度100’C/時間の条件で熱
処理を施して、磁束密度、保磁力、耐食性、高温におけ
るγ相への変態の有無を測定した。
The test steels in Table 1 were melted in an electric furnace, hot rolled,
Heat treatment was performed under the conditions of 0°C for 2 hours and a cooling rate of 100'C/hour, and the magnetic flux density, coercive force, corrosion resistance, and presence or absence of transformation to γ phase at high temperatures were measured.

磁気特性は、直流型BHトレシーを用い、試験片として
外径24mmφ、内径16mmφ、厚さ16IIIIl
のリング試験片を製作し、磁束密度、保磁力を測定した
The magnetic properties were measured using a DC type BH tray sheet with an outer diameter of 24 mmφ, an inner diameter of 16 mmφ, and a thickness of 16IIIl as a test piece.
A ring test piece was manufactured and the magnetic flux density and coercive force were measured.

耐食性については、JISZ2371に準拠して塩水噴
霧試験を行い、発錆率を測定し、発錆率が5%未満のも
のを◎、5%以上25%未満のものを○、25%以上5
0%未満のものをΔ、50%以上のものを×とした。
Regarding corrosion resistance, a salt spray test was conducted in accordance with JIS Z2371, and the rust rate was measured. ◎ if the rust rate was less than 5%, ○ if the rust rate was 5% or more and less than 25%, and 5 if it was 25% or more.
A value of less than 0% was designated as Δ, and a value of 50% or more was designated as ×.

高温におけるγ相への変態の有無は、直径3I、長さ1
0IllI11の試験片を作製し、1000″Cに加熱
後、フォーマスター試験機により測定した冷却途中の試
験片の寸法変化から判定したものである。
The presence or absence of transformation to γ phase at high temperature is determined by diameter 3I and length 1
A test piece of 0IllI11 was prepared, heated to 1000''C, and then determined from the dimensional change of the test piece during cooling, which was measured using a Formaster tester.

測定した磁束密度、保磁力、耐食性、γ相への変態の有
無を第2表に示した。
Table 2 shows the measured magnetic flux density, coercive force, corrosion resistance, and presence or absence of transformation to γ phase.

(以下余白) 第2表 以下と従来鋼に比べ著しく優れた磁気特性を有するもの
であり、かつ耐食性も優れている。
(Left below) Table 2 shows that the steel has significantly superior magnetic properties compared to conventional steel, and also has excellent corrosion resistance.

(発明の効果) 本発明の高磁束密度低保磁力軟磁性ステンレス鋼は、以
上詳述したように、必要最低限のCrを添加することに
より耐食性、電気抵抗を確保し、オーステナイトフォー
マ−元素を全て可能な限り低減し、フェライトフォーマ
−元素であるAIを少量添加することによって、従来鋼
より少量のフェライトフォーマ−元素の添加にてTルー
プ領域を小さくし、加工歪を完全に除去するための80
0°C以上の熱処理を変態を起こさずに行うことが可能
となり、磁束密度、保磁力とも従来鋼に比べ著しく向上
させることを可能としたものである。従って、本発明に
より電磁弁などの磁気回路の小型化を可能とするもので
あり、産業上高い実用性を有するものである。
(Effects of the Invention) As detailed above, the high magnetic flux density and low coercive force soft magnetic stainless steel of the present invention ensures corrosion resistance and electrical resistance by adding the necessary minimum amount of Cr, and has austenite former elements. By reducing all of them as much as possible and adding a small amount of AI, which is a ferrite former element, the T-loop area can be made smaller by adding a smaller amount of ferrite former element than conventional steel, and processing distortion can be completely eliminated. 80
It has become possible to perform heat treatment at temperatures above 0°C without causing transformation, and it has become possible to significantly improve both magnetic flux density and coercive force compared to conventional steels. Therefore, the present invention enables miniaturization of magnetic circuits such as electromagnetic valves, and has high practicality in industry.

第2表から明らかなように、比較鋼である8tiAは、
Cr含有量が高いため、耐食性は優れているものの、磁
束密度が劣るものであり、9鋼はCr含有量が低いため
、耐食性とγ変態のため保磁力が劣るものであり、10
鋼はAI含有量が低いため、γ変態の影響により磁束密
度、保磁力などの磁気特性が劣るものであり、11鋼は
Si、 AI含有量が高いため磁束密度が劣るものであ
り、12綱はC+N含有量が高いため、耐食性が劣ると
ともに、高温でγ相への変態が起きるため熱処理時に変
態歪が発生し磁気特性が劣るものであり、13銅はNi
、Cu含有量が高いため12鋼と同様に変態歪により磁
気特性が劣るものであり、14鋼はMn含有量が高いた
め、12.13!itと同様に磁気特性が劣るものであ
る。
As is clear from Table 2, the comparative steel 8tiA is
Due to the high Cr content, although the corrosion resistance is excellent, the magnetic flux density is inferior.The 9 steel has a low Cr content, so the coercive force is inferior due to the corrosion resistance and γ transformation, and the 10
Because steel has a low AI content, its magnetic properties such as magnetic flux density and coercive force are inferior due to the influence of γ transformation. Steel No. 11 has a high Si and AI content, so it has an inferior magnetic flux density, and steel No. Since copper has a high C+N content, it has poor corrosion resistance, and transformation to γ phase occurs at high temperatures, which causes transformation strain during heat treatment, resulting in poor magnetic properties.
, due to the high Cu content, the magnetic properties are inferior due to transformation strain like the 12 steel, and the 14 steel has a high Mn content, so the 12.13! Similar to IT, it has poor magnetic properties.

Claims (1)

【特許請求の範囲】[Claims] 1.重量比にしてC:0.010%以下、Si:0.1
0%以下、Mn0.10%以下、S:0.010%以下
、Ni:0.10%以下、Cr:11〜13%、Cu:
0.10%以下、Al:0.05〜0.15%、O:0
.0070%以下、N:0.0100%以下、C+N:
0.015%以下を含有し、残部Feならびに不純物元
素からなることを特徴とする高磁束密度低保磁力軟磁性
ステンレス鋼。
1. Weight ratio: C: 0.010% or less, Si: 0.1
0% or less, Mn 0.10% or less, S: 0.010% or less, Ni: 0.10% or less, Cr: 11-13%, Cu:
0.10% or less, Al: 0.05-0.15%, O: 0
.. 0070% or less, N: 0.0100% or less, C+N:
A high magnetic flux density, low coercive force soft magnetic stainless steel characterized by containing 0.015% or less, with the remainder consisting of Fe and impurity elements.
JP2173350A 1990-06-29 1990-06-29 Soft magnetic stainless steel having high magnetic flux density and low coercive force Pending JPH0463249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2173350A JPH0463249A (en) 1990-06-29 1990-06-29 Soft magnetic stainless steel having high magnetic flux density and low coercive force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2173350A JPH0463249A (en) 1990-06-29 1990-06-29 Soft magnetic stainless steel having high magnetic flux density and low coercive force

Publications (1)

Publication Number Publication Date
JPH0463249A true JPH0463249A (en) 1992-02-28

Family

ID=15958789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2173350A Pending JPH0463249A (en) 1990-06-29 1990-06-29 Soft magnetic stainless steel having high magnetic flux density and low coercive force

Country Status (1)

Country Link
JP (1) JPH0463249A (en)

Similar Documents

Publication Publication Date Title
JP2003301245A (en) Precipitation hardening soft magnetic ferritic stainless steel
JPH0382740A (en) Duplex stainless steel excellent in hot workability and corrosion resistance
JP2013049918A (en) Electromagnetic stainless steel and method of manufacturing the same
EP0431167B1 (en) Production method of soft magnetic steel material
JP7475181B2 (en) Ferritic Stainless Steel
JP2007262582A (en) Superconducting magnetic component
JPH0463249A (en) Soft magnetic stainless steel having high magnetic flux density and low coercive force
JP3521998B2 (en) Soft magnetic stainless steel for relay iron core
JPH0257668A (en) Extra low temperature use nonmagnetic austenitic stainless steel having excellent reheating resistance
JPH07233452A (en) Ferritic stainless steel excellent in magnetic property
JP3533655B2 (en) Method for producing low-grade electrical steel sheet with small magnetic anisotropy and low-grade electrical steel sheet with small magnetic anisotropy
JPH0463248A (en) Soft magnetic stainless steel having high magnetic flux density and low coercive force and excellent in machinability
JP2000036409A (en) Manufacture of actuator composite magnetic member and ferromagnetic part thereof, and forming method of non- magnetic part of actuator composite magnetic member
JP3561922B2 (en) Manufacturing method of soft magnetic stainless steel
JPH0480347A (en) Stainless steel excellent in corrosion resistance
WO1989000210A1 (en) Soft magnetic steel
JP7465354B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JPS61213353A (en) Non-magnetic stainless steel excelling in spring characteristic
JPH05255817A (en) Corrosion resistant soft magnetic material
JPH02301544A (en) Soft-magnetic alloy with high electric resistance for cold forging
JPH09194938A (en) Production of formed part of ferritic stainless steel, excellent in magnetic property
JP2022101237A (en) Ferrite-martensite double-phase stainless steel having excellent bendability, and method for producing the same
JPH06346201A (en) Magnetic alloy having high saturation magnetic flux density and high electric resistance
JPS61217552A (en) Soft magnetic stainless steel for cold forging
JPH04358045A (en) Ni-cr-fe soft magnetic alloy