JPH0462809A - Static induction equipment with wound core - Google Patents

Static induction equipment with wound core

Info

Publication number
JPH0462809A
JPH0462809A JP16422490A JP16422490A JPH0462809A JP H0462809 A JPH0462809 A JP H0462809A JP 16422490 A JP16422490 A JP 16422490A JP 16422490 A JP16422490 A JP 16422490A JP H0462809 A JPH0462809 A JP H0462809A
Authority
JP
Japan
Prior art keywords
core
wound
wound core
silicon steel
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16422490A
Other languages
Japanese (ja)
Inventor
Koichi Tajima
多嶋 孝一
Kazuo Yamada
一夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16422490A priority Critical patent/JPH0462809A/en
Publication of JPH0462809A publication Critical patent/JPH0462809A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To enable a minimum iron-loss property which an no-cut wound core has to be secured and achieve a low noise by forming a combinational wound core which consists of a second wound core in that a high silicon steel plate containing a certain amount of silicon is wound at an outer-periphery side of a first wound core. CONSTITUTION:A coil 1 is assembled so that each insulation conductor of primary and secondary sides is wound in rectangular shape and a sectional shape is inscribed to a circular shape as much as possible and is a mold coil which is produced by casting an insulation resin. A wound core 2 is formed by winding a thin amorphous magnetic alloy band at both leg parts of this mold coil 1 so that a certain lamination thickness may be reached. Further, a wound core 3 is formed by winding a silicon steel containing silicon exceeding 3% which is a low magnetic distortion magnetic material onto an outer periphery of this wound core 2 to a prescribed lamination thickness, thus constituting a no-cut combinational wound core 4 by both core materials.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は非晶質磁性合金薄帯を巻回した巻鉄心を有する
変圧器、リアクトル等の静止誘導機器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to stationary induction equipment such as transformers and reactors having a wound core wound with an amorphous magnetic alloy ribbon.

(従来の技術) 変圧器、リアクトル等の静止誘導機器の鉄心としては、
鉄損の少ないこと、飽和磁束密度が高いこと、励磁電流
が小さいこと等の磁気特性を有することが望まれ、−船
釣には方向性珪素鋼板などの軟磁性材料が使用されてい
る。近年、これら鉄心材料の低損失化技術には目覚まし
いものがあるが、とりわけ磁性合金の溶湯を超急冷して
製造した非晶質磁性合金薄帯は従来の珪素鋼板と比較し
て鉄損が1/3〜1/4と大幅に小さくなるなど優れた
磁気特性を有している。このため省エネルギー化を狙っ
て非晶質磁性合金薄帯を変圧器等の鉄心材として使用す
ることの検討が活発に行われている。
(Prior art) As an iron core for stationary induction equipment such as transformers and reactors,
It is desirable to have magnetic properties such as low iron loss, high saturation magnetic flux density, and low excitation current, and soft magnetic materials such as grain-oriented silicon steel plates are used for boat fishing. In recent years, there have been remarkable advances in technology to reduce the loss of these iron core materials, but in particular, amorphous magnetic alloy ribbon produced by ultra-quenching molten magnetic alloy has a core loss of 1/2 compared to conventional silicon steel sheets. It has excellent magnetic properties, such as a significantly smaller size of /3 to 1/4. Therefore, with the aim of saving energy, studies are actively being conducted on the use of amorphous magnetic alloy ribbons as core materials for transformers and the like.

非晶質磁性合金薄帯を使用した鉄心としては、通常の珪
素鋼板を使用する場合と同様、適当な長さの帯状鋼板を
交互にラップさせながら必要枚数積層させて矩形状とし
た積層鉄心あるいは薄帯を複数回巻回した巻鉄心が考え
られ、これらの鉄心は実際の静止誘導機器の鉄心として
実用されている。そして、それぞれの方式には一長一短
かあるが、特に巻鉄心の場合には次に述べるような特徴
がある。第1に積層鉄心のように1枚1枚の薄帯を手作
業で積み重ねる必要性はなく、巻取装置を利用した自動
巻が可能であるため作業効率が良いこと、第2に同一の
鉄心断面積を得るにしても積層鉄心は矩形の4隅が直角
の角形を呈するが、巻鉄心の場合は、仮に矩形に成形し
ても4隅は曲率をもって成形されるため、磁路が短くな
り全体として小形化され鉄心重量も小さくなること、第
3に積層鉄心ではその製造方法からして必然的に鉄損増
加の原因となる鉄心内の継ぎ目とそれによるギャップを
生じるが、巻鉄心は薄帯を連続的に巻回成形した後、そ
の脚部に相当する部分に導体を巻回することによりコイ
ルを巻装するので、鉄心を切断しないノーカットのまま
使用することも可能であるため、鉄損の低減化が図られ
ることである。
Iron cores using amorphous magnetic alloy ribbons can be made into a rectangular laminated core by laminating the required number of strip steel plates of appropriate lengths while alternately wrapping them, as in the case of using ordinary silicon steel plates. Wound cores made by winding thin strips multiple times are considered, and these cores are actually used as cores for stationary induction equipment. Although each method has its advantages and disadvantages, the wound core has the following characteristics. Firstly, there is no need to manually stack each thin strip like a laminated core, and automatic winding using a winding device is possible, which improves work efficiency.Secondly, the same core Even when obtaining the cross-sectional area, a laminated core has a rectangular shape with four right-angled corners, but in the case of a wound core, even if it is formed into a rectangle, the four corners are formed with curvature, so the magnetic path becomes shorter. The overall size of the core is smaller and the weight of the core is smaller. Thirdly, due to the manufacturing method of the laminated core, there are seams and gaps in the core that inevitably cause an increase in iron loss, but the wound core is thinner. After the band is continuously wound and formed, the coil is wound by winding the conductor around the parts corresponding to the legs, so it is possible to use the iron core without cutting it. The goal is to reduce losses.

巻鉄心においても薄帯を巻回後その一部を切断して開き
、予め製作しておいた導体コイルを鉄心脚部に挿入後再
び鉄心を閉じる方法である、いわゆるCカットコアやワ
ンターンカット方式あるいはラップジヨイント方式(特
開昭63−170907号)かあるが、これらの方式は
鉄心磁路中に継ぎ目を生じるため鉄損が増加する結果と
なる。特に、非晶質磁性合金薄帯を鉄心祠として使用す
るのは変圧器等の低鉄損化が主目的であることを考える
と、巻鉄心を継ぎ目なしのノーノ7ットのまま使用する
ことがその効果を最大限に発揮することができ理想的で
ある。
For wound cores, the so-called C-cut core or one-turn cut method is a method in which a thin ribbon is wound, then a part of it is cut open, a pre-fabricated conductor coil is inserted into the core legs, and the core is closed again. Alternatively, there is a lap joint method (Japanese Unexamined Patent Publication No. 63-170907), but these methods create a joint in the core magnetic path, resulting in an increase in iron loss. In particular, considering that the main purpose of using amorphous magnetic alloy ribbon as a core wire is to reduce core loss in transformers, etc., it is preferable to use the wound core as it is without any seams. is ideal because it can maximize its effects.

例えば」二記のようなノーカット巻鉄心を有する単相変
圧器の製造方法としては主に次の2種類の方法かある。
For example, there are two main methods for manufacturing a single-phase transformer having an uncut wound core as described in "2" below.

その第1は非晶質磁性合金薄帯を外形が矩形状になるよ
う巻回成形した後、ぞの薄帯、中に内在する残留する歪
み及び巻回によって発生する歪みにより増加した鉄損を
回復するための焼鈍を行い、次いでその巻鉄心の両脚部
の周囲に絶縁導体を巻回してコイルを成形する方法、そ
の第2は予め絶縁導体を外形か略矩形状になるように巻
回してコイルを形成し、このコイルの両脚部の外周部に
非晶質磁性合金薄帯を巻回した後、鉄心の歪みを除去す
るために巻鉄心の周囲に仮巻した励磁用コイルに高周波
電流を通電することによって鉄心のみを加熱焼鈍する方
法である。前記第1の方法では焼鈍することによって鉄
損は低減されるが、非晶質磁性合金薄帯の特質である脆
化現象を生じた巻鉄心の周囲にコイルを成形する作業を
行うことになるため、その工程や取扱い作業中に鉄心に
何らかの外力が作用して破損を生ずる危険性が増大する
。鉄心の破損は磁気特性の悪化等品質の低下を招く。こ
のようなことを防止する方法としては、前記第2の方法
で行ったように、コイル形成後に励磁焼鈍法によって巻
鉄心のみを加熱する方法か考えられる。また導体巻回後
のコイルに対するレジン含浸や注型等の絶縁処理の行い
易さ、薄帯巻回による巻鉄心製造の行い易さ等から見て
も第2の方法が優れているものと考えられる。
The first method is to form an amorphous magnetic alloy ribbon by winding it so that it has a rectangular outer shape, and then to reduce the iron loss that has increased due to the residual strain inherent in the ribbon and the strain generated by the winding. The second method is to perform annealing for recovery and then wind an insulated conductor around both legs of the wound core to form a coil. After forming a coil and winding an amorphous magnetic alloy ribbon around the outer periphery of both legs of this coil, a high-frequency current is applied to an excitation coil that is temporarily wound around the wound core to remove distortion of the core. This is a method in which only the iron core is heated and annealed by applying electricity. In the first method, iron loss is reduced by annealing, but a coil is formed around the wound core that has undergone the embrittlement phenomenon that is a characteristic of amorphous magnetic alloy ribbon. Therefore, there is an increased risk that some external force will act on the core during the process or handling, causing damage. Damage to the iron core leads to deterioration of quality such as deterioration of magnetic properties. A possible method for preventing this is to heat only the wound core by excitation annealing after forming the coil, as was done in the second method. We also believe that the second method is superior in terms of ease of insulation treatment such as resin impregnation and casting on the coil after the conductor is wound, and ease of manufacturing the wound core by winding ribbons. It will be done.

(発明か解決しようとする課題) 前記したような方法で製造された変圧器は、鉄損の低い
非晶質磁性合金薄帯を使用したノーカットの巻鉄心を有
するため、機器特性としての低鉄損性に関しては満足す
べきものが得られるが、非晶質磁性合金薄帯が有する他
の性質である大きな磁気歪みのため、機器運転時の騒音
に関しては例えば−船釣な方向性珪素鋼板よりなる巻鉄
心機器に比較してむしろ高くなることかさけられない。
(Problem to be solved by the invention) Since the transformer manufactured by the method described above has an uncut wound core made of amorphous magnetic alloy ribbon with low iron loss, it has low iron as a device characteristic. Satisfactory results can be obtained in terms of loss resistance, but due to large magnetostriction, which is another property of amorphous magnetic alloy ribbons, noise during equipment operation can be reduced, for example by using grain-oriented silicon steel sheets used for boat fishing. It cannot be avoided that it is rather expensive compared to wound core equipment.

近年、エレクトロニクス技術の進歩によってインバータ
電源を用いた機器、例えばUPS電源等の使用か大幅に
増加して来ている。インバータ電源用変圧器は、一般に
基本波の周波数が商用周波数の50または60H2であ
るが、搬送波としてスイッチング素子により数Kl+2
〜10数KHzの高調波が含有されるため、鉄損の増加
とともに磁気歪み振動による騒音が問題となっている。
In recent years, with advances in electronics technology, the use of devices using inverter power supplies, such as UPS power supplies, has increased significantly. Inverter power supply transformers generally have a fundamental wave frequency of 50 or 60H2, which is the commercial frequency, but a switching element uses several Kl+2 as a carrier wave.
Since harmonics of ~10-odd KHz are contained, noise due to magnetostrictive vibrations is a problem as well as increased iron loss.

この他にも一般的に変圧器等誘導機器の小型化を図るた
めスイッチングの高周波化が進みつつある中で同様の問
題が表面化して来ている。
In addition, similar problems have come to the fore as the frequency of switching is increasing in order to generally downsize induction devices such as transformers.

本発明は前記事情に鑑みてなされたもので、その目的は
ノーカット巻鉄心の持つ最大限の低鉄損性を確保し、か
つ低騒音化を図った変圧器等の静止誘導機器を提供する
ことにある。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide static induction equipment such as a transformer that secures the lowest possible core loss of an uncut wound core and also achieves low noise. It is in.

[発明の構成] (課題を解決するための手段) 」二記目的を達成するために、本発明の変圧器等の静止
誘導機器は、矩形状に巻回し絶縁処理されたモールドコ
イルの両脚部の周囲に非晶質磁性合金薄帯を一定積厚に
なるまで巻回した第1の巻鉄心と、この第1の巻鉄心の
外周側に3%以上の珪素を含有する高珪素鋼板を巻回し
た第2の巻鉄心からなる組合せ巻鉄心を形成したことを
特徴とするものである。この場合、外側に巻回する低磁
気歪みの高珪素鋼板よりなる鉄心の断面積は全鉄心断面
積の10〜50%の範囲か適当である。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the second object, the stationary induction equipment such as a transformer of the present invention has both legs of a molded coil wound in a rectangular shape and insulated. A first wound core in which an amorphous magnetic alloy ribbon is wound to a constant stacking thickness, and a high silicon steel plate containing 3% or more silicon is wound around the outer periphery of this first wound core. The present invention is characterized in that a combined winding core is formed from a wound second winding core. In this case, the cross-sectional area of the outer core made of a low magnetostriction high-silicon steel plate is suitably in the range of 10 to 50% of the total core cross-sectional area.

(作 用) このような巻鉄心構成を有する静止誘導機器では断面積
において大半の50%以上を占める内側の非晶質磁性合
金薄帯の低鉄損特性により機器としての低鉄損性が得ら
れると同時に騒音発生の放射面の大きい外側部分に低磁
気歪み特性を有する鉄心材料が配置される形となるため
機器全体の低騒音化も達成される。
(Function) In stationary induction equipment with such a wound core configuration, the equipment can achieve low iron loss due to the low iron loss characteristics of the inner amorphous magnetic alloy ribbon, which accounts for more than 50% of the cross-sectional area. At the same time, the iron core material with low magnetostriction characteristics is placed in the outer part of the large noise-generating radiation surface, so that the noise level of the entire device can be reduced.

このような巻鉄心を例えばインバータ電源用変圧器など
のように高調波を含んだり、あるいは高周波で使用され
る機器に対して適用した場合、高珪素鋼板の鉄損は非晶
質磁性合金薄帯よりは大きいものの一般の方向性珪素鋼
板よりは小さくなるため、低鉄損化によってより有利と
なる。高珪素鋼板の例として最近になって開発された6
、5%珪素鋼板の鉄損値の変化を方向性珪素鋼板及び非
晶質磁性合金薄帯と比較図示したものを第3図に示す。
When such a wound iron core is applied to equipment that contains harmonics or is used at high frequencies, such as an inverter power transformer, the iron loss of high silicon steel sheet is lower than that of amorphous magnetic alloy ribbon. Although it is larger, it is smaller than a general grain-oriented silicon steel sheet, so it is more advantageous due to lower core loss. Recently developed 6 is an example of high-silicon steel sheet.
FIG. 3 shows a comparison diagram of the change in iron loss value of a 5% silicon steel sheet with that of a grain-oriented silicon steel sheet and an amorphous magnetic alloy ribbon.

400112以上の周波数において6.5%珪素鋼板の
低鉄損性は方向性珪素鋼板よりも小さくなっているのが
分かる。
It can be seen that the low core loss property of the 6.5% silicon steel sheet is smaller than that of the grain-oriented silicon steel sheet at frequencies of 400112 or higher.

一方、変圧器のような静止誘導機器の騒音発生源は鉄心
の磁気歪みによる振動であるため、鉄心材として低い磁
気歪み材を使用すると騒音の低減化が図れる。非晶質磁
性合金薄帯(2605S2)の磁気歪みは3〜5X10
 6(B=1.3T)であり、船釣な方向性珪素鋼板の
磁気歪みである約1.5×10 6(B=1゜7 T)
と比較して数倍の大きさであることから、騒音か大きく
なる欠点があったが、巻鉄心の外側の一部に高珪素鋼板
として6.5%珪素鋼板を使用すると、該鉄心材料が0
.3X106と極めて小さい磁気歪みを有することから
大幅に騒音を低減することができる。
On the other hand, since the source of noise in stationary induction equipment such as transformers is vibration due to magnetostriction of the iron core, noise can be reduced by using a material with low magnetostriction as the iron core material. The magnetostriction of the amorphous magnetic alloy ribbon (2605S2) is 3~5X10
6 (B = 1.3 T), and the magnetostriction of grain-oriented silicon steel plate for boat fishing is approximately 1.5 × 10 6 (B = 1°7 T).
However, if a 6.5% silicon steel plate is used as a high-silicon steel plate for the outer part of the wound core, the core material 0
.. Since it has an extremely small magnetostriction of 3×106, noise can be significantly reduced.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は第2図のI−I線に沿う断面図、第2図は本発
明の一実施例によって製作された単相外鉄形のノーカッ
ト巻鉄心変圧器の外形図である。
FIG. 1 is a sectional view taken along line II in FIG. 2, and FIG. 2 is an external view of a single-phase outer iron type uncut wound core transformer manufactured according to an embodiment of the present invention.

第2図において、コイル1は一次側と二次側の各絶縁導
体を矩形状に巻回するとともに断面形状が極力円形に内
接するように組立てられ、かつ絶縁レジンを注型して製
作されたモールドコイルである。このモールドコイル1
.の両脚部にそれぞれ非晶質磁性合金薄帯(米国アライ
ド・シグナル社製のF e−8i−B系材の26053
2)を一定積厚になるまで巻回して巻鉄心2を形成する
。さらにこの巻鉄心2の外周上に低磁気歪み磁性材料で
ある6、5%珪素鋼板を規定積厚まで巻回して巻鉄心3
を形成し1、両鉄心祠によるノーカットの組合せ巻鉄心
4を構成する。この場合外側に配置した6、5%珪素鋼
板の巻鉄心3の占める断面積は組合せ巻鉄心4の全断面
積の10〜50%にしている。
In Fig. 2, the coil 1 is assembled by winding each insulated conductor on the primary side and the secondary side in a rectangular shape, so that the cross-sectional shape is inscribed in a circle as much as possible, and is manufactured by casting insulating resin. It is a molded coil. This mold coil 1
.. Amorphous magnetic alloy ribbons (Fe-8i-B material 26053 manufactured by Allied Signal, Inc.
2) is wound to form a wound core 2 until it has a constant thickness. Furthermore, a 6.5% silicon steel plate, which is a low magnetostrictive magnetic material, is wound around the outer circumference of the wound core 2 to a specified thickness.
1, and an uncut combination-wound core 4 with both cores is constructed. In this case, the cross-sectional area occupied by the wound core 3 made of 6.5% silicon steel plate disposed on the outside is 10 to 50% of the total cross-sectional area of the combined wound core 4.

なお、前記コイル1−と組合せ巻鉄心4との間には適当
な大きさの間隙部5が設けられており、この間隙部5に
はコイル1を組合せ巻鉄心4の内径側空間部の中央位置
に保持し、間隙寸法を一定に保つための間隔片6が複数
個挿入されている。この間隙部5は変圧器を使用通電す
る際、コイル1や組合せ巻鉄心4より発生ずる熱を冷却
するためのダクトとして必要であると同時に、製造時の
巻鉄心巻回後に行う励磁焼鈍の際、図示しない励磁用仮
巻コイルや鉄心の発熱がコイルへ影響を及ぼさないよう
にするための耐熱性の絶縁シートを挿入するための空間
として利用する。
A gap 5 of an appropriate size is provided between the coil 1- and the combination-wound core 4. A plurality of spacing pieces 6 are inserted to hold the spacer in position and keep the gap size constant. This gap 5 is necessary as a duct for cooling the heat generated from the coil 1 and the combination wound core 4 when the transformer is energized, and at the same time, it is necessary during excitation annealing performed after winding the wound core during manufacturing. It is used as a space for inserting a heat-resistant insulating sheet to prevent the heat generated by the excitation coil (not shown) or the iron core from affecting the coil.

鉄心巻回後の歪み取り焼鈍については既に絶縁処理をし
たコイルと組合せされて一体となっているため、炉内に
挿入して雰囲気加熱することは絶縁Hの焼損を招くこと
から不可能である。従って、本実施例における巻鉄心の
歪み取り焼鈍としては励磁焼鈍方法を採用する。この場
合の加熱温度は巻鉄心の内側の大部分を構成する非晶質
磁性合金薄帯に対して最適な380〜400℃の範囲と
する。
For strain relief annealing after winding the core, since it is combined with a coil that has already been insulated and integrated, it is impossible to insert it into a furnace and heat it in the atmosphere because this will cause burnout of the insulation H. . Therefore, the excitation annealing method is adopted as strain relief annealing of the wound core in this embodiment. The heating temperature in this case is set in the range of 380 to 400°C, which is optimal for the amorphous magnetic alloy ribbon that constitutes most of the inside of the wound core.

巻鉄心の外周部を構成する高珪素鋼板にとって最適の焼
鈍温度は本来これよりは高温の700℃以上であり、前
記温度範囲では不十分であるが、もともと磁気歪みが極
めて小さい材料であることから巻回による曲げ歪みか鉄
損増加に与える影響は小さく、はとんど無視できる程度
である。従って、2種類の鉄心材料で構成される組合せ
巻鉄心4の励磁焼鈍は、非晶質磁性合金薄帯の鉄損特性
向」二を目的とする380〜400℃の加熱で良い。
The optimal annealing temperature for the high-silicon steel plate that makes up the outer periphery of the wound core is originally higher than this, at 700°C or higher, and although the above temperature range is insufficient, since the material is originally a material with extremely low magnetostriction. The effect of bending strain due to winding on the increase in iron loss is small and can be ignored. Therefore, the excitation annealing of the combination wound core 4 made of two types of core materials may be performed by heating at 380 to 400° C. for the purpose of improving the iron loss characteristics of the amorphous magnetic alloy ribbon.

」二記如き構成になるように製作した1φ−50011
2゜30KVAの単相変圧器の鉄損(無負荷損)および
騒音の特性を第1表に示す。第1表には本発明による実
施例を含み鉄心の全面積に占める6、5%珪素鋼板の比
率を種々変えた同容量のノーカット巻鉄心変圧器、6.
5%珪素鋼板との組合せ巻鉄心ではあるが、鉄心外形が
矩形の状態でコイルを挿入するためにカットコアとした
同容量の巻鉄心変圧器、およびノーカット巻鉄心ではあ
るが最も一般的で基準となる方向性珪素鋼板の巻鉄心変
圧器についても併せて示す。
1φ-50011 manufactured to have the configuration as shown in 2.
Table 1 shows the iron loss (no-load loss) and noise characteristics of a 2°30KVA single-phase transformer. Table 1 shows uncut wound core transformers of the same capacity with various ratios of 6.5% silicon steel plate to the total area of the core, including examples according to the present invention; 6.
Although it is a combination wound core with a 5% silicon steel plate, it is the most common standard for wound core transformers of the same capacity with a rectangular core and a cut core in order to insert the coil, and an uncut wound core. A wound core transformer made of grain-oriented silicon steel plate is also shown.

第1表 第1表により、同じノーカットの巻鉄心であっても非晶
質磁性合金薄帯で構成される場合、方向性珪素鋼板のみ
で構成される変圧器よりも無負荷損は1/3と大幅に低
減されている。ただし騒音についてみると、鉄心の全断
面積に占める6、5%珪素鋼板の比率が5%以下と少な
い場合は約6dB以上高い結果となっている。6.5%
珪素鋼板の比率が10%以上になると、騒音低下の効果
は著しく、方向性珪素鋼板の場合と同等またはやや低く
なっているが、無負荷損が増加する。50%程度の比率
になると、騒音は方向性珪素鋼板のノーカット巻鉄心変
圧器より低下しかつ無負荷損はかなり低い値を維持する
ことができる。これ以上に6.5%珪素鋼板の比率を増
加させても騒音の低下は期待できるものの無負荷損か更
に増加するため、非晶質磁性合金薄帯を含む組合せ鉄心
とすることによる効果が少なくなる。
Table 1 According to Table 1, even if the same uncut wound core is made of amorphous magnetic alloy ribbon, the no-load loss is 1/3 that of a transformer made of only grain-oriented silicon steel sheets. has been significantly reduced. However, in terms of noise, when the ratio of 6.5% silicon steel plate to the total cross-sectional area of the iron core is as small as 5% or less, the result is about 6 dB or more higher. 6.5%
When the ratio of the silicon steel plate is 10% or more, the noise reduction effect is remarkable and is equal to or slightly lower than that of the grain-oriented silicon steel plate, but the no-load loss increases. When the ratio is about 50%, the noise is lower than that of an uncut wound core transformer made of grain-oriented silicon steel sheets, and the no-load loss can be maintained at a considerably low value. Even if the ratio of 6.5% silicon steel sheet is increased beyond this, a reduction in noise can be expected, but the no-load loss will further increase, so the effect of using a combination core containing amorphous magnetic alloy ribbon will be small. Become.

又6,5%珪素鋼板の比率が同一の30%でノーカット
巻鉄心とカット巻鉄心を比較すると、無負荷損および騒
音ともノーカット巻鉄心の方が低くなり、本実施例の効
果は明らかである。
Furthermore, when comparing an uncut wound core and a cut wound core with the same ratio of 6.5% silicon steel plate at 30%, the uncut wound core has lower no-load loss and noise, and the effect of this example is clear. .

さらに、本実施例による変圧器では鉄心形状が矩形状で
はなく、円形のフープ状であることから、鉄心重量が最
小限に軽減されているとともに鉄心の磁路も最短である
ことから全般的に鉄損と励磁電流は最小限に押さえられ
ている。
Furthermore, in the transformer according to this embodiment, the iron core is not rectangular but has a circular hoop shape, so the weight of the iron core is minimized and the magnetic path of the iron core is also the shortest. Iron loss and excitation current are kept to a minimum.

なお、本実施例で巻鉄心の外側部で使用した6、5%珪
素鋼板は一般の方向性珪素鋼板よりも珪素含有度が多い
ため比較的硬くて脆い性質を有し、小さい曲率では巻回
が困難であるが、本実施例による巻鉄心は円形のフープ
状で、矩形状巻鉄心のようなコーナを有しないことと、
内側部分に巻回した非晶質磁性合金薄帯巻鉄心によって
巻回曲率が大きくなるため容易に巻回することができる
Note that the 6.5% silicon steel plate used on the outer side of the wound core in this example has a higher silicon content than general grain-oriented silicon steel sheets, so it is relatively hard and brittle. However, the wound core according to this embodiment has a circular hoop shape and does not have corners like a rectangular wound core.
The amorphous magnetic alloy ribbon-wound core wound on the inner portion increases the winding curvature, making it easy to wind.

[発明の効果] 以上説明したように、本発明の巻鉄心を有する静止誘導
機器の製造方法によれば、鉄心材の大部分が鉄損の極め
て小さい非晶質磁性合金薄帯を用いて鉄心に継ぎ目を有
しない円形のノーカット巻鉄心で構成され、かつその外
周側の一部分が磁気歪みの極めて小さい高珪素鋼板で構
成されるため、非晶質磁性合金薄帯のもつ高歪み特性に
基づく騒音増大を緩和し、低鉄損化と低騒音化の両方を
同時に達成することができる。
[Effects of the Invention] As explained above, according to the method of manufacturing a stationary induction device having a wound core according to the present invention, the core material is mostly made of amorphous magnetic alloy ribbon with extremely low core loss. It is composed of a circular uncut wound core with no seams, and a part of the outer circumference is made of high-silicon steel plate with extremely low magnetostriction, which reduces noise due to the high distortion characteristics of the amorphous magnetic alloy ribbon. It is possible to reduce the increase in iron loss and achieve both low iron loss and low noise at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第2図のI−I線に沿う断面図、第2図は本発
明によって製作された巻鉄心変圧器の外形図、第3図は
非晶質磁性合金薄帯、6.5%珪素鋼板および方向性珪
素鋼板の各周波数をパラメ−夕とする磁束密度−鉄損関
係図である。 1・・・コイル 2・・・非晶質磁性合金薄帯 3・・・高珪素鋼板巻鉄心 4・・・組合ぜ巻鉄心 5・・・間隙部 6・・・間隔片 (8733)代理人 弁理士 猪 股 祥 晃(ほか 
1名)
Fig. 1 is a sectional view taken along line I-I in Fig. 2, Fig. 2 is an external view of a wound core transformer manufactured according to the present invention, and Fig. 3 is an amorphous magnetic alloy ribbon. % silicon steel plate and grain-oriented silicon steel plate, each frequency being a parameter. FIG. 1... Coil 2... Amorphous magnetic alloy ribbon 3... High silicon steel plate wound core 4... Combined spiral wound core 5... Gap portion 6... Spacing piece (8733) agent Patent attorney Yoshiaki Inomata (and others)
1 person)

Claims (1)

【特許請求の範囲】[Claims] 矩形状に巻回し絶縁処理されたモールドコイルの両脚部
の周囲に、非晶質磁性合金薄帯を一定積厚になるまで巻
回した第1の巻鉄心と、この第1の巻鉄心の外周側にさ
らに3%以上の珪素を含有する高珪素鋼板を巻回した第
2の巻鉄心とからなる組合せ巻鉄心を形成したことを特
徴とする巻鉄心を有する静止誘導機器。
A first wound core in which an amorphous magnetic alloy ribbon is wound to a constant thickness around both legs of a molded coil wound in a rectangular shape and insulated, and the outer periphery of this first wound core. A stationary induction device having a wound core, characterized in that a combined wound core is formed on the side thereof and a second wound core further wound with a high-silicon steel plate containing 3% or more silicon.
JP16422490A 1990-06-25 1990-06-25 Static induction equipment with wound core Pending JPH0462809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16422490A JPH0462809A (en) 1990-06-25 1990-06-25 Static induction equipment with wound core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16422490A JPH0462809A (en) 1990-06-25 1990-06-25 Static induction equipment with wound core

Publications (1)

Publication Number Publication Date
JPH0462809A true JPH0462809A (en) 1992-02-27

Family

ID=15789034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16422490A Pending JPH0462809A (en) 1990-06-25 1990-06-25 Static induction equipment with wound core

Country Status (1)

Country Link
JP (1) JPH0462809A (en)

Similar Documents

Publication Publication Date Title
JP4350890B2 (en) Segmented transformer core
US5069731A (en) Low-frequency transformer
US6737951B1 (en) Bulk amorphous metal inductive device
EP0121839A1 (en) Transformer with ferromagnetic circuits of unequal saturation inductions
JPH0277105A (en) Magnetic core component and manufacture thereof
CN102360768A (en) Amorphous iron core, manufacturing method thereof and transformer with high performance, low noise and low cost
JPS62222614A (en) Composite core of silicon steel-amorphous steel for transformer
KR20140096323A (en) Method of reducing audible noise in magnetic cores and magnetic cores having reduced audible noise
KR101967877B1 (en) Method of assembling transformer core and winding, and method of manufacturing transformer using same
JP4092791B2 (en) Low loss and low noise iron core and manufacturing method thereof
JPH0462809A (en) Static induction equipment with wound core
JPH03268311A (en) Iron core of transformer
JPS6248364B2 (en)
JPH05275255A (en) Manufacture of transformer of good magnetic properties
JP7151946B1 (en) Wound core and method for manufacturing wound core
WO2023007952A1 (en) Wound core and wound core manufacturing method
JP7151947B1 (en) Wound core and method for manufacturing wound core
JPS6174314A (en) Manufacture of transformer core
WO2023167015A1 (en) Three-phased three-legged wound core and method for manufacturing same
JPH0684655A (en) High frequency wound core and high frequency induction electric appliance employing wound core
WO2023007953A1 (en) Wound core and wound core manufacturing method
JPS6159812A (en) Manufacture of core
JPH053123B2 (en)
JPS5987807A (en) Manufacture of continuous wound core
JPS61179507A (en) Manufacture of iron core