JPH0462379A - Heat-insulated box - Google Patents

Heat-insulated box

Info

Publication number
JPH0462379A
JPH0462379A JP17004690A JP17004690A JPH0462379A JP H0462379 A JPH0462379 A JP H0462379A JP 17004690 A JP17004690 A JP 17004690A JP 17004690 A JP17004690 A JP 17004690A JP H0462379 A JPH0462379 A JP H0462379A
Authority
JP
Japan
Prior art keywords
heat
box
pack
vacuum
polyol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17004690A
Other languages
Japanese (ja)
Inventor
Katsuhiko Goto
勝彦 後藤
Reiji Naka
礼司 中
Kosuke Tanaka
田中 孝介
Kazuyoshi Kuroishi
黒石 一義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17004690A priority Critical patent/JPH0462379A/en
Publication of JPH0462379A publication Critical patent/JPH0462379A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure

Landscapes

  • Refrigerator Housings (AREA)

Abstract

PURPOSE:To bring the heat-insulating performance of a vacuum heatinsulating pack into satisfactory function to keep cooled state for an extensive time period by a method wherein the vacuum heat-insulating pack is used as a heat-insulating material, and a laminated film of stainless steel foil and plastic is used as a material of a box, in which the insulating pack is attached, so as to avoid corrosion even when hard urethane foam, whose raw material contains R-123 of HCFC, is used in combination. CONSTITUTION:A heat-insulated box 1 is used for a refrigerator, and its outer casing 2 is made of steel plate. An inner box 3 is made of plastic of high-acrylonitrile resin. A vacuum insulating pack layer is denoted by 4 and hard urethane foam layer by 5. After the vacuum insulating pack layer 4 is set in a space between the outer casing 2 and the inner box 3, the box 1 is set on a foam molding guide, and raw foaming resin liquid is injected to form the urethane foam layer 5. The foaming resin liquid is composed of polyol, isocyanate, foaming agent, reaction catalyst, and foam stabilizer, and as the foaming agent, 1-3.5 pts.wt. water and 50 wt. parts R-123 are used per 100 pts.wt. polyol. As to the foaming resin raw liquid, polyol, foaming agent, reaction catalyst and foam stabilizer are previously mixed up and then isocyanate is mixed just before the mixture is injected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は断熱箱体に係り、特に、断熱壁に真空断熱パッ
クと硬質ウレタンフオームを充填してなる断熱箱体に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heat insulating box, and particularly to a heat insulating box whose heat insulating walls are filled with a vacuum heat insulating pack and a hard urethane foam.

〔従来の技術〕[Conventional technology]

従来、冷蔵庫用断熱箱体等の断熱壁は外箱と内箱を組合
せた空間部に硬質ポリウレタンフォームを充填した断熱
箱体としている。この硬質ポリウレタンフォームに使用
している発砲剤はトリクロロモノフルオロメタン(R,
−11)を使用している。
Conventionally, the heat insulating wall of a heat insulating box for a refrigerator or the like is a heat insulating box in which a space formed by combining an outer box and an inner box is filled with rigid polyurethane foam. The blowing agent used in this rigid polyurethane foam is trichloromonofluoromethane (R,
-11) is used.

しかし、R−11は難分解性CF C(Chloro 
Fluor。
However, R-11 is made of persistent CF C (Chloro
Fluor.

Carbonの略)の一つであり、通称フロンと呼ばれ
ているが、二〇CFCが大気中に放出されると成層圏に
おけるオゾン層破壊や温室効果による地表温度上昇が生
じるとされ、近年、世界的な環境汚染問題となり、これ
らの難分解性CFCの生産、及び、消費を規制する動き
が高まっている、そのため従来の硬質ポリウレタンの生
産量が規制されることにもなりCFCを用いる断熱箱体
の生産もままならなくない状況にある。そこで、CFC
の代替品として易分解性であるH CF C()lyd
Oro。
Carbon (abbreviation), commonly known as CFCs, is said to cause depletion of the ozone layer in the stratosphere and rise in ground temperature due to the greenhouse effect when released into the atmosphere. This has become an environmental pollution problem, and there is a growing movement to regulate the production and consumption of these persistent CFCs.As a result, the production volume of conventional rigid polyurethane will be regulated, and insulation boxes using CFCs will be The situation is such that production is not going anywhere. Therefore, C.F.C.
HCF C()lyd, which is easily degradable as a substitute for
Oro.

Chloro、Fluoro Carbonの略)が有
望であり、その中でもR−123が最有力な代替候補で
ある。しかし、R−123ガスはR−11に比較して熱
伝導率が大きく断熱材とした場合に性能が劣ることにな
る。
Chloro (abbreviation for Fluoro Carbon) is promising, and among them, R-123 is the most promising alternative candidate. However, R-123 gas has a higher thermal conductivity than R-11, and when used as a heat insulating material, its performance is inferior.

さらに、R−123を発泡剤に用いる場合、水も補助発
泡剤として用いるが、水とイソシアネートが反応して生
じるCO□ガスもR−11に比較し熱伝導率が大きいた
め、断熱性能が劣る。そこで断熱性能に非常に優れた真
空断熱パックとウレタンフオームとを組合せることによ
り、断熱性能をR−11を用いたフオームの性能を維持
、あるいは超えることができるものである。しかし、R
−123は易分解性であるため、空気中の水分と反応し
加水分解を起こし塩素ガスを発生しやすく、又塩素は真
空断熱パックの容器材の一部として従来用いていたアル
ミニウム箔を腐食させる問題があった。アルミニウム箔
はガスバリヤ性材料として用いるもので腐食されるとガ
ス透過量が多くなる欠点があった。
Furthermore, when R-123 is used as a blowing agent, water is also used as an auxiliary blowing agent, but the CO□ gas produced by the reaction between water and isocyanate also has a higher thermal conductivity than R-11, so its insulation performance is inferior. . Therefore, by combining a vacuum insulation pack with extremely excellent heat insulation performance and urethane foam, the heat insulation performance can be maintained or exceeded that of the foam using R-11. However, R
-123 is easily decomposed, so it reacts with moisture in the air and easily hydrolyzes, producing chlorine gas. Also, chlorine corrodes the aluminum foil conventionally used as part of the container material for vacuum insulation packs. There was a problem. Aluminum foil is used as a gas barrier material and has the disadvantage that when corroded, the amount of gas permeation increases.

又、アルミニウムは熱伝導率が非常に大きく、ヒートブ
リッジ量が大きく、これを用いた真空断熱パックは周囲
からの熱伝導が大きく全体の断熱性能が劣る。又、これ
を防ぐためアルミニウム膜が非常に薄い、プラスチック
にアルミニウムを蒸着したフィルムを用いる場合もある
が、アルミニウムの厚さ0.05μmでピンホールが生
じやすく、これはガスバリヤ性が劣りガスが透過しやす
く真空が長期間維持できない欠点があった。なお、この
種の断熱箱体に関するものとして、例えば、特開昭58
−127084号公報、特開昭5L52184号公報が
あげられる。
Furthermore, aluminum has a very high thermal conductivity and a large amount of heat bridge, and a vacuum insulation pack using this material has a large heat conduction from the surroundings and has poor overall insulation performance. In addition, to prevent this, a very thin aluminum film, such as a film made by vapor-depositing aluminum on plastic, is sometimes used, but the 0.05 μm thickness of aluminum tends to cause pinholes, which means that the gas barrier properties are poor and gas permeates. The drawback was that the vacuum could not be maintained for a long period of time. Regarding this type of heat insulating box, for example, Japanese Patent Application Laid-Open No. 58
-127084 and JP-A-5L52184.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術である真空断熱パックの容器材はアルミニ
ウムの蒸着プラスチックフィルム、あるいは、アルミニ
ウム箔とプラスチックのラミネートフィルム等であり、
前者はガスバリヤ性が劣り後者はヒートブリッジが大で
ある欠点があり、さらに、硬質ウレタンフオームの発泡
剤に水およびR−123を用いた場合、R−123が空
気中の水分により加水分解を起しやすく、これにより発
生する塩素によりアルミニウムが腐食され真空度維持期
間が短縮されてしまう問題があった。
The container material of the vacuum insulation pack according to the prior art is an aluminum vapor-deposited plastic film, or a laminate film of aluminum foil and plastic, etc.
The former has the disadvantage of poor gas barrier properties, and the latter has the disadvantage of large heat bridges.Furthermore, when water and R-123 are used as blowing agents for rigid urethane foam, R-123 may be hydrolyzed by moisture in the air. There was a problem in that the chlorine generated thereby corroded the aluminum and shortened the vacuum maintenance period.

本発明の目的は真空断熱バッグ用容器材としてガスバリ
ヤ性に優れ、ヒートブリッジが少なく、HCFCである
R−123を用いた硬質ウレタンフオームと組合せても
腐食されることなく真空断熱パックの断熱性能を充分発
揮し、長期間維持させる断熱箱体を提供することにある
The purpose of the present invention is to provide a container material for vacuum insulation bags that has excellent gas barrier properties, has few heat bridges, and does not corrode even when combined with hard urethane foam using R-123, which is an HCFC, and improves the insulation performance of vacuum insulation packs. The purpose is to provide a heat insulating box body that provides sufficient performance and is maintained for a long period of time.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するためガスバリヤの優れた膜は金属箔
であるが熱伝導率の小さい材料でなくてはならない。そ
こで、鉛およびステンレスチール(SO3−304)箔
を用いることで、熱伝導率は鉛がアルミニウムの約7、
ステンレススチールは約百であり、両者ともR−123
の加水分解生成物である塩素ガスに非常に強い。しかし
、金属箔のみでは真空断熱パック用容器とするための溶
接が難しいため内側にプラスチックフィルムをラミネー
トすることにより、従来と同様、熱加圧溶着で接着がで
きるようにしたものである。
In order to achieve the above objective, a film with an excellent gas barrier is a metal foil, which must be made of a material with low thermal conductivity. Therefore, by using lead and stainless steel (SO3-304) foil, lead has a thermal conductivity of about 7 compared to aluminum.
Stainless steel is about 100, and both are R-123
Very resistant to chlorine gas, a hydrolysis product of However, it is difficult to weld metal foil alone to make a container for vacuum insulation packs, so by laminating a plastic film on the inside, it can be bonded using heat and pressure welding as in the past.

しかし、ステンレス箔および鉛箔が20μm以下の厚さ
でないとヒートブリッジが大きくなり、本発明の性能が
充分発揮できないが、従来50μm以下の箔を作成する
ことは冷間圧延の際、加工硬化を生じ展延性が小さく技
術的に不可能であった。
However, unless the stainless steel foil and lead foil have a thickness of 20 μm or less, heat bridges will increase and the performance of the present invention cannot be fully demonstrated. This was technically impossible due to the low spreadability.

そこで50μmの箔を焼鈍処理を行い、これをさらに2
0μm以下に冷間圧延加工することにより可能としたも
のである。
Therefore, a 50μm foil was annealed, and this was further annealed for 2
This is made possible by cold rolling to a thickness of 0 μm or less.

又、従来のアルミニウムとポリエチレンフィルムを接着
してラミネート化する接着剤は、ポリウレタン系溶剤型
の接着剤を用いていたが、ステンレス箔とポリエチレン
フィルムとの接着は従来の方法ではステンレスの方に接
着力が弱く、新に酢酸ビニル・エチレン共重合体系接着
を見出すことで、ステンレス箔・ポリエチレンフィルム
のラミネート化が可能となった。
In addition, conventional adhesives used to bond and laminate aluminum and polyethylene film were polyurethane-based solvent-based adhesives, but conventional methods for adhering stainless steel foil and polyethylene film adhered to the stainless steel By discovering a new adhesive based on vinyl acetate and ethylene copolymer, it has become possible to laminate stainless steel foil and polyethylene film.

〔作用〕[Effect]

硬質ウレタンフオームは断熱箱体を構成する外箱と内箱
からなる空間部に真空断熱パックと共に充填され断熱効
果を果す。さらに、外箱と内箱に接着し箱体強度を向上
させるのに作用する。真空断熱パックは全体の断熱性能
を向上させるか、あるいは、硬質ウレタンフオームの発
泡剤に水およびR−123を用いた場合は断熱性能がR
−11を用いた場合より劣るが、これをR−11を用い
た場合と同等以上にすることに役立つ。真空断熱パック
の容器材にステンレススチール箔とプラスチックとのラ
ミネートフィルム、あるいは、鉛箔とプラスチックとの
ラミネートフィルムのステンレススチール箔、および、
鉛箔はガスバリヤ性を得るもので、内側プラスチックは
容器として作成時の熱溶着面として働く。鉛箔の場合の
外側フィルムは鉛箔の傷付き防止であり、ステンレスス
チール箔の場合、箔自体が強靭であるためにその必要が
ない。
The hard urethane foam is filled together with the vacuum insulation pack into the space consisting of the outer box and the inner box that make up the insulation box to provide a heat insulation effect. Furthermore, it adheres to the outer box and inner box and acts to improve the strength of the box. Vacuum insulation packs improve the overall insulation performance, or if water and R-123 are used as blowing agents for rigid urethane foam, the insulation performance increases to R.
Although it is inferior to the case using R-11, it helps to make it equal to or better than the case using R-11. The container material of the vacuum insulation pack is a laminate film of stainless steel foil and plastic, or a laminate film of lead foil and plastic, and
The lead foil provides gas barrier properties, and the inner plastic serves as a heat welding surface when creating the container. In the case of lead foil, the outer film is to prevent the lead foil from being scratched, but in the case of stainless steel foil, it is not necessary because the foil itself is strong.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図ないし第5図により説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 5.

第2図は第1図の■−■矢視断面図で第1図は冷蔵庫用
断熱箱体の斜視図であり、第3図は真空断熱パック4の
詳細図で第4図は第3図の■部の詳細図で真空断熱パッ
ク用容器材構成図である。
Fig. 2 is a sectional view taken along the ■-■ arrow in Fig. 1, Fig. 1 is a perspective view of the insulation box for the refrigerator, Fig. 3 is a detailed view of the vacuum insulation pack 4, and Fig. 4 is the same as Fig. 3. This is a detailed diagram of part 2 of FIG.

図において、1は冷蔵庫用断熱箱体で、2はその外箱で
あり鉄板製である。3は内箱でありプラスチックでハイ
アクリロニトリル樹脂製である。
In the figure, 1 is a heat insulating box for a refrigerator, and 2 is its outer box, which is made of iron plate. 3 is an inner box made of plastic and high acrylonitrile resin.

4は真空断熱パックで、6は4のコア材でありグラスウ
ールマットを用いた。7は4の容器材で詳細を第4図に
示す。10が金属箔で鉛、あるいは、ステンレススチー
ル(S U 3304)で厚さは20μmのものを用い
た。ステンレス箔は厚さ50μmの箔を焼鈍しさらに2
0μmまで圧延して作製したものである。11は10の
傷付き防止用フィルムでポリエチレンを用い60μmの
厚さを用いた。なお、金属箔10にステンレススチール
を用いた場合は金属箔自体が強靭なため11は必要とし
ない。9は真空断熱容器作製用熱加圧溶着材フィルムで
、ポリエチレン樹脂フィルム、厚さ40μmを用いた。
4 is a vacuum insulation pack, and 6 is the core material of 4, which is a glass wool mat. 7 is the container material of 4, the details of which are shown in FIG. 10 is a metal foil made of lead or stainless steel (SU 3304) with a thickness of 20 μm. Stainless steel foil is annealed foil with a thickness of 50 μm and further
It was produced by rolling to 0 μm. No. 11 is the scratch-preventing film of No. 10, which is made of polyethylene and has a thickness of 60 μm. Note that when stainless steel is used for the metal foil 10, the metal foil 11 is not necessary because the metal foil itself is strong. 9 is a heat-pressure welding material film for producing a vacuum insulation container, and a polyethylene resin film with a thickness of 40 μm was used.

なお、ステンレス箔とポリエチレンフィルムの接着のた
めの接着剤は酢酸ビニル・エチレン共重合系接着剤を用
いた。5は硬質ウレタンフオームであり、外箱2、内箱
3より形成される空間部に真空断熱パック4をセットし
、発泡成形用層にセットし、発泡原液を注入して、発泡
成形したものである。この発泡原液はポリオール、イソ
シアネートおよび発泡剤、反応触媒、整泡剤よりなるが
、この発泡剤をポリオール100重量部当り1〜3.5
重量部の水とR−123を50重量部用いた。なお、こ
の発泡原液はポリオール、発泡剤、反応触媒および整泡
剤を混合しておき、これとイソシアネートを注入直前に
混合して注入するものである。
Note that a vinyl acetate/ethylene copolymer adhesive was used as the adhesive for adhering the stainless steel foil and the polyethylene film. 5 is a hard urethane foam, which is foam-molded by setting a vacuum insulation pack 4 in the space formed by the outer box 2 and inner box 3, setting it in the foam molding layer, and injecting the foaming stock solution. be. This foaming stock solution consists of a polyol, an isocyanate, a blowing agent, a reaction catalyst, and a foam stabilizer.
Parts by weight of water and 50 parts by weight of R-123 were used. This foaming stock solution is prepared by mixing a polyol, a blowing agent, a reaction catalyst, and a foam stabilizer, and then mixing this with isocyanate immediately before injection.

第5図は真空断熱パック用容器材に各ラミネートフィル
ムを用いて経過時間と熱伝導率の変化のデータを示すも
のである。アルミ蒸着プラスチックラミネートフィルム
(アルミニウム厚さ0.05μm)12は経過時間とと
もにラミネートフィルムよりガスが透過し、真空がリー
クし熱伝導率が上昇して断熱性能が劣化していくことが
わかる。アルミニウム箔ラミネートフィルム材13は初
期の熱伝導率が大きく断熱性能が真空断熱材としては良
くない。
FIG. 5 shows data on changes in thermal conductivity versus elapsed time when each laminate film was used as a container material for a vacuum insulation pack. It can be seen that the aluminum vapor-deposited plastic laminate film (aluminum thickness: 0.05 μm) 12 causes gas to permeate through the laminate film over time, vacuum leaks, thermal conductivity increases, and heat insulation performance deteriorates. The aluminum foil laminate film material 13 has a high initial thermal conductivity and its heat insulation performance is not good as a vacuum heat insulation material.

鉛箔・プラスチックラミネートフィルム材14、ステン
レス・プラスチックラミネートフィルム材15は初期の
熱伝導率も小さくまったく劣化していない。
The initial thermal conductivity of the lead foil/plastic laminate film material 14 and the stainless steel/plastic laminate film material 15 is low and has not deteriorated at all.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、真空断熱パックの真空度を長期間半永
久的に維持でき、さらに、ヒートブリッジを極力少なく
することができるため、真空断熱パックの周囲よりの熱
漏洩量を非常に小さく抑えることができる。又、硬質ウ
レタンフオームの発泡剤にR−123を用いたフオーム
と組合せた場合、従来真空断熱パック用賽器材に用いて
いたアルミ箔がR−123の加水分解の生成物により腐
食されることもないため、真空断熱パックの真空度を半
永久的に維持できる。
According to the present invention, the degree of vacuum of the vacuum insulation pack can be maintained semi-permanently for a long period of time, and furthermore, heat bridges can be minimized, so the amount of heat leakage from the surroundings of the vacuum insulation pack can be kept extremely small. I can do it. In addition, when combined with a rigid urethane foam using R-123 as a foaming agent, the aluminum foil conventionally used for the sling material for vacuum insulation packs may be corroded by the products of hydrolysis of R-123. Therefore, the vacuum level of the vacuum insulation pack can be maintained semi-permanently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は冷蔵庫用断熱箱体の斜視図、第2図は第1図の
■−■矢視断面図、第3図は真空断熱パックの断面図、
第4図は第3図の■部詳細図であ1・・・冷蔵庫用断熱
箱体 2・・・外箱 3・・・内箱 4・・・真空断熱パック 5・・・硬質ウレタンフオーム 6・・・真空断熱パック用コア材 7・・・真空断熱パック用容器材 IO・・・金属箔 51jj5図 竿4図 7−−−真’ZlfT熱バツク用容器村10− 金属箔 梵2図 蒙 図 ?−−−タFa 5−内箱 5−−一不更賛つbクシフオ−ム 力55図 経 he丹間 12−一−アノLミ、美、着フ゛う又子ツクフィルムt
!f!i所奔へイ云導牢1j−−−アルミ箔・7°う人
チックラミネートフィル4L眉εノた熱六導宇14−:
fA  7&・ 15−ノー人テ″/L又負i・
Fig. 1 is a perspective view of a heat insulating box for a refrigerator, Fig. 2 is a sectional view taken along the ■-■ arrow in Fig. 1, and Fig. 3 is a sectional view of a vacuum insulation pack.
Fig. 4 is a detailed view of part ■ in Fig. 3. 1... Refrigerator insulation box 2... Outer box 3... Inner box 4... Vacuum insulation pack 5... Hard urethane foam 6 ...Core material for vacuum insulation pack 7...Container material for vacuum insulation pack IO...Metal foil 51jj5 Fig. 4 Fig. 7---True'ZlfT thermal bag container village 10-Metal foil san 2 Fig. figure? ---Data Fa 5-Inner box 5--100% praise b.
! f! Aluminum foil, 7° flat laminate fill 4L eyebrow ε no heat 14-:
fA 7&・ 15-no person te″/L also negative i・

Claims (1)

【特許請求の範囲】 1、外箱と内箱とを組合せた空間部に断熱材を充填して
断熱箱体を構成する前記断熱材に、真空断熱パックと硬
質ウレタンフォームを用い、前記真空断熱パック用の容
器材にステンレススチール箔とプラスチック等のラミネ
ートフィルムを用いることを特徴とする断熱箱体。 2、請求項1において、前記真空断熱パック用容器材に
鉛箔とプラスチック等のラミネートフィルムを用いる断
熱箱体。 3、請求項1において、前記硬質ウレタンフォームがポ
リオール成分とイソシアネート成分を発泡剤、反応触媒
および整泡剤の存在下で反応させるもので、発泡剤にポ
リオール100重量部当り1〜3.5重量部の水と1.
1−ジクロロ−2.2.2−トリフルオロエタン(R−
123)を30〜70重量部用いた断熱箱体。
[Scope of Claims] 1. The space formed by combining the outer box and the inner box is filled with a heat insulating material to form a heat insulating box body. An insulating box body characterized by using stainless steel foil and a laminate film of plastic or the like as the container material for the pack. 2. The insulation box according to claim 1, wherein the container material for the vacuum insulation pack is made of lead foil and a laminate film of plastic or the like. 3. In claim 1, the rigid urethane foam is one in which a polyol component and an isocyanate component are reacted in the presence of a blowing agent, a reaction catalyst, and a foam stabilizer, and the blowing agent contains 1 to 3.5 parts by weight per 100 parts by weight of polyol. Part of water and 1.
1-dichloro-2.2.2-trifluoroethane (R-
123) in an amount of 30 to 70 parts by weight.
JP17004690A 1990-06-29 1990-06-29 Heat-insulated box Pending JPH0462379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17004690A JPH0462379A (en) 1990-06-29 1990-06-29 Heat-insulated box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17004690A JPH0462379A (en) 1990-06-29 1990-06-29 Heat-insulated box

Publications (1)

Publication Number Publication Date
JPH0462379A true JPH0462379A (en) 1992-02-27

Family

ID=15897615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17004690A Pending JPH0462379A (en) 1990-06-29 1990-06-29 Heat-insulated box

Country Status (1)

Country Link
JP (1) JPH0462379A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018042612A1 (en) * 2016-09-02 2018-03-08 三菱電機株式会社 Vacuum heat insulating material and heat insulating box

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018042612A1 (en) * 2016-09-02 2018-03-08 三菱電機株式会社 Vacuum heat insulating material and heat insulating box

Similar Documents

Publication Publication Date Title
US3221085A (en) Process of making an insulated cabinet
US5843353A (en) Non-planar evacuated insulation panels and a method for making same
US2962183A (en) Refrigerator cabinet
JPH09166271A (en) Vacuum heat insulating panel mounting structure on heat insulating wall surface, and vacuum heat insulating panel
US10603865B2 (en) Insulating member and its attaching method
JPS6117263B2 (en)
CA2211569A1 (en) A fixed vacuum insulating panel and a refrigerated cabinet element containing the fixed vacuum insulating panel
JP2001248782A (en) Deforming method for vacuum heat insulator, fixing method for vacuum heat insulator, and freezing/ refrigerating container and heat insulating box
JP2005306484A (en) Insulated label
MXPA06002429A (en) Thermally insulating molded element.
NL7511139A (en) THERMAL INSULATION FOR COLD LIQUIDS HOLDERS.
US5439945A (en) Foams produced under reduced pressure and method of preparing such foams
JPH0462379A (en) Heat-insulated box
JP3213454B2 (en) Insulated box
EP1355103B1 (en) Preinsulated pipe
JPH03208611A (en) Vacuum heat-insulating vessel and its manufacture
JP3136713B2 (en) Refrigerator manufacturing method
JP3025221B2 (en) In-situ spraying method of rigid polyurethane foam and heat insulating structure using rigid polyurethane foam
JP3874046B2 (en) Heat insulation box
JP2002370300A (en) Heat insulating material
JPS58143042A (en) Heat insulating structure
JPH08291965A (en) Vacuum thermal insulating material
JP2000171148A (en) Cold reserving device
JPH10238691A (en) Vacuum heat insulation panel, manufacture thereof, and refrigerator using vacuum heat insulation panel
JP2004353687A (en) Heat insulating panel and its manufacturing method