JPH0462007A - Resin composite material blended with ferromagnetic metallic powder and manufacture thereof - Google Patents
Resin composite material blended with ferromagnetic metallic powder and manufacture thereofInfo
- Publication number
- JPH0462007A JPH0462007A JP13667590A JP13667590A JPH0462007A JP H0462007 A JPH0462007 A JP H0462007A JP 13667590 A JP13667590 A JP 13667590A JP 13667590 A JP13667590 A JP 13667590A JP H0462007 A JPH0462007 A JP H0462007A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- resin
- metal powder
- ferromagnetic metallic
- blended
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 72
- 230000005294 ferromagnetic effect Effects 0.000 title claims abstract description 41
- 239000000463 material Substances 0.000 title claims abstract description 22
- 239000000805 composite resin Substances 0.000 title claims description 13
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000011347 resin Substances 0.000 claims abstract description 24
- 229920005989 resin Polymers 0.000 claims abstract description 24
- -1 isocyanate compound Chemical class 0.000 claims abstract description 17
- 239000012948 isocyanate Substances 0.000 claims abstract description 15
- 229910052816 inorganic phosphate Inorganic materials 0.000 claims abstract description 6
- 125000000962 organic group Chemical group 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims abstract description 5
- 239000010409 thin film Substances 0.000 claims abstract description 4
- 229910052751 metal Inorganic materials 0.000 claims description 44
- 239000002184 metal Substances 0.000 claims description 44
- 238000004381 surface treatment Methods 0.000 claims description 7
- 150000002736 metal compounds Chemical class 0.000 claims description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 abstract description 65
- 229910000147 aluminium phosphate Inorganic materials 0.000 abstract description 32
- 238000000465 moulding Methods 0.000 abstract description 21
- 238000011282 treatment Methods 0.000 abstract description 16
- 239000011248 coating agent Substances 0.000 abstract description 9
- 238000000576 coating method Methods 0.000 abstract description 9
- 238000000034 method Methods 0.000 abstract description 9
- 239000002245 particle Substances 0.000 abstract description 9
- 239000002904 solvent Substances 0.000 abstract description 8
- 238000002156 mixing Methods 0.000 abstract description 6
- 239000000155 melt Substances 0.000 abstract description 5
- 239000003795 chemical substances by application Substances 0.000 abstract description 4
- 238000000227 grinding Methods 0.000 abstract description 3
- 239000012298 atmosphere Substances 0.000 abstract description 2
- 229920003051 synthetic elastomer Polymers 0.000 abstract description 2
- 239000000057 synthetic resin Substances 0.000 abstract description 2
- 229920003002 synthetic resin Polymers 0.000 abstract description 2
- 239000005061 synthetic rubber Substances 0.000 abstract description 2
- 229910019142 PO4 Inorganic materials 0.000 abstract 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 abstract 2
- 239000010452 phosphate Substances 0.000 abstract 2
- 125000003158 alcohol group Chemical group 0.000 abstract 1
- 235000019441 ethanol Nutrition 0.000 abstract 1
- 229910000765 intermetallic Inorganic materials 0.000 abstract 1
- 235000011007 phosphoric acid Nutrition 0.000 description 32
- 239000000203 mixture Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 11
- 239000002994 raw material Substances 0.000 description 11
- 238000003756 stirring Methods 0.000 description 10
- 239000004677 Nylon Substances 0.000 description 8
- 229920001778 nylon Polymers 0.000 description 8
- 239000008188 pellet Substances 0.000 description 8
- 239000007924 injection Substances 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 230000005291 magnetic effect Effects 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical group CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 239000012756 surface treatment agent Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 230000032050 esterification Effects 0.000 description 5
- 238000005886 esterification reaction Methods 0.000 description 5
- 238000001746 injection moulding Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 239000007822 coupling agent Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910001111 Fine metal Inorganic materials 0.000 description 2
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 2
- 229920000299 Nylon 12 Polymers 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 239000011265 semifinished product Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910000828 alnico Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 125000002743 phosphorus functional group Chemical group 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/0013—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fillers dispersed in the moulding material, e.g. metal particles
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Reinforced Plastic Materials (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、樹脂材料と一緒に混練し、ベレット或いはシ
ート状半製品に成形し、或いは射出成形して製品に成形
する強磁性金属粉末を含有した所謂プラスチックマグネ
ット用の樹脂複合材料及びそれの製法に関するものであ
る。Detailed Description of the Invention (Industrial Application Field) The present invention is directed to the production of ferromagnetic metal powder that is kneaded with a resin material and formed into a pellet or sheet semi-finished product, or injection molded into a product. The present invention relates to a resin composite material for so-called plastic magnets containing the same, and a method for producing the same.
(背景技術)
強磁性金属粉末を樹脂に配合して加熱混練し、ペレット
或いはシート状製品に成形し、又は射出成形して製品を
形成し、これに着磁して帯磁製品とすることが、一般に
実施されている。(Background Art) Ferromagnetic metal powder is blended with resin, heated and kneaded, molded into pellets or sheet products, or injection molded to form a product, and then magnetized to make a magnetized product. Generally practiced.
この場合、強磁性金属粉末と樹脂との均−配合及び両材
料の強い結合が難かしく、成形に際して材料の流動性が
悪いため、これの対策としては、成形温度を高めて流れ
易くしているが、それでもゲートが極めて小さいピンゲ
ート成形成いは樹脂の流動性をランナ一部分で制御する
ホットランナ−成形に使用することは出来なかった。In this case, it is difficult to mix the ferromagnetic metal powder and resin evenly and to form a strong bond between the two materials, and the material has poor fluidity during molding.To counter this, the molding temperature is raised to make it flow easier. However, even then, it could not be used for pin gate formation where the gate is extremely small or hot runner molding where the fluidity of the resin is controlled by a portion of the runner.
又、成形温度を高めると、局部的には金属粉末の耐熱温
度を越えた材料の加熱が発生し、金属粉末は酸化して製
品の磁気特性を損う問題があった。Furthermore, when the molding temperature is raised, there is a problem in that the material is locally heated to a temperature that exceeds the heat resistance temperature of the metal powder, and the metal powder is oxidized and the magnetic properties of the product are impaired.
(解決しようとする問題点)
本発明者等は、強磁性金属粉末を配合した樹脂材料の成
形性を研究する過程で、強磁性金属粉末を燐酸被覆処理
し、これをイソシアネート化合物によって表面処理した
場合、特異的に樹脂の流動性が改善されることを見出し
た。(Problems to be Solved) In the process of researching the moldability of resin materials blended with ferromagnetic metal powder, the present inventors coated ferromagnetic metal powder with phosphoric acid and surface-treated it with an isocyanate compound. It has been found that the fluidity of the resin is specifically improved when
そこで、本発明は強磁性金属粉末を配合した樹脂の溶融
流動性を向上し、ピンゲート成形、ホットランナ−成形
が可能な樹脂複合材料と、それの製法を提供することを
目的とする。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a resin composite material that improves the melt fluidity of a resin blended with ferromagnetic metal powder and is capable of pin gate molding and hot runner molding, and a method for producing the same.
(構 成)
本発明は、有機基を含まない無機燐酸金属化合物の薄膜
によって表面が一様に覆われ且つイソシアネート系化合
物によって表面処理された強磁性金属粉末を樹脂に配合
したことを特徴とする樹脂複合材料である。(Structure) The present invention is characterized in that a ferromagnetic metal powder whose surface is uniformly covered with a thin film of an inorganic phosphate metal compound containing no organic group and whose surface is treated with an isocyanate compound is blended into a resin. It is a resin composite material.
更に本発明は有機基を含まない無機燐酸金属化合物によ
って表面を覆った強磁性金属粉末にイソシアネート系化
合物を混合して表面処理し、該表面処理強磁性金属粉を
樹脂に配合して加熱混練し、成形することを特徴とする
強磁性金属粉末を配合した樹脂複合材料の製法である。Further, in the present invention, a ferromagnetic metal powder whose surface is covered with an inorganic phosphate metal compound that does not contain an organic group is surface-treated by mixing an isocyanate compound, and the surface-treated ferromagnetic metal powder is blended with a resin and kneaded by heating. This is a method for producing a resin composite material containing ferromagnetic metal powder, which is characterized by molding.
(作 用)
強磁性金属粉末を配合した樹脂複合材料は、金属粉末に
対し有機基を含まない無機燐酸によって燐酸被覆処理し
、且つイソシアネート化合物によって表面処理した場合
のみ、特異的に溶融樹脂の流動性が向上する。(Function) A resin composite material containing ferromagnetic metal powder can specifically improve the flow of molten resin only when the metal powder is coated with phosphoric acid using inorganic phosphoric acid that does not contain organic groups, and the surface is treated with an isocyanate compound. Improves sex.
これは、たとえ強磁性金属粉末をイソシアネート化合物
によって表面処理しても、強磁性金属粉末が予め燐酸被
覆処理されていない場合、或いは強磁性金属粉末が燐酸
被覆処理されていても、他の表面処理剤によって表面処
理した場合には、側底期待できない性質の改善である。This means that even if the ferromagnetic metal powder is surface-treated with an isocyanate compound, the ferromagnetic metal powder is not coated with phosphoric acid in advance, or even if the ferromagnetic metal powder is coated with phosphoric acid, other surface treatments may be applied. When the surface was treated with a chemical agent, the properties of the lateral bottom were not expected to improve.
(効 果)
強磁性金属粉末を配合した樹脂の溶融流動性は著しく改
善され、ピンゲート成形及びホットランナ−成形が可能
となった。(Effects) The melt fluidity of the resin blended with ferromagnetic metal powder was significantly improved, making pin gate molding and hot runner molding possible.
(実施例)
この出願において「強磁性金属粉末」とは、強磁性合金
粉末例えばRCo s、RCOI7(RはSm。(Example) In this application, "ferromagnetic metal powder" refers to ferromagnetic alloy powder such as RCos, RCOI7 (R is Sm).
Pr、Ce、La等の稀土類元素)、Nd−Fe−B−
Co系合金粉末、アルニコ合金粉末、強磁性金属鉄粉な
どを含む。「燐酸」とは、燐酸(Hspo、)のみでな
く、無機の燐基、その他の無機燐化合物を含むものとす
る。Rare earth elements such as Pr, Ce, La, etc.), Nd-Fe-B-
Includes Co-based alloy powder, alnico alloy powder, ferromagnetic metal iron powder, etc. "Phosphoric acid" includes not only phosphoric acid (Hspo), but also inorganic phosphorus groups and other inorganic phosphorus compounds.
強磁性金属粉末は、公知の方法によって、或いは発明者
が以前に提案した特開平1−234502号公報に開示
の方法によって微粉砕し、平均粒径10μm1所望によ
り1μm以下の超微粉とする。The ferromagnetic metal powder is finely pulverized by a known method or by the method disclosed in Japanese Patent Application Laid-Open No. 1-234502 previously proposed by the inventor to form an ultrafine powder with an average particle size of 10 μm and, if desired, 1 μm or less.
粉末化した強磁性金属粉末を粉砕助剤と一緒に攪拌を行
ないながら、又、活性ガスの雰囲気中にて、燐酸とアル
コール類とを混合した被覆処理剤を投入して金属粉末表
面を燐酸被覆する。While stirring the pulverized ferromagnetic metal powder together with a grinding aid, a coating agent containing a mixture of phosphoric acid and alcohol is added to coat the metal powder surface with phosphoric acid in an active gas atmosphere. do.
上記被覆処理剤は、金属粒が所望粒径に粉砕され被覆処
理を行なう直前に、必要量の燐酸にアルコール系溶剤を
、素早く攪拌混合することにより、燐酸のエステル化を
可及的に抑えたものである。The above-mentioned coating treatment agent suppresses esterification of phosphoric acid as much as possible by quickly stirring and mixing the required amount of phosphoric acid with an alcoholic solvent immediately before the metal particles are crushed to the desired particle size and coated. It is something.
上記被覆処理剤を長時間放置すると、燐酸エステル化が
進行し、これに伴って処理された金属微粉末の耐熱性は
低下する。If the coating treatment agent is left for a long time, phosphoric acid esterification progresses, and the heat resistance of the treated metal fine powder decreases accordingly.
金属粉末の用途が、室温から200℃位の範囲で使用さ
れる程度であれば、エステル化が進んだ被覆処理剤によ
って処理された金属微粉末でも、十分な耐酸化特性を示
す。しかし200℃以上の高温で樹脂と混練され、成形
されるプラスチックマグネットの用途のためには、強磁
性金属粉末は、前述の燐酸エステル化を避けた液で処理
されて無機燐酸金属化合物の薄膜で覆われたものを使用
しなければならない。If the metal powder is used at temperatures ranging from room temperature to about 200° C., even fine metal powder treated with a coating treatment agent that is highly esterified will exhibit sufficient oxidation resistance. However, for use in plastic magnets that are kneaded with resin and molded at high temperatures of 200°C or higher, ferromagnetic metal powder is treated with a liquid that avoids phosphoric acid esterification as described above to form a thin film of an inorganic phosphate metal compound. Must be used covered.
燐酸が金属微粉末に対して過剰であると、表面処理後の
乾燥工程中で、処理液中の残留燐酸とアルコール系溶剤
が反応してエステル化が進み、これが接着作用を持って
、金属微粉末層が固化したり、取扱い中の容器に強固に
付着して、機器、容器の清掃に困難を来たす。従って処
理される強磁性金属粉末の量と平均粒径に応じて投入す
べき燐酸量を厳密に規定し、更にこの燐酸を溶解すべき
アルコール溶剤の量も、燐酸を均一分散させるために必
要な最小限度に制限することが重要である。If phosphoric acid is in excess of the metal fine powder, the residual phosphoric acid in the treatment solution will react with the alcohol solvent during the drying process after surface treatment, resulting in esterification, which will have an adhesive effect and cause the metal fine powder to react. The powder layer solidifies or adheres firmly to containers being handled, making cleaning of equipment and containers difficult. Therefore, the amount of phosphoric acid to be added must be strictly defined according to the amount of ferromagnetic metal powder to be treated and the average particle size, and the amount of alcohol solvent to dissolve this phosphoric acid must also be determined according to the amount necessary to uniformly disperse the phosphoric acid. It is important to limit it to a minimum.
一般に燐酸は、金属粉末の平均粒径10ミクロン前後で
、強磁性金属粉末重量に対し、燐酸重量は04〜1.0
%(特に0.6〜08%)で最良の耐酸化膜が得られる
。In general, phosphoric acid has an average particle size of metal powder of around 10 microns, and the weight of phosphoric acid is 0.4 to 1.0 microns relative to the weight of ferromagnetic metal powder.
% (particularly 0.6 to 0.08%), the best oxidation-resistant film can be obtained.
これによって燐酸のエステル化に伴なうトラブルは回避
でき、乾燥上りではサラサラして極めて流動性が良い許
りでなく、単分子層に近い燐酸系金属化合物を金属微粉
末の表面に形成することに留めることが出来、磁気特性
を向上できる。This avoids the troubles associated with esterification of phosphoric acid, and instead of being dry and having extremely good fluidity, a phosphoric acid-based metal compound that is close to a monomolecular layer is formed on the surface of the fine metal powder. The magnetic properties can be improved.
次に上記の燐酸被覆処理された強磁性金属粉末を、イソ
シアネート化合物と接触させ、表面処理する。Next, the above-mentioned ferromagnetic metal powder coated with phosphoric acid is brought into contact with an isocyanate compound for surface treatment.
該イソシアネート化合物としては、
(1)RゎS i (NGO)、−7で示されるアル
キルまたはフエニルジリルトリイソシアネート(式中n
は1〜3の整数を示す。Rはアルキル基、ハロゲン置換
アルキル基、ビニル基、フェニル基を示す。)
(2) イソシアネート官能性シランカップリング剤
であって、次式の何れかで表わされるもの。The isocyanate compound includes (1) RゎS i (NGO), an alkyl or phenyldilyl triisocyanate represented by -7 (in the formula n
represents an integer from 1 to 3. R represents an alkyl group, a halogen-substituted alkyl group, a vinyl group, or a phenyl group. ) (2) An isocyanate-functional silane coupling agent represented by any of the following formulas.
(CHiO)is i −CH2CH2CH2−NCO
。(CHiO)is i -CH2CH2CH2-NCO
.
(CH2CH20)sS i CHt’CH*CHt
NGO。(CH2CH20)sS i CHt'CH*CHt
NGO.
(CHsO)icHss l CH2CH2CH
x−NCO。(CHsO)icHss l CH2CH2CH
x-NCO.
(CHICH5o)2CHsS i −CH2CH2
CH*−NCO。(CHICH5o)2CHsS i -CH2CH2
CH*-NCO.
上記の(1)及び(2)の群から選ばれた1種又は2種
以上の混合である。It is one kind or a mixture of two or more kinds selected from the above groups (1) and (2).
燐酸被覆処理された強磁性金属粉末の重量比100部に
対して、表面処理剤としてのイソシアネト化合物を0.
1〜2部を用いる。0.0 parts of an isocyanate compound as a surface treatment agent is added to 100 parts by weight of the ferromagnetic metal powder coated with phosphoric acid.
Use 1 to 2 parts.
イソシアネート化合物はその侭でも使用できるが、有機
溶剤を用いて希釈してもよい。有機溶剤は、ヘキサン、
n−ブタン、石油系炭化水素、トルエン、キシレン、1
.11トリクロロエタン、アセトン、ジオキシサン、ジ
グライム、酢酸エチル、酢酸ブチル、セルソルブ、アセ
テートなどが利用できる。The isocyanate compound can be used as such, but it may also be diluted with an organic solvent. The organic solvent is hexane,
n-butane, petroleum hydrocarbon, toluene, xylene, 1
.. 11 trichloroethane, acetone, dioxysan, diglyme, ethyl acetate, butyl acetate, cellosolve, acetate, etc. can be used.
安定性に稍劣るが、メタノール等のアルコール類も使用
できる。Alcohols such as methanol can also be used, although they are less stable.
処理方法は、万能混合機またはミキサーに予め上記した
燐酸被覆処理した強磁性金属粉末を投入し、2〜10r
pmの低速回転を続けながら、予め溶剤に溶いたイソシ
アネート化合物を添加し混合する。The treatment method is to put the above-mentioned ferromagnetic metal powder coated with phosphoric acid in advance into a universal mixer or mixer, and heat it for 2 to 10 r.
While continuing to rotate at a low speed of pm, an isocyanate compound previously dissolved in a solvent is added and mixed.
1時間程度低速混合した後、乾燥させる。その際真空ポ
ンプで強制排気しても可い。After mixing at low speed for about 1 hour, dry. In this case, it is possible to forcefully exhaust the air using a vacuum pump.
乾燥させた強磁性金属粉末は、合成樹脂、合成ゴム等の
樹脂材料に対し5〜96重量%を配合して、加熱、混練
される。The dried ferromagnetic metal powder is mixed with 5 to 96% by weight of a resin material such as synthetic resin or synthetic rubber, and then heated and kneaded.
混練した後、押出機によって押出して、射出成形用のベ
レットに成形し、或いは加熱ローラによってシート状の
半製品に成形する。又は混練押出機によって混練すると
共に所定形状に押出し成形する。成形方法は上記に限ら
ず、その他の成形方法を採用できることは勿論である。After kneading, the mixture is extruded using an extruder to form a pellet for injection molding, or a heated roller is used to form a sheet-like semi-finished product. Alternatively, the mixture is kneaded and extruded into a predetermined shape using a kneading extruder. It goes without saying that the molding method is not limited to the one described above, and other molding methods can be employed.
(比較実験例)
強磁性金属粉末の被覆処理と表面処理の有無及び各種表
面処理剤を用いた強磁性金属粉末配合の樹脂配合材料を
用いて射出成形を行なった比較例を以下に示す。(Comparative Experimental Example) A comparative example in which injection molding was performed using a resin compounded material containing ferromagnetic metal powder with or without coating treatment of ferromagnetic metal powder, surface treatment, and various surface treatment agents will be shown below.
原料粉末の製造手順
原子重量%でNd 12F e ysc O4Bsの組
成を有するNd系稀土類磁石合金原料粉末(ゼネラルモ
ータース社製rMQP−BJ平均粒径25μm)500
grを計量する。Raw material powder manufacturing procedure Nd-based rare earth magnet alloy raw material powder having a composition of Nd 12F e ysc O4Bs in atomic weight % (rMQP-BJ average particle size 25 μm manufactured by General Motors) 500
Weigh gr.
予め攪拌槽内に鋼球3Kgと粉砕助剤として有機溶剤n
−ヘキサン300grとトルエン100grの混合溶液
及び上記原料粉末を投入した上で攪拌槽を密閉する。In advance, 3 kg of steel balls and an organic solvent n as a grinding aid were placed in a stirring tank.
- After charging a mixed solution of 300 gr of hexane and 100 gr of toluene and the above raw material powder, the stirring tank is sealed.
N2ガス(純度99.9%以上)をガス供給管より流量
2//minで攪拌槽に注入し槽内の空気のパージを約
5分間行なう。N2 gas (purity 99.9% or higher) is injected into the stirring tank from the gas supply pipe at a flow rate of 2/min to purge the air in the tank for about 5 minutes.
N2ガス置換完了後、攪拌用モーターを始動し、回転数
205 rpmにて9分間湿式粉砕を行ない平均粒径1
1.7μmの微粉砕を得る。After the N2 gas replacement was completed, the stirring motor was started and wet pulverization was performed for 9 minutes at a rotation speed of 205 rpm until the average particle size was 1.
A fine grind of 1.7 μm is obtained.
この微粉砕以前に燐酸溶液の調整を行なう。即ちオルソ
燐酸4grを計量し、メタノール40grに溶解するた
めスターラーで約5分間攪拌して均一な燐酸アルコール
溶液を作製する。この表面処理液を処理液タンクに入れ
て、同じく処理液タンク内をN、置換を行なった上で、
上記の粉砕完了時に合せて、攪拌槽の注入バルブを開い
てN、圧(1,6Kg/ c+o”)をかけながら数秒
以内に注入を完了する。一方攪拌棒の回転は粉砕に引続
き同一回転数(205rpm)で回転して処理液を攪拌
分散させ、30秒後回転を停止し、被覆処理を完了する
。Before this fine pulverization, the phosphoric acid solution is adjusted. That is, 4g of orthophosphoric acid is weighed and dissolved in 40g of methanol and stirred for about 5 minutes using a stirrer to prepare a uniform phosphoric acid alcohol solution. Pour this surface treatment liquid into the treatment liquid tank, replace the inside of the treatment liquid tank with N, and then
When the above-mentioned pulverization is completed, the injection valve of the stirring tank is opened and the injection is completed within a few seconds while applying N and pressure (1.6Kg/c+o”).Meanwhile, the stirring rod continues to rotate at the same number of revolutions after pulverization. (205 rpm) to stir and disperse the treatment liquid, and after 30 seconds, the rotation is stopped to complete the coating treatment.
次ぎに開蓋し、蓋板及び撹拌棒を一緒に槽外に取出して
から被覆処理済み微粉末、鋼球及び液体全部を、ステン
レス金網を取り付けた受は容器に投入し、先ず鋼球を金
網ごと取り除いてから、受容器中に沈澱した微粉末を乾
燥用バットに移し、上澄液を除去した後、排気ファン付
乾燥器に装入、50〜70℃で約3時間加熱乾燥すると
、黒紫色を呈するNd系稀土類磁石合金微粉末が得られ
る。Next, open the lid, take out the lid plate and stirring rod together, and then put the coated fine powder, steel balls, and liquid into a container with a stainless steel wire mesh attached. After removing all the particles, the fine powder precipitated in the receiver was transferred to a drying vat, and after removing the supernatant liquid, it was placed in a dryer equipped with an exhaust fan and dried by heating at 50 to 70°C for about 3 hours. A fine Nd-based rare earth magnet alloy powder exhibiting a purple color is obtained.
比較例2〜4の製造手順
1)表−1の配合処方に従って燐酸被覆処理をしていな
い原料の強磁性金属粉末250gを電子天秤で精秤する
。Manufacturing procedure for Comparative Examples 2 to 4 1) Accurately weigh 250 g of raw material ferromagnetic metal powder that has not been coated with phosphoric acid according to the formulation shown in Table 1 using an electronic balance.
2) この原料粉末250g (100部)に対して、
2g (0,8部)の表面処理剤を、予めビーカーに用
意してあった溶剤と一緒にスターラーで3 min混合
する。溶剤は使用する表面処理剤によって下表の通り使
い分ける。2) For 250g (100 parts) of this raw material powder,
2 g (0.8 parts) of the surface treatment agent are mixed with the solvent previously prepared in a beaker using a stirrer for 3 minutes. The solvent to be used depends on the surface treatment agent used, as shown in the table below.
溶剤と混合したカップリング剤を乳鉢の中で原料と良く
混ぜる(約3 m1n)。Mix the coupling agent mixed with the solvent with the raw materials in a mortar (approximately 3 ml).
または、処理する量が3Kg以上の場合は万能混合機(
受玉社製ACM5L)を利用する。Or, if the amount to be processed is 3 kg or more, use a universal mixer (
ACM5L manufactured by Ukedamasha is used.
3)2)でカップリング処理された原料をバットに拡げ
てチッソ■製S−320処理の場合100℃で、それ以
外のカップリング剤は約70℃で1時間程度オーブン乾
燥させる。または万能混合機を使って同上の温度設定で
加熱真空乾燥させる。3) The raw materials subjected to the coupling treatment in 2) are spread in a vat and dried in an oven at 100°C for the S-320 treatment made by Chisso Corporation, and at about 70°C for the other coupling agents for about 1 hour. Alternatively, use a multipurpose mixer to heat and vacuum dry at the same temperature settings.
4)3)で乾燥されたカップリング処理済み原料を再び
乳鉢或は万能混合機でナイロン12(宇部興産■製P3
014U)等の樹脂バインダーとよく混ぜる(約5 m
1n)。4) The coupling-treated raw materials dried in step 3) are mixed with nylon 12 (P3 manufactured by Ube Industries Ltd.) again in a mortar or all-purpose mixer.
Mix well with a resin binder such as 014U (approximately 5 m
1n).
5)4)で混合された混合粉を250g精秤し、東洋精
機製ラボプラストミルにより250℃設定で約5 wi
n混練する。できたモチ状のコンパウンドを、カッター
で直径2〜3mmのペレット状にする。5) Precisely weigh 250g of the mixed powder mixed in 4), and use a Toyo Seiki Laboplastomill at a setting of 250°C for approximately 5 wi
knead. The resulting sticky compound is made into pellets with a diameter of 2 to 3 mm using a cutter.
6)上記5)までの作業を4回繰返し、計IKgのコン
パウンド・ペレットをつくる。6) Repeat the steps up to 5) above 4 times to make compound pellets with a total weight of IKg.
7)出来たペレットを射出成形機(関東精機工業製)で
φ10x7 (丸) 、10xlOx7 (角) 、7
5x13x3(板)の3種類のテストピースを作り、各
種物性測定用の試料とした。7) Use an injection molding machine (manufactured by Kanto Seiki Kogyo) to mold the pellets into φ10x7 (round), 10xlOx7 (square), 7
Three types of test pieces of 5x13x3 (plates) were made and used as samples for measuring various physical properties.
比較例5及び7
1)表−1の配合処方に従って燐酸被覆処理済み粉末2
50gを電子天秤で精秤する。Comparative Examples 5 and 7 1) Phosphoric acid coated powder 2 according to the formulation in Table 1
Accurately weigh 50g using an electronic balance.
2)この粉末250g (100部)に対して2g(0
,8部)の表面処理剤を比較例2〜4で述べたのと同様
な条件でカップリング処理し、ナイロンを混合して混練
しナイロン樹脂複合材料組成物を製造した。2) For 250g (100 parts) of this powder, add 2g (0
, 8 parts) of the surface treatment agent were subjected to coupling treatment under the same conditions as described in Comparative Examples 2 to 4, and nylon was mixed and kneaded to produce a nylon resin composite material composition.
比較例6
表面処理剤として(Si−310+MBS−88)の2
種類の混合液を使用する。これ以外は比較例2〜4で述
べたと同じ条件でカップリング処理し、ナイロンを混合
して混練しナイロン樹脂複合材料組成物を製造した。Comparative Example 6 (Si-310+MBS-88) 2 as a surface treatment agent
Use a mixture of different types. Other than this, the coupling treatment was performed under the same conditions as described in Comparative Examples 2 to 4, and nylon was mixed and kneaded to produce a nylon resin composite material composition.
本発明8.10
1)表−1の配合処方に従って燐酸被覆処理済み粉末2
50gを電子天秤で精秤する。Invention 8.10 1) Phosphoric acid coated powder 2 according to the formulation in Table 1
Accurately weigh 50g using an electronic balance.
2)使用するカップリング剤はr 5i−310部松本
製薬■製である。これ以外は比較例2〜4で述べたのと
同様な条件でカップリング処理し、ナイロンを混合して
混練し、ナイロン樹脂複合材料組成物を製造した。2) The coupling agent used is r5i-310 parts manufactured by Matsumoto Pharmaceutical Co., Ltd. Other than this, the coupling treatment was performed under the same conditions as described in Comparative Examples 2 to 4, and nylon was mixed and kneaded to produce a nylon resin composite material composition.
3)本発明10は強磁性原料粉末がSm−Co系の異方
性磁石用であるため射出成形は90000eの配向磁場
中で行い、異方性磁石として製造した。3) In Invention 10, since the ferromagnetic raw material powder was used for an Sm-Co-based anisotropic magnet, injection molding was performed in an orientation magnetic field of 90,000e to produce an anisotropic magnet.
比較例9
1)Sm−Co系原料粉末に、燐酸被覆処理及び表面処
理を一切行わずに、ナイロン12と原料粉末を乳鉢或は
万能混合機でよく混ぜた後(約5m1n)、比較例2〜
4で述べたと同じ条件で混練し、ナイロン樹脂複合材料
組成物を製造した。Comparative Example 9 1) After thoroughly mixing nylon 12 and raw material powder in a mortar or universal mixer (approximately 5 ml) without performing any phosphoric acid coating or surface treatment on Sm-Co raw material powder, Comparative Example 2 ~
The mixture was kneaded under the same conditions as described in Section 4 to produce a nylon resin composite material composition.
2)その後、本発明10で述べたと同じ条件で成形し、
異方性磁石とした。2) Thereafter, molding is performed under the same conditions as described in Invention 10,
It was made into an anisotropic magnet.
(以下余白)
本発明に係る樹脂複合材料の成形方法は、上記方法によ
り混練されたペレット(以下コンパウンドと呼ぶ)を、
下記の射出成形機により溶融せしめて射出成形した。直
径10mm、長さ7mmの円柱状のテストピースは耐食
性の評価に、10X10X7の角テストピースは磁気特
性測定用に、また5x13x3板のテストピースは曲げ
強さ、曲げ弾性率、IZOD衝撃強度測定用テストピー
スとした。(Hereinafter, blank space) The method for molding a resin composite material according to the present invention involves mixing pellets (hereinafter referred to as a compound) kneaded by the above method,
It was melted and injection molded using the following injection molding machine. A cylindrical test piece with a diameter of 10 mm and a length of 7 mm is used to evaluate corrosion resistance, a 10 x 10 x 7 square test piece is used to measure magnetic properties, and a 5 x 13 x 3 plate test piece is used to measure bending strength, flexural modulus, and IZOD impact strength. It was used as a test piece.
熱安定性の評価には東洋精機製作所(製)のラボブラス
トミル50C150型機を用いた。試験条件は該物質を
50 cm” (重量250 g)計量し、予め280
℃に加熱しであるラボブラストミルの試験チャンバーに
投入する。R−60型ブレードを用い280℃の加熱下
20分間50rpmの回転数で、溶融物のトルク値の変
化を測定した。本測定ではトルク値が高い程、溶融物の
粘度は高く、流動性が悪くなる事を示している。For the evaluation of thermal stability, a Labo Blast Mill 50C150 manufactured by Toyo Seiki Seisakusho (manufactured by Toyo Seiki Seisakusho) was used. The test conditions were as follows: 50 cm" (weight: 250 g) of the substance was weighed,
Heat it to ℃ and place it in the test chamber of a laboratory blast mill. Changes in the torque value of the melt were measured using an R-60 blade at a rotation speed of 50 rpm for 20 minutes under heating at 280°C. This measurement shows that the higher the torque value, the higher the viscosity of the melt and the worse the fluidity.
混線条件:東洋精機製のラボブラストミル50C150
型機(容量+60cm”)を
使用して、250 g/lバッチとし
て計I Kgのコンパウンドを製造。Interference conditions: Toyo Seiki Lab Blast Mill 50C150
A total of I Kg of compound was produced in 250 g/l batches using a mold machine (capacity +60 cm”).
設定温度 250℃、混線時間5 min、出来上った
餅状の塊をベレット状(粒径
5mm以下)に小さくして、成形用サ
ンプルとした。At a set temperature of 250° C. and a crosstalk time of 5 min, the resulting rice cake-like lump was reduced to a pellet shape (particle size of 5 mm or less) and used as a molding sample.
成形条件 1)成形機:関東精機工業製型締力30to
n KS−3OA
射出量45 cm’
2)成形温度:260℃−310℃
3)射出圧カニ 1200 Kgf/cm”4)成形サ
イクル:30sec
5)配向磁場:9000 0e
磁気特性測定条件
1) 日本電磁側型製
2) B−Hカーブ・トレーサー モデル5501
3)測定印加磁場: 250000e (7mmギャッ
プ)
(以下余白)
また、本発明の実施に該当する試料8及び10では塩水
浸漬試験でも優れた耐食性を示している。Molding conditions 1) Molding machine: Kanto Seiki Kogyo mold clamping force 30to
n KS-3OA Injection amount 45 cm' 2) Molding temperature: 260℃-310℃ 3) Injection pressure 1200 Kgf/cm'' 4) Molding cycle: 30sec 5) Orienting magnetic field: 9000 0e Magnetic property measurement conditions 1) Nippon Dengen 2) B-H Curve Tracer Model 5501 manufactured by Side Mold 3) Measurement applied magnetic field: 250000e (7mm gap) (blank below) In addition, Samples 8 and 10, which correspond to the practice of the present invention, showed excellent corrosion resistance in the salt water immersion test. It shows.
これは270℃での流動率(メルトフロー値)からも分
かるとおり、ナイロン樹脂と金属粉末との相溶性が非常
に良好であることから、金属表面が樹脂で良く覆われて
いるため樹脂がバリヤーとなって耐食性を向上させてい
るものと考えられ、従って本発明の効果は顕著である。This is because the compatibility between the nylon resin and the metal powder is very good, as can be seen from the fluidity rate (melt flow value) at 270°C, and the metal surface is well covered with the resin, so the resin acts as a barrier. This is thought to improve corrosion resistance, and therefore the effects of the present invention are significant.
第1図及び第2図は、溶融状態の試料1〜10を混練し
たときのトルクの経時変化を示すグラフである。
発明の効果
耐食性において、Hは時間、Oは良好、△は稍腐蝕が見
られた。×は不可を表わす。また、熱安定性においてト
ルクの上昇が無く、安定している場合は「−」で示した
。
以上の試験結果から明らかなとおり、本発明の実施に該
当する試料8及び10は、成形温度280℃成形可能で
あり、270℃での流動率(メルトフロー値)は他の試
料と較べて著しく改善されていることが判る。
また、第1図及び第2図で示した如く、本発明の実施に
該当する試料8及び10の溶融時のトルク変化は、20
分経時してもトルク上昇、即ち粘度上昇傾向を示してい
ない。即ち本発明の試料8及び1o以外の比較例は、外
部より熱エネルギー及びR60型ブレードによるせん断
力が負荷された状態が続くとトルクが上昇し、即ち粘度
上昇を生じ、流動性を失っていくから、熱安定性が劣る
ことが明らかである。尚、試料5は、試料4と6の曲線
の中間に位置するが、グラフを省略した。
時間(分)→
時間(分)−FIGS. 1 and 2 are graphs showing changes in torque over time when samples 1 to 10 in a molten state were kneaded. Effects of the Invention Regarding corrosion resistance, H indicates time, O indicates good, and Δ indicates slight corrosion. × indicates not possible. In addition, when there is no increase in torque and the thermal stability is stable, it is indicated by "-". As is clear from the above test results, Samples 8 and 10, which correspond to the implementation of the present invention, can be molded at a molding temperature of 280°C, and the fluidity (melt flow value) at 270°C is significantly higher than that of other samples. It can be seen that it has been improved. Further, as shown in FIGS. 1 and 2, the torque change during melting of Samples 8 and 10 corresponding to the implementation of the present invention was 20
No increase in torque, that is, no tendency for increase in viscosity was observed even after minutes passed. That is, in the comparative examples other than Samples 8 and 1o of the present invention, when the external thermal energy and the shearing force by the R60 type blade continue to be applied, the torque increases, that is, the viscosity increases, and the fluidity is lost. It is clear that the thermal stability is poor. Although Sample 5 is located between the curves of Samples 4 and 6, the graph is omitted. Time (minutes) → Time (minutes) −
Claims (2)
って表面が一様に覆われ且つイソシアネート系化合物に
よって表面処理された強磁性金属粉末を樹脂に配合した
ことを特徴とする樹脂複合材料。(1) A resin composite material characterized in that a ferromagnetic metal powder whose surface is uniformly covered with a thin film of an inorganic phosphate metal compound containing no organic groups and whose surface is treated with an isocyanate compound is blended into a resin.
面を覆った強磁性金属粉末にイソシアネート系化合物を
混合して表面処理し、該表面処理強磁性金属粉末を樹脂
に配合して加熱混練し、成形することを特徴とする強磁
性金属粉末を配合した樹脂複合材料の製法。(2) ferromagnetic metal powder whose surface is covered with an inorganic phosphate metal compound that does not contain organic groups is mixed with an isocyanate compound for surface treatment, and the surface-treated ferromagnetic metal powder is blended with a resin and kneaded by heating; A method for producing a resin composite material containing ferromagnetic metal powder that can be molded.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13667590A JPH0617015B2 (en) | 1990-05-24 | 1990-05-24 | Resin composite material containing ferromagnetic metal powder and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13667590A JPH0617015B2 (en) | 1990-05-24 | 1990-05-24 | Resin composite material containing ferromagnetic metal powder and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0462007A true JPH0462007A (en) | 1992-02-27 |
JPH0617015B2 JPH0617015B2 (en) | 1994-03-09 |
Family
ID=15180848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13667590A Expired - Fee Related JPH0617015B2 (en) | 1990-05-24 | 1990-05-24 | Resin composite material containing ferromagnetic metal powder and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0617015B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0532753A1 (en) * | 1991-04-03 | 1993-03-24 | Asahi Kasei Metals Limited | Composite metallic powder composition and production thereof |
JPWO2019088148A1 (en) * | 2017-11-01 | 2020-11-19 | 富士フイルム株式会社 | Resin composition for acoustic matching layer, cured product, acoustic matching sheet, acoustic wave probe, acoustic wave measuring device, manufacturing method of acoustic wave probe, and material set for acoustic matching layer |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5267800B2 (en) | 2009-02-27 | 2013-08-21 | ミネベア株式会社 | Self-repairing rare earth-iron magnet |
JP5344171B2 (en) | 2009-09-29 | 2013-11-20 | ミネベア株式会社 | Anisotropic rare earth-iron resin magnet |
-
1990
- 1990-05-24 JP JP13667590A patent/JPH0617015B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0532753A1 (en) * | 1991-04-03 | 1993-03-24 | Asahi Kasei Metals Limited | Composite metallic powder composition and production thereof |
EP0532753A4 (en) * | 1991-04-03 | 1995-12-20 | Asahi Chemical Metals | Composite metallic powder composition and production thereof |
JPWO2019088148A1 (en) * | 2017-11-01 | 2020-11-19 | 富士フイルム株式会社 | Resin composition for acoustic matching layer, cured product, acoustic matching sheet, acoustic wave probe, acoustic wave measuring device, manufacturing method of acoustic wave probe, and material set for acoustic matching layer |
EP3706436A4 (en) * | 2017-11-01 | 2020-12-30 | FUJIFILM Corporation | Resin composition for acoustic matching layer, hardened product, acoustic matching sheet, acoustic wave probe, acoustic wave measurement device, acoustic wave probe production method, and set of materials for acoustic matching layer |
Also Published As
Publication number | Publication date |
---|---|
JPH0617015B2 (en) | 1994-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1299299C (en) | Corrosion-resistant rare earth element magnet | |
EP3054460A1 (en) | Process for producing r-t-b-based rare earth magnet powder, r-t-b-based rare earth magnet powder, and bonded magnet | |
EP0111331B1 (en) | Plastic magnets impregnated with a dye-coated metallic magnet powder | |
JP2022109276A (en) | Manufacturing method of magnetic powder | |
JPH0462007A (en) | Resin composite material blended with ferromagnetic metallic powder and manufacture thereof | |
JP7335515B2 (en) | Manufacturing method of compound for bonded magnet | |
EP3174073B1 (en) | Composition for bonded magnets, bonded magnet and integrally molded component | |
US11710586B2 (en) | Magnetic powder | |
CN108335818B (en) | Anisotropic bonding permanent magnet material and manufacturing method thereof | |
JP2001200169A (en) | Resin composite material compounded with ferromagnetic metal powder | |
JPS60240105A (en) | Plastic magnet composition | |
WO2003041093A1 (en) | Rare-earth permanent magnet having corrosion-resistant coating, process for producing the same, and treating liquid for forming corrosion-resistant coating | |
EP0298764B1 (en) | Magnetic polymer compositions | |
JPH0334642B2 (en) | ||
JP2602979B2 (en) | Production method of heat-resistant metal fine powder | |
JP2000260616A (en) | Ferromagnetic fine powder for plastic magnet and resin composite material | |
JPH043651B2 (en) | ||
JPS6044806B2 (en) | Method for producing a composition for permanent magnets | |
JPH03108301A (en) | Manufacture of composite magnetic material | |
JPH03288405A (en) | Bonded-magnet raw material and manufacture thereof | |
JP2024051932A (en) | MANUFACTURING METHOD FOR PHOSPHATE-COATED SmFeN-BASED ANISOTROPIC MAGNETIC POWDER | |
JP2002145649A (en) | Method for producing hardenable inorganic composition | |
JPS63225618A (en) | Sealing resin composition and its production | |
JPS6013826A (en) | Plastic magnet composition | |
JPH08191007A (en) | Rare earth bond magnet and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090309 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090309 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100309 Year of fee payment: 16 |
|
LAPS | Cancellation because of no payment of annual fees |