JPH0461892B2 - - Google Patents

Info

Publication number
JPH0461892B2
JPH0461892B2 JP25129184A JP25129184A JPH0461892B2 JP H0461892 B2 JPH0461892 B2 JP H0461892B2 JP 25129184 A JP25129184 A JP 25129184A JP 25129184 A JP25129184 A JP 25129184A JP H0461892 B2 JPH0461892 B2 JP H0461892B2
Authority
JP
Japan
Prior art keywords
light
cellulose
transmittance
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25129184A
Other languages
Japanese (ja)
Other versions
JPS61130346A (en
Inventor
Takayuki Kuroda
Shigeyuki Takahashi
Kaoru Yamaki
Hajime Namikoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP59251291A priority Critical patent/JPS61130346A/en
Publication of JPS61130346A publication Critical patent/JPS61130346A/en
Publication of JPH0461892B2 publication Critical patent/JPH0461892B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/48Protective coatings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は遠紫外領域の光線に対する透過率及び
耐久性にすぐれた樹脂薄膜に関し、集積回路製造
用の焼付露光装置における防塵用に使用する樹脂
薄膜に関するものである。 〔従来の技術〕 集積回路の製造に使用する焼付露光装置におい
て、フオトマスクの画像面にゴミが付着すると、
ゴミの像もまたレジスト面上に投影され、欠陥情
報を焼付けることになる。この対策として、フオ
トマスクの画像面側の光路中に樹脂薄膜を挿入し
て、ゴミの付着から、フオトマスクを保護する方
法が考えられている。この場合ゴミはフオトマス
ク画像面上に付着するかわりに、樹脂薄膜の表面
に付着するが、フオトマスク画像面と樹脂薄膜の
間に一定の間隔をおくことにより、ゴミの像は、
レジスト面上に結像しないようになる。即ち、ア
ウトフオーカシングすることができる(特公昭54
−28716、特開昭58−196501、特開昭58−
219023)。 この目的に使用する樹脂薄膜は、露光に使用す
る光線に対する透過率が高いことが必要である。
また厚みは、10μm以下であり、且つ全域にわた
つて、均一な厚みであること、充分な自己持性の
あることなども必要な条件である。 樹脂薄膜の光線透過率に関しては、この値が低
いと、レジスト面に到達するエネルギーが低くな
り損失となる。薄膜の光線透過率を低下させる原
因としては3つ考えられる。 薄膜材料による光の吸収 透過光の干渉 膜面での反射 の問題は材料自身の光化学的特性に基因する
もので材料の撰択が本発明の要旨でもある。
は、膜表面が平滑であり、且つ膜表面が光路に対
し垂直に置かれることによりその影響は最小にな
る。に関しては、薄膜に対して垂直に入射する
光のうち、大部分の光は薄膜を直進透過する(主
光線)のに対し、一部の光は樹脂/空気界面で2
回反射して直進する。このとき2回反射光は、主
光線に対し膜厚の2倍だけの光路差を生じ、互に
干渉する。即ち、互いに強め合う波長域と、弱め
合う波長域が交互に出現する。通常、この干渉が
光線透過率に与える影響は干渉による振幅の中心
値に対してほぼ±8%以内であり、可視光線に透
明且つ、厚みむらが非常に小さい膜においては可
視〜近紫外領域においてその干渉の大きさはほぼ
一定である。従つて分光光度計で得られる透過率
曲線の干渉による振幅の略中心値を以て光線透過
率と表示して実用上差支えない。従つて、本発明
において、特定の波長に対する薄膜の光線透過率
とは、その干渉振幅の中心値を以てその波長光の
透過率を云うものと規定する。 〔発明が解決しようとする問題点〕 従来焼付露光装置に使用する樹脂薄膜は、近紫
外領域の光線に対し、透過率のよいものが使用さ
れて来た。 特公昭54−28716には、ポリオキシエチレンテ
レフタレート、硝酸セルロース、パリレンを適当
な材料として記述している。また、特開昭58−
219023には、硝酸セルロースのほか、酢酸セルロ
ース、プロピオン酸セルロース、酪酸酢酸セルロ
ースなどのセルロースエステル類が用い得ると記
載している。従来の可視〜近紫外光から、より短
波長の遠紫外光へと光源が変更された場合、レジ
スト層の感光性もそれに応じたものとする必要が
あるが、元来、短波長側の光はエネルギーが大き
いので、レジスト層の対応は比較的容易である。
しかしながら防塵用薄膜については、二重の問題
が生じて来る。 第一は、一般に可視光線には透明な材料であつ
ても、紫外光領域には、吸収があり、薄膜を透過
することによつて、露光エネルギーの損失があ
る。第二に薄膜材料の紫外光吸収は、薄膜材料自
身の劣化を招来する。従来公知のボリエステル、
パリレンは紫外光の透過率が低く、ニトロセルロ
ースは前二者に比べると透過率はよいが、照射に
よる品質劣化が速く、繰返し使用による寿命が極
めて短い。 本発明はこれらの問題点を解決し、遠紫外光を
光源とする焼付露光装置にも対応しうる防塵用薄
膜を提供しようとするものである。 〔問題点を解決するための手段〕 発明者らは、流延法による製膜が可能であり、
且つ透明性の良い樹脂材料を用いて薄膜に成形
し、200nmまでの遠紫外領域を含む分光光線に対
する透過率を測定した。また遠紫外光を光源とし
て露光試験を行い、外観、赤外吸収スペクトル、
光線透過率などの変化をしらべた。使用した露光
光源は低圧水銀灯の254nm光である。その結果、
G線付近の光に対しては、90%以上の透過率を示
す薄膜であつて、254nm付近の光に80%以上の透
過率を示すものとして、酢酸セルロース、プロピ
オン酸セルロース、酪酸酢酸セルロース、エチル
セルロース、シアノエチルセルロースなどが得ら
れた。しかし、254nm光の曝露に対する耐久性
は、シアノエチルセルロースが最も優れていた。
紫外線透過率はシアノエチルセルロースよりも酢
酸セルロースなどのセルロースエステルの方が優
れているにもかかわらず、耐久性がやや低いの
は、露光によつて生じる光化学的分解反応の量子
収率が、セルロースエステルにおいて、より大き
いためと考えられる。 本発明はかかる知見に基いてなされたものであ
つて、0.5〜10μmの範囲内で一定の厚みを有し、
350〜500nmの範囲の光線透過率が88%以上であ
り且つ250〜350nmの光線透過率が80%以上であ
るシアノエチルセルロース誘導体からなる樹脂薄
膜を提供するものである。 本発明に用いるシアノエチルセルロース誘導体
とは、重合度50〜1500、合計置換度2.0−3.0のセ
ルロースエーテルあるいはセルロースエステルエ
ーテルであつて、置換基としてはシアノエチル基
(−CH2CH2CN)のみでもよいが、これに加えて
置換度1.0以下のCoH2o+1(n=1〜5)で表わさ
れるアルキル基、置換度1.0以下の
[Industrial Field of Application] The present invention relates to a resin thin film with excellent transmittance and durability for light in the deep ultraviolet region, and more particularly, to a resin thin film used for dust prevention in a printing exposure apparatus for manufacturing integrated circuits. [Prior Art] When dust adheres to the image surface of a photomask in a printing exposure device used for manufacturing integrated circuits,
An image of the dust is also projected onto the resist surface, imprinting defect information. As a countermeasure to this problem, a method has been considered in which a thin resin film is inserted into the optical path on the image side of the photomask to protect the photomask from the adhesion of dust. In this case, the dust adheres to the surface of the resin thin film instead of the photomask image surface, but by leaving a certain distance between the photomask image surface and the resin thin film, the dust image can be
No image is formed on the resist surface. In other words, it is possible to outfocus
-28716, JP-A-1965-196501, JP-A-58-
219023). The resin thin film used for this purpose needs to have high transmittance to the light beam used for exposure.
Further, the thickness must be 10 μm or less, be uniform over the entire area, and have sufficient self-sustainability. Regarding the light transmittance of the resin thin film, if this value is low, the energy reaching the resist surface will be low, resulting in loss. There are three possible causes for reducing the light transmittance of the thin film. The problems of absorption of light by thin film materials, interference of transmitted light, and reflection on the film surface are caused by the photochemical properties of the materials themselves, and the selection of materials is also the gist of the present invention.
The effect is minimized by having a smooth film surface and placing the film surface perpendicular to the optical path. Regarding light incident perpendicularly to the thin film, most of the light passes straight through the thin film (principal ray), while some light passes through the thin film at the resin/air interface.
Reflect twice and go straight. At this time, the twice reflected light causes an optical path difference of twice the film thickness with respect to the principal ray, and interferes with each other. That is, wavelength ranges that strengthen each other and wavelength ranges that weaken each other alternately appear. Normally, the influence that this interference has on light transmittance is approximately within ±8% of the center value of the amplitude due to interference, and for films that are transparent to visible light and have very small thickness unevenness, in the visible to near ultraviolet region. The magnitude of the interference is approximately constant. Therefore, it is practically acceptable to indicate the light transmittance by approximately the center value of the amplitude due to interference of the transmittance curve obtained by a spectrophotometer. Therefore, in the present invention, the light transmittance of a thin film for a specific wavelength is defined as the transmittance of light of that wavelength using the center value of the interference amplitude. [Problems to be Solved by the Invention] Conventionally, resin thin films used in printing exposure apparatuses have been used that have good transmittance to light in the near-ultraviolet region. Japanese Patent Publication No. 54-28716 describes polyoxyethylene terephthalate, cellulose nitrate, and parylene as suitable materials. Also, JP-A-58-
219023 states that in addition to cellulose nitrate, cellulose esters such as cellulose acetate, cellulose propionate, and cellulose acetate butyrate can be used. When the light source is changed from conventional visible to near-ultraviolet light to far-ultraviolet light with a shorter wavelength, the photosensitivity of the resist layer needs to be adjusted accordingly. Since the energy is large, it is relatively easy to deal with the resist layer.
However, a two-fold problem arises with dustproof thin films. First, even if a material is generally transparent to visible light, it absorbs light in the ultraviolet region, and there is a loss of exposure energy due to transmission through a thin film. Second, absorption of ultraviolet light by thin film materials causes deterioration of the thin film materials themselves. Conventionally known polyester,
Parylene has a low transmittance for ultraviolet light, and nitrocellulose has a better transmittance than the former two, but its quality deteriorates quickly due to irradiation and its lifespan is extremely short after repeated use. The present invention aims to solve these problems and provide a dustproof thin film that can be used in printing exposure apparatuses that use deep ultraviolet light as a light source. [Means for solving the problem] The inventors have discovered that it is possible to form a film by a casting method,
A thin film was formed using a highly transparent resin material, and the transmittance to spectral light including the far ultraviolet region up to 200 nm was measured. We also conducted an exposure test using far ultraviolet light as a light source to determine the appearance, infrared absorption spectrum,
Changes in light transmittance, etc. were investigated. The exposure light source used was 254 nm light from a low-pressure mercury lamp. the result,
Cellulose acetate, cellulose propionate, cellulose acetate butyrate, cellulose acetate, cellulose propionate, cellulose acetate butyrate, etc. are thin films that exhibit a transmittance of 90% or more for light near the G line and 80% or more for light around 254 nm. Ethylcellulose, cyanoethylcellulose, etc. were obtained. However, cyanoethylcellulose had the best durability against exposure to 254 nm light.
Although cellulose esters such as cellulose acetate have better ultraviolet transmittance than cyanoethylcellulose, their durability is slightly lower than that of cellulose esters because the quantum yield of the photochemical decomposition reaction that occurs upon exposure to light is lower than that of cellulose esters. It is thought that this is because it is larger in . The present invention was made based on this knowledge, and has a constant thickness within the range of 0.5 to 10 μm,
The present invention provides a resin thin film made of a cyanoethyl cellulose derivative having a light transmittance of 88% or more in the range of 350 to 500 nm and a light transmittance of 80% or more in the range of 250 to 350 nm. The cyanoethyl cellulose derivative used in the present invention is a cellulose ether or cellulose ester ether with a degree of polymerization of 50 to 1500 and a total degree of substitution of 2.0 to 3.0, and may only have a cyanoethyl group (-CH 2 CH 2 CN) as a substituent. However, in addition to this, an alkyl group represented by C o H 2o+1 (n = 1 to 5) with a degree of substitution of 1.0 or less, a substitution degree of 1.0 or less

【式】(n=1〜10)で表わされるアシ ル基、置換度1.0以下のHOCoH2o−(n=1〜4)
で表わされるヒドロキシアルキル基、置換度1.0
以下の
[Formula] Acyl group represented by (n = 1 to 10), HOC o H 2o - (n = 1 to 4) with a degree of substitution of 1.0 or less
Hydroxyalkyl group represented by, degree of substitution 1.0
below

〔実施例〕〔Example〕

以下に実施例をあげて本発明を具体的に説明す
るが、本発明はこれらの実施例に限定されるもの
ではない。 実施例 シアノエチルセルロース(置換度2.5、重合度
250)7g、シクロヘキサノン50g、アセトン50gか
らなるシアノエチルセルロース溶液をクリアラン
ス50μmのバーコーターを用いて平滑なガラス板
上に塗布し、24時間室温(23℃)に放置乾燥し、
更に50℃で90分乾燥した。 乾燥フイルム化したシアノエチルセルロースを
ガラス板ごと静かに清浄な水中に浸漬した。しば
らく放置するとシアノエチルセルロースが自然に
剥離するのでこれを回収した。室温で乾燥し、厚
さ約3μmのフイルムを得た。得られたフイルムを
適当な枠で支持し、190nm〜700nmの分光光線透
過率及び赤外吸収スペクトルを測定した。更に同
じフイルムを低圧水銀灯(254nm光、照度
1.8mW/cm2)で連続照射し;100W・秒/cm2
250W・秒/cm2及び400W・秒/cm2の経時変化を調
べた。通常の焼付露光装置の1シヨツトは
50nmW/cm2×1秒程度であるので104シヨツトは
500W・秒/cm2の露光に相当する。 比較例 実施例のシアノエチルセルロースに代えて下記
の樹脂材料を同様に製膜した。材料と製膜条件を
以下に示す。 エチルセルロース(ダウケミカル製STD10)
10g/トルエン20g、キシレン30g、ブタノール
30g、エタノール20g 酪酸酢酸セルロース(イーストマンコダツク製
#381)10g/シクロヘキサノン50g、酢酸ブチル
50g プロピオン酸セルロース(イーストマンコダツ
ク製#482−20)10g/シクロヘキサノン50g、酢
酸ブチル50g 酢酸セルロース(ダイセル化学製L−20)
10g/シクロヘキサノン100g 硝酸セルロース(ダイセル化学製RS−7、イ
ソプロパノール30%含有湿綿)14.3g/シクロヘ
キサノン43g、酢酸ブチル43g 実施例と同様に分光光線透過率、赤外吸収スペ
クトル、低圧水銀灯照射による経時変化を測定し
た。 これらの結果を第1表にまとめて示す。
The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these Examples. Example Cyanoethyl cellulose (degree of substitution 2.5, degree of polymerization
250) A cyanoethyl cellulose solution consisting of 7 g, cyclohexanone 50 g, and acetone 50 g was applied onto a smooth glass plate using a bar coater with a clearance of 50 μm, and left to dry at room temperature (23 °C) for 24 hours.
It was further dried at 50°C for 90 minutes. The dried film of cyanoethylcellulose was gently immersed together with the glass plate in clean water. When left for a while, the cyanoethylcellulose naturally peeled off, so it was collected. It was dried at room temperature to obtain a film with a thickness of about 3 μm. The obtained film was supported with an appropriate frame, and the spectral light transmittance and infrared absorption spectrum from 190 nm to 700 nm were measured. Furthermore, the same film was exposed to a low pressure mercury lamp (254nm light, illuminance
Continuous irradiation at 1.8mW/cm 2 ); 100W・sec/cm 2 ,
Changes over time at 250 W·sec/cm 2 and 400 W·sec/cm 2 were investigated. One shot of a normal printing exposure device is
Since it is about 50nmW/cm 2 × 1 second, 10 4 shots are
Equivalent to an exposure of 500W・sec/ cm2 . Comparative Example In place of the cyanoethyl cellulose used in Examples, the following resin materials were used to form films in the same manner. The materials and film forming conditions are shown below. Ethyl cellulose (STD10 manufactured by Dow Chemical)
10g/toluene 20g, xylene 30g, butanol
30g, ethanol 20g, cellulose acetate butyrate (#381 made by Eastman Kodak) 10g/cyclohexanone 50g, butyl acetate
50g cellulose propionate (#482-20 manufactured by Eastman Kodak) 10g / cyclohexanone 50g, butyl acetate 50g cellulose acetate (L-20 manufactured by Daicel Chemical)
10g/cyclohexanone 100g Cellulose nitrate (Daicel Chemical RS-7, wet cotton containing 30% isopropanol) 14.3g/cyclohexanone 43g, butyl acetate 43g Spectral light transmittance, infrared absorption spectrum, time course by low pressure mercury lamp irradiation as in the example Changes were measured. These results are summarized in Table 1.

【表】 硝酸セルロースを例にとつて説明すると以下の
ようである。 硝酸セルロースは、G.H.I線混合光を用いた照
射に対しては500W・秒の照射によつても外観、
赤外吸収スペクトルとも変化なく、近紫外光を光
源とする焼付露光装置において、充分な寿命を有
していることと対応する。しかしながら、遠紫外
光の照射では僅か10W・秒で破壊した。その間の
赤外吸収スペクトルは1650cm-1、1280cm-1の吸収
が減少し1730cm-1、3400cm-1の吸収が増大し、著
しく変化した。これに対しシアノエチルセルロー
スは、遠紫外光の照射に実用上充分な耐久性を有
するものであることがみとめられた。
[Table] The following is an explanation using cellulose nitrate as an example. When cellulose nitrate is irradiated with GHI mixed light, its appearance remains unchanged even when irradiated at 500 W/sec.
There is no change in the infrared absorption spectrum, which corresponds to a sufficient lifespan in a printing exposure apparatus that uses near-ultraviolet light as a light source. However, when irradiated with far-ultraviolet light, it was destroyed with only 10 W/sec. During this period, the infrared absorption spectrum changed significantly, with the absorption at 1650 cm -1 and 1280 cm -1 decreasing, and the absorption at 1730 cm -1 and 3400 cm -1 increasing. In contrast, cyanoethylcellulose was found to have practically sufficient durability against irradiation with far ultraviolet light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は、それぞれシアノエ
チルセルロース、酢酸セルロース、硝酸セルロー
スの厚さ約3μmの試料薄膜の分光光線透過率曲線
である。
Figures 1, 2, and 3 are spectral light transmittance curves of sample thin films of approximately 3 μm thick made of cyanoethyl cellulose, cellulose acetate, and cellulose nitrate, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 0.5〜10μmの範囲内で一定の厚みを有し、
350〜500nmの光線透過率が88%以上であり且つ
250〜350nmの光線透過率が80%以上である、シ
アノエチルセルロース誘導体からなる樹脂薄膜。
1. Has a constant thickness within the range of 0.5 to 10 μm,
Light transmittance of 350 to 500 nm is 88% or more, and
A thin resin film made of a cyanoethyl cellulose derivative that has a light transmittance of 80% or more in the range of 250 to 350 nm.
JP59251291A 1984-11-28 1984-11-28 Thin resin film Granted JPS61130346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59251291A JPS61130346A (en) 1984-11-28 1984-11-28 Thin resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59251291A JPS61130346A (en) 1984-11-28 1984-11-28 Thin resin film

Publications (2)

Publication Number Publication Date
JPS61130346A JPS61130346A (en) 1986-06-18
JPH0461892B2 true JPH0461892B2 (en) 1992-10-02

Family

ID=17220618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59251291A Granted JPS61130346A (en) 1984-11-28 1984-11-28 Thin resin film

Country Status (1)

Country Link
JP (1) JPS61130346A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1330860C (en) * 1987-10-26 1994-07-26 Muneyuki Matsumoto Dust-proof film
US5490035A (en) * 1993-05-28 1996-02-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Cyanoresin, cyanoresin/cellulose triacetate blends for thin film, dielectric capacitors
US7542265B2 (en) 2006-11-28 2009-06-02 General Electric Company High energy density capacitors and methods of manufacture

Also Published As

Publication number Publication date
JPS61130346A (en) 1986-06-18

Similar Documents

Publication Publication Date Title
JPS5942294B2 (en) photosensitive composition
JPH02216154A (en) Visible light sensitizer for photopolymerizing composition
CA1200947A (en) Pellicle compositions and pellicles thereof for projection printing
WO2007069495A1 (en) Electromagnetic wave shielding material, process for producing electromagnetic wave shielding material, and electromagnetic wave shielding material for plasma display panel
EP1703327B1 (en) Composition for forming antireflection film, laminate, and method for forming resist pattern
KR0129950B1 (en) Anit-reflective coating composition
US4748050A (en) Process for preparing thin film having high light transmittance
GB402737A (en) Manufacture of negative copies
JPH0461892B2 (en)
US5741576A (en) Optical pellicle with controlled transmission peaks and anti-reflective coatings
US4308338A (en) Methods of imaging photopolymerizable materials containing diester polyether
GB1587476A (en) Photopolymerizable compositions and elements and methods of imaging
JPS6344648A (en) Contrast enhanced material for pattern formation
US4796973A (en) Pellicle structure for transmission of mid ultraviolet light
JP2790850B2 (en) Cellulose thin film for pellicle
JPH07199451A (en) Pellicle
US5100957A (en) Protective dust cover for photomask or reticle
JPH065383B2 (en) Ultraviolet pellicle and its manufacturing method
CA1116005A (en) Photochromic aziridine recording media
JPH0632996B2 (en) Optical recording method
JPS648812B2 (en)
SU739463A1 (en) Light sensitive material
JPH0221573B2 (en)
JPS61138950A (en) Treatment of silver halide photo-sensitive material
US20100233591A1 (en) Process for producing pellicle, and pellicle