JPH046182A - Heat insulating material and structure formed by using this heat insulating material - Google Patents

Heat insulating material and structure formed by using this heat insulating material

Info

Publication number
JPH046182A
JPH046182A JP2109546A JP10954690A JPH046182A JP H046182 A JPH046182 A JP H046182A JP 2109546 A JP2109546 A JP 2109546A JP 10954690 A JP10954690 A JP 10954690A JP H046182 A JPH046182 A JP H046182A
Authority
JP
Japan
Prior art keywords
heat insulating
parts
weight
insulating material
microballoons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2109546A
Other languages
Japanese (ja)
Other versions
JP2868578B2 (en
Inventor
Masao Shinozaki
篠崎 征夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP10954690A priority Critical patent/JP2868578B2/en
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to CN91103347A priority patent/CN1041817C/en
Priority to CA002060519A priority patent/CA2060519C/en
Priority to DE69120763T priority patent/DE69120763T2/en
Priority to PCT/JP1991/000549 priority patent/WO1991016278A1/en
Priority to KR1019910701531A priority patent/KR950002918B1/en
Priority to EP91908788A priority patent/EP0480070B1/en
Priority to SE9103102A priority patent/SE502751C2/en
Priority to NO19914983A priority patent/NO311563B1/en
Priority to FI916081A priority patent/FI100597B/en
Publication of JPH046182A publication Critical patent/JPH046182A/en
Priority to US08/117,876 priority patent/US5308891A/en
Application granted granted Critical
Publication of JP2868578B2 publication Critical patent/JP2868578B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the heat insulating performance approximate to the heat insulating performance of org. heat insulating materials, the flame retardance equiv. to the flame retardance of inorg. heat insulating materials and the strength higher than heretofore by compounding a synthetic resin emulsion, org. microballoons, carbon fibers and inorg. microballoons at specific ratios with cement. CONSTITUTION:This heat insulating material is formed by compounding 3 to 50 pts. wt. (in terms of solid content) synthetic resin emulsion, 1 to 20 pts. wt. org. microballoons, 0.3 to 5 pts. wt. carbon fibers and 10 to 200 pts. wt. inorg. microballoons with 100 pts. wt. cement. This heat insulating material can be applied to a wet process as well in addition to a dry process involving the use of this material in the form of a molded plate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、断熱材およびこの断熱材を使用した構造体に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat insulating material and a structure using this heat insulating material.

〔従来の技術〕[Conventional technology]

従来、建築物の断熱材としては、例えば、コンクリート
型枠を兼ねたかたちで打ち込まれ一体施工されるスタイ
ロフォーム等の断熱材成形板や、現場において、コンク
リート面に吹き付は施工される発泡ウレタン等が知られ
ている。
Conventional thermal insulation materials for buildings include, for example, molded insulation plates such as Styrofoam, which are cast into concrete formwork and installed as an integral part, and urethane foam, which is sprayed onto the concrete surface on site. It has been known.

しかしながら、現場施工される発泡ウレタンやスタイロ
フォーム等の有機系断熱材は、熱伝導率が0.02〜0
.03(kcal/mhr″C)であり非常に小さいた
め、優れた断熱性能を示すが、有機質系であるため燃え
易いという問題があった。
However, organic insulation materials such as urethane foam and styrofoam that are installed on-site have a thermal conductivity of 0.02 to 0.
.. 03 (kcal/mhr''C), which is very small, and therefore exhibits excellent heat insulation performance, but because it is organic, it has the problem of being easily flammable.

このため、防火上の法的な制約や強度的な問題から、例
えば、有機質系断熱材の上に、石膏ボート−等の難燃性
の材料を貼着し、これを下地として化粧仕上げをする必
要があり、建築物を断熱構造とするためには施工工程が
多く、手間がかかるという問題があった。
For this reason, due to legal restrictions and strength issues regarding fire prevention, for example, a flame-retardant material such as gypsum board is pasted on top of the organic insulation material and a decorative finish is applied using this as a base. However, there was a problem in that it required many construction steps and was time-consuming in order to provide a building with a heat-insulating structure.

このような問題点を解決した断熱材として、発泡モルタ
ル、パーライトモルタル等の軽量モルタルが無機質系の
断熱材として用いられることがある。
As a heat insulating material that solves these problems, lightweight mortar such as foam mortar and pearlite mortar is sometimes used as an inorganic heat insulating material.

(発明が解決しようとする課題〕 このような無機質系断熱材は燃え難いという性質を有す
るが、熱伝導率が0.2〜0.3(kcal/mhr’
C)であり、有機質系断熱材(0,02〜0.03kc
al/mhr”c)と比較すると非常に大きいため、断
熱性能が有機質系断熱材と比較して劣るという問題があ
った。
(Problems to be Solved by the Invention) Such inorganic heat insulating materials have the property of being difficult to burn, but their thermal conductivity is 0.2 to 0.3 (kcal/mhr'
C), an organic heat insulating material (0.02 to 0.03 kc
al/mhr"c), so there was a problem that the heat insulation performance was inferior compared to organic heat insulation materials.

このため、目的とする断熱性能を確保することは困難で
あるばかりでなく、その性能を確保するためにはかなり
の厚さを要求されることになる。
For this reason, it is not only difficult to secure the desired heat insulation performance, but also a considerable thickness is required to ensure that performance.

本発明は上記のような問題点を解決するためになされた
もので、成形板として使用する乾式施工の他に湿式施工
ができるとともに、断熱性能としては有機質系断熱材に
近い性能を有し、かつ、難燃性という観点からは、従来
の無機質系断熱材の性能を有し、なおかつ、従来のもの
に比べ高強度という特徴を有する断熱材およびこの断熱
材を使用した構造体を提供することを目的とする。
The present invention was made to solve the above-mentioned problems, and it can be used for wet construction in addition to dry construction for use as a molded board, and has a heat insulation performance close to that of organic insulation materials. In addition, from the viewpoint of flame retardancy, it is an object of the present invention to provide a heat insulating material that has the performance of conventional inorganic heat insulating materials and is characterized by higher strength than conventional ones, and a structure using this heat insulating material. With the goal.

[課題を解決するための手段] 請求項1記載の断熱材は、セメント100重量部に対し
、合成樹脂エマルションの固形分換算3〜50重量部と
、有機マイクロバルーン1〜20重量部と、炭素繊維0
.3〜5重量部と、無機マイクロバルーン10〜200
重量部とを混合してなるものである。
[Means for Solving the Problems] The heat insulating material according to claim 1 contains 3 to 50 parts by weight of synthetic resin emulsion in terms of solid content, 1 to 20 parts by weight of organic microballoons, and 100 parts by weight of cement. Fiber 0
.. 3 to 5 parts by weight and 10 to 200 parts by weight of inorganic microballoons
It is made by mixing parts by weight.

ここで、セメント100重量部に対し、合成樹脂エマル
ションの固形分換算3〜50重量部としたのは、3重量
部以下では接着性能が低下し、50重量部以上では耐火
性能が低下する一方、コスト高となるからである。
Here, the solid content of the synthetic resin emulsion is set at 3 to 50 parts by weight based on 100 parts by weight of cement, because if it is less than 3 parts by weight, the adhesion performance will decrease, and if it is more than 50 parts by weight, the fire resistance will decrease. This is because the cost will be high.

また、セメント100重量部に対し、有機マイクロバル
ーン1〜20重量部としたのは、1重量部以下では断熱
性能が低下し、20重量部以上では耐火性能や強度が低
下する一方、コスト高となるからである。
In addition, the reason why organic microballoons should be 1 to 20 parts by weight per 100 parts by weight of cement is that if it is less than 1 part by weight, the insulation performance will decrease, and if it is more than 20 parts by weight, the fire resistance and strength will decrease, but the cost will increase. Because it will be.

さらに、セメント100重量部に対し、炭素繊維0.3
〜5重量部としたのは、0.3重量部以下ではマトリッ
クスの補強効果並びに収縮に伴うひび割れ防止効果が低
くなるためであり、5重量部以上では繊維がかさばり作
業性が悪くなる一方、コスト高となり、その割りには補
強効果はそれ程向上しないからである。
Furthermore, 0.3 parts of carbon fiber per 100 parts by weight of cement.
The reason why it is set at ~5 parts by weight is that if it is less than 0.3 parts by weight, the reinforcing effect of the matrix and the effect of preventing cracks due to shrinkage will be reduced.If it is more than 5 parts by weight, the fibers will become bulky and workability will deteriorate, but the cost will be reduced. This is because the reinforcing effect is not improved that much.

また、セメント100重量部に対し、無機マイクロバル
ーン10〜200重量部としたのは、10重量部以下で
はコストの高い他の材料の割合が多くなるためコスト高
になり、耐火性能の向上にもあまり寄与しないからであ
り、200重量部以上では強度的に脆くなるからである
。耐火性能の向上9強度、コスト等を考慮すると、無機
マイクロバルーンは、セメン)100重量部に対し、1
0〜100重量部が望ましい。
In addition, the reason for using 10 to 200 parts by weight of inorganic microballoons for 100 parts by weight of cement is that if it is less than 10 parts by weight, the proportion of other expensive materials increases, resulting in high costs, and it is also difficult to improve fire resistance. This is because it does not contribute much, and if it exceeds 200 parts by weight, the strength becomes brittle. Improving Fire Resistance Performance 9 Considering strength, cost, etc., inorganic microballoons are
0 to 100 parts by weight is desirable.

請求項2記載の構造体は、構造体本体に、セメント10
0重量部に対し、合成樹脂エマルションの固形分換算3
〜50重量部と、有機マイクロバルーン1〜20重量部
と、炭素繊維0.3〜5重量部と、無機マイクロバルー
ン10〜200重量部とを混合した断熱材を湿式施工す
ることにより、断熱層を形成してなるものである。
In the structure according to claim 2, cement 10 is added to the structure body.
0 parts by weight, solid content of synthetic resin emulsion 3
By wet-applying a heat insulating material made of a mixture of ~50 parts by weight of organic microballoons, 1 to 20 parts by weight of organic microballoons, 0.3 to 5 parts by weight of carbon fibers, and 10 to 200 parts by weight of inorganic microballoons, a heat insulating layer can be formed. It is formed by forming.

ここで、断熱材の湿式施工とは、粘性流動体である断熱
材を、吹き付け、コテ塗り等で構造体本体の表面に付着
させて断熱層を形成することをい〔作 用〕 請求項1記載の断熱材は、例えば、合成樹脂エマルショ
ン、炭素繊維、有機マイクロバルーンおよび必要な場合
には水溶性樹脂や消泡剤、防黴剤等を予め混合混練した
ペースト状の混合物に、セメントと無機マイクロバルー
ンを混合混練して製造される。
Here, wet construction of a heat insulating material refers to forming a heat insulating layer by attaching a heat insulating material, which is a viscous fluid, to the surface of the structure body by spraying, troweling, etc. [Function] Claim 1 The described heat insulating material is, for example, a paste-like mixture prepared by mixing and kneading a synthetic resin emulsion, carbon fiber, organic microballoons, and if necessary, a water-soluble resin, an antifoaming agent, an antifungal agent, etc., and then adding cement and an inorganic Manufactured by mixing and kneading microballoons.

請求項2記載の構造体は、構造体本体に、請求項1記載
の断熱材を湿式施工することにより、シ−ムレスな断熱
層を形成したので、構造体の内外の熱伝導が有効に阻止
されるとともに、難燃性が向上される。
In the structure according to claim 2, a seamless heat insulating layer is formed by wet-applying the heat insulating material according to claim 1 to the structure body, so that heat conduction inside and outside the structure is effectively prevented. At the same time, flame retardancy is improved.

湿式施工による断熱層の形成は、粘性流動体である断熱
材を、例えば、現場でコンクリート面に所定の厚さに吹
き付け、または、コテ等で塗布し、断熱材を構造体本体
に付着させることにより行なわれる。
Forming a heat insulating layer through wet construction involves, for example, spraying a viscous fluid heat insulating material onto the concrete surface to a predetermined thickness on site, or applying it with a trowel, etc., and attaching the heat insulating material to the structure body. This is done by

このような断熱層が形成された構造体は、断熱層自体が
透湿係数は小さいにもかかわらず適度の吸水率を有する
ので、室内で湿度が高くなると断熱層が湿分を吸収し、
この断熱層内に溜め、室内の湿度が低くなると、断熱層
から湿分を放出し、室内の湿度の自動調整が行なわれる
A structure in which such a heat insulating layer is formed has a moderate water absorption rate even though the heat insulating layer itself has a small moisture permeability coefficient, so when the humidity increases indoors, the heat insulating layer absorbs moisture.
When the humidity in the room becomes low, the moisture is collected in the heat insulating layer and released from the heat insulating layer, automatically adjusting the humidity in the room.

〔実施例〕〔Example〕

以下、本発明の詳細を図面に示す実施例について説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, details of the present invention will be described with reference to embodiments shown in the drawings.

第1図は、本発明の構造体の一実施例を示すもので、図
において、符号31は、構造体本体33である屋根スラ
ブを示している。
FIG. 1 shows an embodiment of the structure of the present invention, and in the figure, reference numeral 31 indicates a roof slab that is the main body 33 of the structure.

この屋根スラブ31は、構造体本体33である梁35に
より支持されている。
This roof slab 31 is supported by beams 35 which are the main body 33 of the structure.

そして、梁35の内面および屋根スラブ31の下面には
、断熱層37が形成されている。屋根スラブ31の下面
に形成される断熱層37は、粱35の内側側面から、例
えば、50〜60cm程度形成されている。これは、ヒ
ートブリッジ、即ち、外部からの熱が天井面を回り込ん
で伝導されることを防止するためである。
A heat insulating layer 37 is formed on the inner surface of the beam 35 and the lower surface of the roof slab 31. The heat insulating layer 37 formed on the lower surface of the roof slab 31 is formed, for example, about 50 to 60 cm from the inner side surface of the casing 35. This is to prevent heat bridges, that is, heat from the outside being conducted around the ceiling surface.

この断熱層37は、梁35の内面や屋根スラブ31の下
面に、粘性流動体である断熱材を付着させることにより
形成されている。
This heat insulating layer 37 is formed by attaching a heat insulating material, which is a viscous fluid, to the inner surface of the beam 35 and the lower surface of the roof slab 31.

この断熱材は、セメント、合成樹脂エマルション、炭素
繊維、有機マイクロバルーン、水、水溶性樹脂である増
粘剤やダレ防止剤、消泡剤、防黴剤、無機マイクロバル
ーンから構成されている。
This heat insulating material is composed of cement, synthetic resin emulsion, carbon fiber, organic microballoons, water, water-soluble resin thickeners and anti-sag agents, antifoaming agents, antifungal agents, and inorganic microballoons.

セメントは、早強ポルトランドセメントが使用されてい
る。
The cement used is early-strength Portland cement.

また、合成樹脂エマルションは、例えば、アクリル系、
酢酸ビニール系3合成ゴム系、塩化ビニリデン系、塩化
ビニル系またはこれらの混合系とされている。
In addition, synthetic resin emulsions include, for example, acrylic,
These include vinyl acetate, synthetic rubber, vinylidene chloride, vinyl chloride, or a mixture of these.

炭素繊維は、例えば、繊維長さ約6 mmとされている
The carbon fiber has a fiber length of about 6 mm, for example.

さらに、有機マイクロバルーンは、その粒径が例えば、
10〜100μmとされ、比重が0. 04以下とされ
ている。無機マイクロバルーンの粒径は、例えば、5〜
200μmとされており、比重は0.3〜0.7とされ
ている。
Furthermore, organic microballoons have a particle size of, for example,
The diameter is 10 to 100 μm, and the specific gravity is 0. 04 or below. The particle size of the inorganic microballoon is, for example, 5-
It is said to be 200 μm, and its specific gravity is said to be 0.3 to 0.7.

また、増粘剤は、例えば、メチルセルローズ。Further, the thickener is, for example, methylcellulose.

ポリビニルアルコール、ヒドロキシエチルセルローズ等
の水溶性高分子化合物とされている。
It is considered to be a water-soluble polymer compound such as polyvinyl alcohol or hydroxyethyl cellulose.

このような断熱材は、合成樹脂エマルション28重量部
(固形分換算6.3重量部)、炭素繊維2.6重量部、
有機マイクロバルーン24重量部、水溶性樹脂0.4重
量部、水137重量部、それに少量の消泡剤、防黴剤か
ら構成される半液体状混合物100重量部に、粉体10
0重量部を混合混練して製造される。
Such a heat insulating material includes 28 parts by weight of synthetic resin emulsion (6.3 parts by weight in terms of solid content), 2.6 parts by weight of carbon fiber,
To 100 parts by weight of a semi-liquid mixture consisting of 24 parts by weight of organic microballoons, 0.4 parts by weight of water-soluble resin, 137 parts by weight of water, and small amounts of antifoaming agent and anti-mold agent, 10 parts by weight of powder was added.
It is manufactured by mixing and kneading 0 parts by weight.

粉体は、早強ポルトランドセメント100重量部に対し
、無機マイクロバルーン16重量部から構成されている
The powder was composed of 100 parts by weight of early strength Portland cement and 16 parts by weight of inorganic microballoons.

このようにして製造された断熱材は、次表に示すような
性質を有する。
The heat insulating material manufactured in this way has the properties shown in the following table.

即ち、熱伝導率が0 、 06 (kcal/mhr″
C> 、生比重が0.54.気乾比重が0.31.曲げ
強度12、 8 (kgf/ctlT) 、圧縮強度1
4.7 (kgf/ctll) 。
That is, the thermal conductivity is 0.06 (kcal/mhr''
C>, raw specific gravity is 0.54. Air dry specific gravity is 0.31. Bending strength 12, 8 (kgf/ctlT), compressive strength 1
4.7 (kgf/ctll).

付着強度6. 2 (kgf/cn) 、透湿係数が0
.315 (g/rrrhmmHg ) 、吸水率が3
1.4(%)である。
Adhesion strength6. 2 (kgf/cn), moisture permeability coefficient is 0
.. 315 (g/rrrhmHg), water absorption rate is 3
It is 1.4 (%).

以上のように構成された構造体は、構造体本体33の表
面に、粘性流動体である断熱材を吹き付け、コテ塗り、
空隙への充填等の湿式施工により、例えば、厚さ10〜
15−の断熱層37を形成して構成される。
The structure configured as described above is constructed by spraying a heat insulating material, which is a viscous fluid, on the surface of the structure body 33, applying it with a trowel,
For example, by wet construction such as filling into voids, the thickness of
15- is formed by forming a heat insulating layer 37.

しかして、以上のように構成された構造体は、構造体本
体33に、セメントと、合成樹脂エマルションと、有機
マイクロバルーンと、炭素繊維と。
Thus, the structure configured as described above includes the structure main body 33, cement, synthetic resin emulsion, organic microballoon, and carbon fiber.

水と、水溶性樹脂と、無機マイクロバルーンと。Water, water-soluble resin, and inorganic microballoons.

少量の増粘剤、消泡剤、防黴剤を混合した断熱材を湿式
施工することにより、シームレスな断熱層37を形成し
たので、構造体の内外の熱伝導を有効に阻止することが
できるとともに、難燃性を向上することができる。また
、構造体本体33に形成される断熱層37は断熱性能が
太き(、構造体本体33への付着が良好であり、断熱層
37自体の強度が大きく、難燃性を有しているため、断
熱層37自体をそのまま仕上げ面として使用し、或いは
、断熱層37を下地として、この上に直接塗装、吹き付
け、クロス貼り、タイル貼り等の化粧仕上げを施すこと
ができる。このため、どのような形状の部位にも容易に
施工できる他、施工工程を大幅に低減することができ、
納まり上広い有効面積(空間)を確保でき、手間やコス
トを大幅に削減することができる。
A seamless heat insulating layer 37 is formed by wet-applying a heat insulating material mixed with a small amount of thickener, antifoaming agent, and anti-mold agent, which can effectively prevent heat conduction inside and outside the structure. At the same time, flame retardancy can be improved. In addition, the heat insulating layer 37 formed on the structure body 33 has a thick heat insulating performance (it adheres well to the structure body 33, the heat insulating layer 37 itself has high strength, and is flame retardant). Therefore, the heat insulating layer 37 itself can be used as a finished surface, or the heat insulating layer 37 can be used as a base and a decorative finish such as painting, spraying, cloth pasting, tiling, etc. can be applied directly to it. In addition to being easy to install on areas with similar shapes, the construction process can be significantly reduced.
It can secure a large effective area (space) and greatly reduce labor and costs.

さらに、断熱性能を向上することができるので、結露の
発注を確実に防止することができる。
Furthermore, since the heat insulation performance can be improved, dew condensation can be reliably prevented.

また、以上のように形成された断熱材では、熱伝導率が
0 、 06 (kcal/mhr″C)であり、有機
質系の断熱材の熱伝導率(0,02〜0. 03kca
l/mhr’c)と比較して、それほど大きくないため
、有機質系断熱材とほぼ同様の断熱性能を有することが
できる。これは、有機マイクロバルーンや無機マイクロ
バルーンを含有しているため、モルタル中に空気溜まり
を形成することになるからである。また、このように、
モルタル中に空気溜まりが形成されているため、生比重
が0.54.気乾比重が0.31となり、非常に軽い断
熱材を形成することができる。
In addition, the heat insulating material formed as described above has a thermal conductivity of 0.06 (kcal/mhr"C), and the thermal conductivity of the organic heat insulating material (0.02 to 0.03 kcal/mhr"C).
1/mhr'c), it is not so large compared to 1/mhr'c), so it can have almost the same heat insulation performance as an organic heat insulating material. This is because air pockets will be formed in the mortar since it contains organic microballoons and inorganic microballoons. Also, like this,
Because air pockets are formed in the mortar, the raw specific gravity is 0.54. The air-dried specific gravity is 0.31, making it possible to form a very light heat insulating material.

さらに、このような断熱材は無機の材料を多量に含有す
る無機質系断熱材となるため、有機系断熱材と比較して
難燃性を大幅に向上することができる。
Furthermore, since such a heat insulating material is an inorganic heat insulating material containing a large amount of inorganic material, flame retardance can be significantly improved compared to an organic heat insulating material.

また、断熱材は、モルタル中に合成樹脂エマルション、
炭素繊維を含有しているので、内部結合が強固となり、
従来の硬質ウレタンフオームの圧縮強度(1,4〜2、
Okgf/d)や、ポリスチレンフオームの圧縮強度(
2,5〜3.  Okgf/c111)に対して、本発
明の断熱材の圧縮強度が14.7kgf/d、曲げ強度
が12.8kgf/ctllとなり、従来よりも強度を
大幅に向上することができる。
In addition, the insulation material is a synthetic resin emulsion in the mortar,
Contains carbon fiber, so the internal bond is strong,
Compressive strength of conventional hard urethane foam (1,4~2,
Okgf/d) and compressive strength of polystyrene foam (
2,5-3. The compressive strength of the heat insulating material of the present invention is 14.7 kgf/d and the bending strength is 12.8 kgf/ctll, which can significantly improve the strength compared to the conventional one.

さらに、合成樹脂エマルションを含有しているため、断
熱材のコンクリート面に対する付着強度が6. 2kg
f/Cl1lとなり、断熱材のコンクリート面への一体
化を促進することができ、断熱材の剥離を確実に防止す
ることができる。このため、断熱材を湿式施工すること
ができ、従来工法の発泡ウレタン吹付け、ボード貼りゃ
断熱ボード類による乾式施工等においては施工が困難で
あった天井面への施工や、染型等を含む場合の出隅、入
隅等の多い建物3円形状の建物等への断熱材の施工も、
容易に行なうことができる。
Furthermore, since it contains a synthetic resin emulsion, the adhesion strength of the insulation material to the concrete surface is 6. 2kg
f/Cl1l, it is possible to promote the integration of the heat insulating material into the concrete surface, and it is possible to reliably prevent the heat insulating material from peeling off. For this reason, the insulation material can be applied wet, making it possible to apply it to ceiling surfaces, dye molds, etc., which were difficult to do with conventional methods such as spraying foamed urethane or dry installation using insulation boards. The construction of insulation materials in buildings with many protruding corners and inward corners, etc., in three-circle-shaped buildings, etc.
It can be done easily.

このように、断熱材の断熱性能、難燃性および強度等を
向上することができるので、従来のように、防火上の法
的な制約や強度的な問題から、断熱材の上に、石膏ボー
ド等の難燃性の材料を貼り付けて、これを下地として化
粧仕上げを施工する必要もなく、建築物を断熱構造とす
るための施工工程を大幅に低減することができ、シーム
レスな施工ができるため断熱性能の向上と併せて、手間
やコストを大幅に削減することができる。
In this way, the insulation performance, flame retardance, strength, etc. of the insulation material can be improved. There is no need to paste flame-retardant materials such as boards and apply decorative finishes using this as a base, and the construction process for making a building into an insulating structure can be significantly reduced, allowing for seamless construction. This not only improves insulation performance but also significantly reduces labor and costs.

また、断熱材を呼吸性の断熱材とすることもでき、室内
湿度の自動調整を行なうことができる。
Further, the heat insulating material can be a breathable heat insulating material, and indoor humidity can be automatically adjusted.

即ち、断熱材の透湿係数が0.315 (g/rrrh
mm)Ig)と小さい一方、吸水率が31.4(%)と
適度の吸水性能を存するため、室内で湿度が高くなると
断熱層37が湿分を吸収し、この断熱層37内に湿分を
溜め、室内の湿度が低くなると断熱層37から湿分を放
出し、室内の湿度の自動調整を行なうことができる。
That is, the moisture permeability coefficient of the insulation material is 0.315 (g/rrrh
Although the water absorption rate is small (mm) Ig), it has moderate water absorption performance with a water absorption rate of 31.4 (%), so when the humidity increases indoors, the insulation layer 37 absorbs moisture, and the moisture inside this insulation layer 37 When the humidity in the room becomes low, the moisture is released from the heat insulating layer 37, and the humidity in the room can be automatically adjusted.

上述した表の右側には、合成樹脂エマルション(固形分
濃度45%)62重量部(固形分換算27.9重量部)
、炭素繊維2.6重量部、有機マイクロバルーン10.
4重量部、水125重量部、それに少量の増粘剤、消泡
剤、防黴剤とから構成される半液体状混合物100重量
部に、早強ポルトランドセメント100重量部を混合混
練して製造した断熱材の性質を、比較例として記載した
On the right side of the table mentioned above, 62 parts by weight of synthetic resin emulsion (solid content concentration 45%) (27.9 parts by weight in terms of solid content)
, 2.6 parts by weight of carbon fiber, 10 parts by weight of organic microballoon.
Manufactured by mixing and kneading 100 parts by weight of early-strength Portland cement with 100 parts by weight of a semi-liquid mixture consisting of 4 parts by weight, 125 parts by weight of water, and small amounts of thickener, antifoaming agent, and antifungal agent. The properties of the heat insulating material were described as a comparative example.

この断熱材の性質は、熱伝導率が0.05(kca1/
mhr″C> 、生比重が0.52.気乾比重が0゜3
0、曲げ強度14. 1 (kgf/cill) 、圧
縮強度16.5 (kgf/ctll) 、付着強度6
. 8 (kgf/cill) 、透湿係数が0 、 
127 (g/rrrhmmHg ) 、吸水率が20
.5(%)であった。
The thermal conductivity of this insulation material is 0.05 (kca1/
mhr″C>, fresh specific gravity is 0.52, air dry specific gravity is 0°3
0, bending strength 14. 1 (kgf/cill), compressive strength 16.5 (kgf/ctll), adhesive strength 6
.. 8 (kgf/cil), moisture permeability coefficient is 0,
127 (g/rrrhmHg), water absorption rate is 20
.. It was 5 (%).

比較例と本実施例とを比較すると、比較例は無機マイク
ロバルーンを含有していないため、本実施例よりも熱伝
導率が小となり9合成樹脂エマルションの含有量が増加
したため、曲げ強度や圧縮強度が向上するとともに付着
強度が向上している、ことが分かる。
Comparing the comparative example and this example, the comparative example does not contain inorganic microballoons, so its thermal conductivity is lower than that of this example, and the content of the 9 synthetic resin emulsion is increased, so the bending strength and compressive strength are lower. It can be seen that the strength is improved and the adhesion strength is also improved.

また、セメントをマトリンクスとする従来の断熱材2例
えば、発泡モルタル、パーライトモルタル等を断熱材と
して使用する場合の1例として、市販されている発泡断
熱モルタルの性能を示せば、熱伝導率0. 09〜0.
 12(kcal/mhr″C)、圧縮強度3〜5 (
kgf/all) 、モルタル板への付着強度1. 1
  (kgf/cnl)であり、これらと比較すると、
強度的にも断熱性能の面でも、はるかに優れていること
が分かる。
In addition, as an example of conventional heat insulating materials using cement as a matrix, such as foamed mortar, perlite mortar, etc., as a heat insulating material, the performance of commercially available foamed heat insulating mortar is shown to have a thermal conductivity of 0. 09-0.
12 (kcal/mhr''C), compressive strength 3-5 (
kgf/all), adhesion strength to mortar board 1. 1
(kgf/cnl), and compared with these,
It can be seen that it is far superior in terms of strength and heat insulation performance.

尚、上記実施例では、第1図に示したような構造体本体
33に本発明の断熱材を湿式施工した例について説明し
たが、本発明は上記実施例に限定されるものではなく、
第2図に示すように梁41の内面と床スラブ43下面に
断熱層45を形成しても良く、第3図に示すように外壁
47の内面と仕切壁49の両面に断熱層51を形成して
も良く、第4図に示すように外壁53の内面と柱55の
両面に断熱層57を形成しても良く、さらに第5図に示
すように外壁59の内面と柱61に断熱層63を形成し
ても、良いことは勿論であネ。
In addition, in the above embodiment, an example was explained in which the heat insulating material of the present invention was wet applied to the structure main body 33 as shown in FIG. 1, but the present invention is not limited to the above embodiment.
A heat insulating layer 45 may be formed on the inner surface of the beam 41 and the lower surface of the floor slab 43 as shown in FIG. 2, and a heat insulating layer 51 may be formed on the inner surface of the outer wall 47 and both sides of the partition wall 49 as shown in FIG. Alternatively, as shown in FIG. 4, a heat insulating layer 57 may be formed on the inner surface of the outer wall 53 and on both sides of the column 55, and as shown in FIG. Of course, forming 63 is not a good thing.

また、セメント100重量部に対し、合成樹脂エマルシ
ョンの固形分換算3〜50重量部、有機マイクロバルー
ン1〜20重量部、炭素繊維0゜3〜5重量部、無機マ
イクロバルーン10〜200重量部の範囲内で各材料の
使用量を変更しても、上記実施例とほぼ同様の効果を得
ることができる。
In addition, for 100 parts by weight of cement, 3 to 50 parts by weight of synthetic resin emulsion as a solid content, 1 to 20 parts by weight of organic microballoons, 0.3 to 5 parts by weight of carbon fibers, and 10 to 200 parts by weight of inorganic microballoons. Even if the amount of each material used is changed within the range, substantially the same effect as in the above embodiment can be obtained.

この場合に、各種材料の割合を変更することにより、強
度や比重、断熱性能、耐火性能等を変化させることがで
き、目的に対応した断熱性能、耐火性能や強度等を備え
た断熱材を得ることができる。
In this case, by changing the ratio of various materials, it is possible to change the strength, specific gravity, heat insulation performance, fire resistance performance, etc., and obtain a heat insulating material with heat insulation performance, fire resistance performance, strength, etc. that corresponds to the purpose. be able to.

さらに、上記実施例では、構造体本体33の内面に断熱
層37を形成した例について説明したが、本発明は上記
実施例に限定されるものではなく、構造体本体の外面に
断熱層を形成しても、上記実施例とほぼ同様の効果を得
ることができる。
Further, in the above embodiment, an example was explained in which the heat insulating layer 37 was formed on the inner surface of the structure main body 33, but the present invention is not limited to the above embodiment, and the heat insulating layer was formed on the outer surface of the structure main body. However, almost the same effect as in the above embodiment can be obtained.

また、上記実施例では、断熱材に少量の増粘剤、消泡剤
、防黴剤を混合した例について説明したが、本発明は上
記実施例に限定されるものではなく、増粘剤、消泡剤、
防黴剤等を混合しなくても、また、必要に応じて他の材
料も混合しても、上記実施例とほぼ同様の効果を得るこ
とができる。
Furthermore, in the above embodiments, an example was explained in which a small amount of a thickener, an antifoaming agent, and a fungicide were mixed into the heat insulating material, but the present invention is not limited to the above embodiments; antifoaming agent,
Almost the same effect as in the above embodiment can be obtained even without mixing a fungicide or the like, or even if other materials are mixed as necessary.

〔発明の効果〕〔Effect of the invention〕

請求項1記載の断熱材は、セメント100重量部に対し
、合成樹脂エマルションの固形分換算3〜50重量部と
、有機マイクロバルーン1〜20重量部と、炭素繊維0
.3〜5重量部と、無機マイクロバルーン10〜200
重量部とを混合したので、湿式施工できるとともに、難
燃性および断熱性能を大幅に向上することができる 即ち、モルタル中に合成樹脂エマルション、炭素繊維を
含有しているので、内部結合が強固となり、ひび割れ防
止効果の他に圧縮強度2曲げ強度等の強度を向上するこ
とができる。
The heat insulating material according to claim 1 contains 100 parts by weight of cement, 3 to 50 parts by weight of synthetic resin emulsion in terms of solid content, 1 to 20 parts by weight of organic microballoons, and 0 parts by weight of carbon fiber.
.. 3 to 5 parts by weight and 10 to 200 parts by weight of inorganic microballoons
Since the mortar is mixed with parts by weight, wet construction is possible, and flame retardancy and heat insulation performance are greatly improved.In other words, since the mortar contains synthetic resin emulsion and carbon fiber, the internal bond is strong. In addition to the crack prevention effect, it is possible to improve the strength such as compressive strength 2 bending strength.

また、合成樹脂エマルションを含有しているため、断熱
材のコンクリート面への付着強度を向上することができ
、湿式施工を行なうことができる。
Furthermore, since it contains a synthetic resin emulsion, the adhesion strength of the heat insulating material to the concrete surface can be improved, and wet construction can be performed.

さらに、有機マイクロバルーンや無機マイクロバルーン
を含有しているため、モルタル中に空気溜まりを形成す
ることになり、熱伝導率を低減することができ、断熱性
能を向上することができる。
Furthermore, since it contains organic microballoons and inorganic microballoons, air pockets are formed in the mortar, which can reduce thermal conductivity and improve heat insulation performance.

また、このような断熱材は無機の材料を多量に含有する
無機質系断熱材となるため、難燃性を向上することがで
きる。
Further, since such a heat insulating material is an inorganic heat insulating material containing a large amount of inorganic material, flame retardance can be improved.

請求項2記載の構造体では、構造体本体に、セメント1
00重量部に対し、合成樹脂エマルションの固形分換算
3〜50重量部と、有機マイクロバルーン1〜20重量
部と、炭素繊維0.3〜5重量部と、無機マイクロバル
ーン10〜200重量部とを混合した断熱材を湿式施工
することにより、シームレスな断熱層を形成したので、
構造体の内外の熱伝導を有効に阻止することができると
ともに、難燃性を向上することができる。また、構造体
本体に形成される断熱層は断熱性能が大きく、構造体本
体への付着が良好であり、断熱層自体の強度が大きく、
難燃性を有しているため、断熱層自体をそのまま仕上げ
面として使用し、或いは、断熱層を下地として、この上
に直接塗装3吹き付け、クロス貼り、タイル貼り等の化
粧仕上げを施すことができる。このため、建築物を断熱
構造とするための施工工程を大幅に低減することができ
、従来の断熱構造に比べ有効空間を広く確保でき、手間
やコストを大幅に削減することができる。
In the structure according to claim 2, cement 1 is added to the structure body.
00 parts by weight, 3 to 50 parts by weight in terms of solid content of the synthetic resin emulsion, 1 to 20 parts by weight of organic microballoons, 0.3 to 5 parts by weight of carbon fibers, and 10 to 200 parts by weight of inorganic microballoons. We created a seamless insulation layer by wet-applying the insulation material mixed with
Heat conduction inside and outside the structure can be effectively prevented, and flame retardancy can be improved. In addition, the heat insulating layer formed on the structure body has high heat insulating performance, adheres well to the structure body, and the heat insulating layer itself has high strength.
Because it is flame retardant, the heat insulating layer itself can be used as a finished surface, or the heat insulating layer can be used as a base and a decorative finish such as spraying paint, cloth pasting, tiling etc. can be applied directly on top of the heat insulating layer. can. Therefore, the construction process for making a building into a heat-insulating structure can be significantly reduced, and compared to conventional heat-insulating structures, a wider effective space can be secured, and labor and costs can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の断熱材が使用された構造体の一実施例
を示す縦断面図である。 第2図は本発明の断熱材が使用された他の構造体を示す
縦断面図である。 第3図乃至第5図は本発明の断熱材が使用されたさらに
他の構造体を示す横断面図である。 〔主要な部分の符号の説明〕 33・・・構造体本体 37.45 51 57.63・・・断熱層。 第1図 第3図 第4図 第2図 第5図
FIG. 1 is a longitudinal sectional view showing an example of a structure in which the heat insulating material of the present invention is used. FIG. 2 is a longitudinal sectional view showing another structure in which the heat insulating material of the present invention is used. FIGS. 3 to 5 are cross-sectional views showing still other structures in which the heat insulating material of the present invention is used. [Explanation of symbols of main parts] 33... Structure body 37.45 51 57.63... Heat insulation layer. Figure 1 Figure 3 Figure 4 Figure 2 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)セメント100重量部に対し、合成樹脂エマルシ
ョンの固形分換算3〜50重量部と、有機マイクロバル
ーン1〜20重量部と、炭素繊維0.3〜5重量部と、
無機マイクロバルーン10〜200重量部とを混合して
なることを特徴とする断熱材。
(1) For 100 parts by weight of cement, 3 to 50 parts by weight of synthetic resin emulsion in terms of solid content, 1 to 20 parts by weight of organic microballoons, and 0.3 to 5 parts by weight of carbon fiber,
A heat insulating material comprising 10 to 200 parts by weight of inorganic microballoons.
(2)構造体本体に、セメント100重量部に対し、合
成樹脂エマルションの固形分換算3〜50重量部と、有
機マイクロバルーン1〜20重量部と、炭素繊維0.3
〜5重量部と、無機マイクロバルーン10〜200重量
部とを混合した断熱材を湿式施工することにより、断熱
層を形成してなることを特徴とする構造体。
(2) In the structure body, 100 parts by weight of cement, 3 to 50 parts by weight of synthetic resin emulsion in terms of solid content, 1 to 20 parts by weight of organic microballoons, and 0.3 parts by weight of carbon fiber.
A structure characterized in that a heat insulating layer is formed by wet-applying a heat insulating material that is a mixture of ~5 parts by weight and 10 to 200 parts by weight of inorganic microballoons.
JP10954690A 1990-04-25 1990-04-25 Insulation Expired - Fee Related JP2868578B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP10954690A JP2868578B2 (en) 1990-04-25 1990-04-25 Insulation
CA002060519A CA2060519C (en) 1990-04-25 1991-04-24 Heat insulator and structure using the same
DE69120763T DE69120763T2 (en) 1990-04-25 1991-04-24 THERMAL INSULATING MATERIAL AND STRUCTURE MADE THEREOF
PCT/JP1991/000549 WO1991016278A1 (en) 1990-04-25 1991-04-24 Heat insulating material and structure made therefrom
KR1019910701531A KR950002918B1 (en) 1990-04-25 1991-04-24 Cement based heat insulator method of making same and structure having same
EP91908788A EP0480070B1 (en) 1990-04-25 1991-04-24 Heat insulating material and structure made therefrom
CN91103347A CN1041817C (en) 1990-04-25 1991-04-24 Heat insulating materials and elements using same
SE9103102A SE502751C2 (en) 1990-04-25 1991-10-23 Heat insulator and construction utilizing this
NO19914983A NO311563B1 (en) 1990-04-25 1991-12-17 Heat insulating material and structure using this
FI916081A FI100597B (en) 1990-04-25 1991-12-20 Heat insulator and structure made of it
US08/117,876 US5308891A (en) 1990-04-25 1993-09-07 Cement based heat insulator, method of making same and structure having same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10954690A JP2868578B2 (en) 1990-04-25 1990-04-25 Insulation

Publications (2)

Publication Number Publication Date
JPH046182A true JPH046182A (en) 1992-01-10
JP2868578B2 JP2868578B2 (en) 1999-03-10

Family

ID=14512991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10954690A Expired - Fee Related JP2868578B2 (en) 1990-04-25 1990-04-25 Insulation

Country Status (1)

Country Link
JP (1) JP2868578B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327464A (en) * 2002-05-14 2003-11-19 Ohbayashi Corp Heat insulating material composition
JP2005320843A (en) * 2004-04-09 2005-11-17 Sk Kaken Co Ltd Heat insulation structure body and its execution method
JP2010121416A (en) * 2008-11-21 2010-06-03 Takenaka Komuten Co Ltd Heat insulator, wall structure using the heat insulator and method for kneading the heat insulator
JP2010144027A (en) * 2008-12-18 2010-07-01 Takenaka Komuten Co Ltd Premix composition for insulation production and insulation
JP2011057503A (en) * 2009-09-09 2011-03-24 Tokuyama Corp Internal filler for window frame

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327464A (en) * 2002-05-14 2003-11-19 Ohbayashi Corp Heat insulating material composition
JP2005320843A (en) * 2004-04-09 2005-11-17 Sk Kaken Co Ltd Heat insulation structure body and its execution method
JP2010121416A (en) * 2008-11-21 2010-06-03 Takenaka Komuten Co Ltd Heat insulator, wall structure using the heat insulator and method for kneading the heat insulator
JP2010144027A (en) * 2008-12-18 2010-07-01 Takenaka Komuten Co Ltd Premix composition for insulation production and insulation
JP2011057503A (en) * 2009-09-09 2011-03-24 Tokuyama Corp Internal filler for window frame

Also Published As

Publication number Publication date
JP2868578B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
US5735098A (en) Fire-resistant composition, panel and external wall for various buildings
JP5557145B2 (en) SOUND ABSORBING SYSTEM AND MANUFACTURING METHOD THEREOF
JP2829093B2 (en) Fireproof coating
US20100064613A1 (en) Steamproof wallboards for damp room
EP0480070B1 (en) Heat insulating material and structure made therefrom
JPH046182A (en) Heat insulating material and structure formed by using this heat insulating material
JPH07300913A (en) Light weight heat insulating fire proofing panel
JP2007146605A (en) External heat insulating construction method of building, heat insulating cement composition, heat insulating polymer cement mortar, and external heat insulating laminated structure
JPH0893077A (en) Fire-resistant covering laminate structure of steel with draining/deaerating mechanism
JP2868579B2 (en) Insulation material and structure using this insulation material
US5308891A (en) Cement based heat insulator, method of making same and structure having same
CN101691798A (en) Reinforced insulation composite material for exterior wall and application method
JP2804820B2 (en) Structure to prevent condensation forming space
WO1991018154A1 (en) Condensation preventing structure
JP2915800B2 (en) Exterior insulation panels and exterior insulation structures for wooden buildings
KR200409928Y1 (en) Structural interior decoration
JPS60119843A (en) Outer wall heat insulating construction method of building
BG109172A (en) Dry light material for civil works and mortar threreof
JPH01105854A (en) Foundation layer for preventing blister of impermeable finished layer
JP2004316336A (en) Wall and its manufacturing method
KR20220060532A (en) Insulation material and its manufacturing method
JPH06136851A (en) Steel frame structural material-coating fire resisting board
JP3025115U (en) Exterior wall panel
KR20220044735A (en) Insulation material and its manufacturing method
JPH01157475A (en) Lightweight cellular concrete having high heat insulating property

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees