JPH046154A - Production of carbon molded body - Google Patents

Production of carbon molded body

Info

Publication number
JPH046154A
JPH046154A JP2105213A JP10521390A JPH046154A JP H046154 A JPH046154 A JP H046154A JP 2105213 A JP2105213 A JP 2105213A JP 10521390 A JP10521390 A JP 10521390A JP H046154 A JPH046154 A JP H046154A
Authority
JP
Japan
Prior art keywords
fibers
pitch
carbon
product
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2105213A
Other languages
Japanese (ja)
Inventor
Susumu Nakai
進 中井
Minoru Yoshida
稔 吉田
Mamoru Kamishita
神下 護
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2105213A priority Critical patent/JPH046154A/en
Publication of JPH046154A publication Critical patent/JPH046154A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a carbon molded body useful as a heat insulator for a high temp. furnace, etc., at a low cost by mixing carbon fibers with pitch fibers having a prescribed rate of residual carbon under specified conditions and baking a laminate of the mixed fibers in an inert atmosphere. CONSTITUTION:Carbon fibers are mixed with pitch fibers having 0.3-0.9 rate (f) of residual carbon produced from coal pitch and/or petroleum pitch so as to regulate the product (f.r) of the weight ratio (r) of the pitch fibers to the carbon fibers and the rate (f) of residual carbon to 0.1-4.0. A laminate of the mixed fibers are baked at >=800 deg.C in an inert atmosphere such as an N2 atmo sphere.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は炭素繊維およびピッチ繊維を用いた成形体、特
に高温炉用断熱材料等に使用される安価な成形体の製造
方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing a molded article using carbon fibers and pitch fibers, particularly an inexpensive molded article used as a heat insulating material for high temperature furnaces, etc. .

(従来の技術) 炭素材料は、古くより高温用の断熱材として広く使用さ
れてきたが、特に近年先端複合材料や新素材を製造する
のに数多くの高温炉が使用されるようになり、また炭素
材料自身が耐熱性素材もしくはその原料として注目され
るようになって、需要が高まっている。これは高温にお
ける強度、寸法安定性や他の金属、セラミック材料に比
べ軽量であること、2000℃以上の超高温域でも使用
可能なことに基づくものである。
(Prior art) Carbon materials have long been widely used as high-temperature insulation materials, but in recent years, many high-temperature furnaces have been used to manufacture advanced composite materials and new materials. Carbon materials themselves are attracting attention as heat-resistant materials or their raw materials, and demand is increasing. This is based on the fact that it has strength and dimensional stability at high temperatures, is lighter than other metals and ceramic materials, and can be used even in the ultra-high temperature range of 2000°C or higher.

炭素材料は従来、石油コークスや石炭コークスの粉粒体
を骨材として、これにバインダーを添加し、プレス成形
等を施した後焼成(必要に応じてより高温下で黒鉛化)
処理して成形体となし利用されてきた。しかし最近では
より軽量で破損し難いということで、炭素繊維を原料と
する成形体が多く利用されるようになってきた。例えば
特開昭52−47014号公報に開示されているように
炭素繊維の製造と同時に成形体を製造するというもの、
特開昭59−69410号公報に開示されているように
炭素繊維の織物等に樹脂やピッチ等を含浸させて熱処理
を施しく必要に応じてこれを数回くり返す)で製造する
もの(含浸法)、あるいは特公昭5!If−38179
号公報に開示されているように化学的な方法で炭素繊維
の織物の中に炭素等を発生・沈着させる方法(CV D
 =ChemicalVapor Deposjtio
n法)もある。
Conventionally, carbon materials are made using petroleum coke or coal coke powder as aggregate, adding a binder to this, performing press molding, etc., and then firing (graphitizing at higher temperatures if necessary)
It has been processed and used as a molded body. However, in recent years, molded bodies made from carbon fiber have come into widespread use because they are lighter and less likely to break. For example, as disclosed in Japanese Unexamined Patent Publication No. 52-47014, a molded article is manufactured at the same time as carbon fiber is manufactured;
As disclosed in Japanese Patent Application Laid-Open No. 59-69410, carbon fiber fabrics are impregnated with resin, pitch, etc., heat treated, and this process is repeated several times as necessary. Law), or Tokuko Sho 5! If-38179
As disclosed in the publication, there is a method of generating and depositing carbon etc. in carbon fiber textiles by a chemical method (CVD).
=Chemical Vapor Depositsio
n method) is also available.

また炭素繊維だけで作ったフェルト、マット、織物等を
、そのまま利用する方法もあるが、成形体とは異なり、
自身の形態保持能力に欠けるため、例えば他の断熱材の
間隙充填材や被覆材としての用途に限定されてしまう。
There is also a method of using felt, mats, textiles, etc. made only of carbon fiber as is, but unlike molded objects,
Because it lacks the ability to maintain its own shape, its use is limited to, for example, as a gap filler or coating material for other heat insulating materials.

(発明が解決しようとする課題) 前述の特開昭52−47014号公報等に開示されてい
る方法はピッチ繊維又は不融化繊維から直接成形体を製
造しようとしているが、原料および処理工程(方法)が
全て炭素繊維の製造と同じである為に、得られる製品も
マット状の炭素繊維そのものであって、前述のとおり形
態保持能力に欠けるため、通常の炭素材料成形体と同様
の使用には通さない。
(Problems to be Solved by the Invention) The methods disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 52-47014 etc. attempt to produce molded articles directly from pitch fibers or infusible fibers, but the raw materials and processing steps (method ) are all the same as in the production of carbon fibers, so the resulting product is just matte carbon fiber itself, and as mentioned above, lacks the ability to retain its shape, so it cannot be used in the same way as a normal carbon material molded product. It won't pass.

炭素繊維を用いた最も一般的な成形体の製造方法である
含浸法(前記特開昭51−69410号等)では、加圧
あるいは減圧もしくはその両者を使って原料である炭素
繊維の織物等の中にピッチや樹脂等を注入する高価かつ
大形化しづらい含浸装置が必要であり、しかも含浸処理
の均一性を実現する為通常 というエネルギー消費の莫大なプロセスを数回くり返す
ため、製品である成形体の価格が高価になるという欠点
があった。又含浸の容易さと均一性を確保するためと、
繰り返し行われる焼成による製品の変形を回避するため
、さらには装置そのものが高価であることから、厚肉・
大形の成形体が製造しづらいという欠点がある。
In the impregnation method (Japanese Unexamined Patent Publication No. 51-69410, etc.), which is the most common method for producing molded objects using carbon fibers, the raw material, such as carbon fiber fabrics, is heated using pressurization, reduced pressure, or both. It requires expensive impregnation equipment that injects pitch, resin, etc. into the product, and is difficult to scale up.Furthermore, in order to achieve uniformity of the impregnation process, the usual energy-consuming process is repeated several times. There was a drawback that the price of the molded body was high. Also, to ensure ease and uniformity of impregnation,
In order to avoid deformation of the product due to repeated firing, and because the equipment itself is expensive, thick walls and
The drawback is that it is difficult to produce large molded bodies.

一方前述の特公昭59−38179号公報に見られるよ
うなCVD法等は、マトリックスとして炭素以外のセラ
ミックス等も利用できることもあって注目を集めている
が、高真空システムを備えた極めて高価な製造装置が必
要となり、小形の成形体しか製造できず、また高価であ
るため、高温炉等の一般の断熱材用としては殆ど用いら
れず、耐熱材として限られた特殊な用途(宇宙ロケット
の外壁材等)においてのみ実績を挙げている状況である
On the other hand, the CVD method as seen in the above-mentioned Japanese Patent Publication No. 59-38179 is attracting attention because it can use ceramics other than carbon as a matrix, but it requires extremely expensive manufacturing using a high vacuum system. Because it requires equipment, can only produce small compacts, and is expensive, it is rarely used for general insulation materials such as high-temperature furnaces, and has limited special uses as a heat-resistant material (external walls of space rockets). Currently, the company has achieved results only in the field of materials (such as wood, etc.).

上記で述べた方法(含浸法、CVD法)は何れも製造方
法または製造装置の制約により、厚肉・大形の製品が製
造しづらく、又高価であるという問題を有している(ち
なみにこれらの方法で使用される炭素繊維原料は、PA
N又はレーヨン系等の長繊維から作った織物であるが、
これ自体が非常に高価なものであることは周知のとおり
である)。
The above-mentioned methods (impregnation method, CVD method) all have the problem that it is difficult to manufacture thick-walled, large-sized products due to limitations in the manufacturing method or manufacturing equipment, and they are also expensive (incidentally, these methods The carbon fiber raw material used in the method is PA
It is a fabric made from long fibers such as N or rayon,
(As is well known, this itself is very expensive.)

(課題を解決するための手段) 本発明は、含浸装置やCVD装置等の高価でかつ装置自
体および製品の大形化に制約のある装置を使わずに、炭
素繊維を原料とする成凰体を、炭素繊維とピッチ繊維を
混合して得た混合繊維を積層するか炭素繊維層とピッチ
繊維層を交互に積層し、不活性雰囲気の中で焼成処理す
ることにより、安価に製造する方法である。
(Means for Solving the Problems) The present invention provides a synthetic material made of carbon fibers without using expensive equipment such as impregnation equipment or CVD equipment and which has restrictions on increasing the size of the equipment itself and the product. is produced at low cost by laminating mixed fibers obtained by mixing carbon fibers and pitch fibers, or by alternately laminating carbon fiber layers and pitch fiber layers and firing them in an inert atmosphere. be.

原料である炭素繊維は、ピッチ系、PAN系。The raw material carbon fiber is pitch-based or PAN-based.

レーヨン−系、その他、形態はチョップ、マット。Rayon-based, other forms are chopped and matte.

フェルト、織物等信れでも良いが、より安価な成形体を
製造するという点からはピッチ系短繊維炭素繊維等が、
原料価格の面からも取り扱いの容易さからも望ましい。
Felt, woven fabrics, etc. can be relied upon, but from the point of view of producing cheaper molded products, pitch-based short fiber carbon fibers, etc.
It is desirable from the viewpoint of raw material cost and ease of handling.

ピッチ繊維については原料が石油でも石炭でも良く、炭
素繊維の原料として製造されるピッチ繊維でも、そうで
なくとも良い。また繊維径は5〜100μm、繊維長は
5IIIIn以上であることが扱い易さの点で望ましい
。但し使用するピッチ繊維は後述する理由から、残炭率
fが0.3〜0.9の範囲にある必要がある。
The raw material for pitch fibers may be petroleum or coal, and pitch fibers may or may not be produced as raw materials for carbon fibers. Further, from the viewpoint of ease of handling, it is desirable that the fiber diameter is 5 to 100 μm and the fiber length is 5IIIn or more. However, the pitch fiber used needs to have a residual carbon ratio f in the range of 0.3 to 0.9 for reasons described later.

又炭素繊維とピッチ繊維両者の使用量については、ピッ
チ繊維の重量−7(g)と炭素繊維の重量−P IAc (g”)の重量比r=    とピッチ繊維の
残C 炭率fとの積r−rの値が0.1〜4.0の範囲内にあ
ることが必要である。但しf−rの値は上記の中央付近
の値(例えばf −r =2.0等)がより望ましいと
いうことはなく、この値の変化によって製造される成形
体の特性が変化するので、目的に応じてこの値を上記の
範囲内で選べば良い。すなわちf−r <1.0のよう
な範囲では、原料である炭素繊維のフェルト、マット、
チョップ等の形態をそのまま強く残した、弾力性・加工
性に富んだ(容易に変形可能、また切断可能)成形体と
なり、逆にf−r >3.0のような大きな値となる場
合には、形態保持能力に富んだ固い成形体を得ることが
できる。(ここで「残炭率f」とは、ピッチ繊維を不活
性雰囲気中で昇温速度50℃/min以下で800℃ま
で昇温処理したとき、最初のピッチ繊維の重量[ha 
Cg) Jと炭化して残った残留物のU。
In addition, regarding the amount of both carbon fiber and pitch fiber used, the weight ratio r = of pitch fiber weight - 7 (g) and carbon fiber weight - PIAc (g") and the remaining C carbon ratio f of pitch fiber. The value of the product r-r must be within the range of 0.1 to 4.0.However, the value of f-r should be around the center of the above (for example, f-r = 2.0). This value is not more desirable, and changes in this value will change the characteristics of the molded product produced, so this value may be selected within the above range depending on the purpose.In other words, f-r <1.0. In this range, the raw material carbon fiber felt, mat,
A molded product with high elasticity and workability (easily deformable and cuttable) that strongly retains the shape of the chop, etc., and conversely has a large value such as f-r > 3.0. A hard molded product with excellent shape retention ability can be obtained. (Here, "residual carbon percentage f" refers to the initial pitch fiber weight [ha
Cg) J and the residue U left after carbonization.

重量[W、 (g) ]の比    を残炭率と呼ぶ。The ratio of weight [W, (g)] is called the residual coal ratio.

)何。)what.

本発明による成形体の製造方法は以下の通りである。The method for producing a molded article according to the present invention is as follows.

(イ)炭素繊維のチョップ(繊維長5〜100100O
とピッチ繊維のチぢツブ(5mm以上)を前述のf−r
値が規定の範囲となるように、均一に混合し、所要の厚
みとなるよう積層する。
(a) Chopped carbon fiber (fiber length 5-100100O
and pitch fiber chips (5 mm or more) as mentioned above.
They are mixed uniformly so that the value falls within the specified range, and are laminated to the required thickness.

(ロ)又は炭素繊維のチジップ、フェルトマット、織物
等とピッチ繊維のチョップ、フェルト、マット等をf−
rの値が規定の範囲内に収まるよう任意の枚数を交互に
積層する。
(b) Or use carbon fiber chips, felt mats, woven fabrics, etc. and pitch fiber chops, felt, mats, etc.
An arbitrary number of sheets are alternately stacked so that the value of r falls within a specified range.

(ハ)上記の(イ)又は(ロ)で用意した混合繊維層の
積層体又は炭素繊維層とピッチ繊維層の積層体をそのま
ま、またはロール等で圧縮高密度化した後に、あるいは
繊維層の上に重しを乗せる等して加圧状態を保持したま
まで、不活性雰囲気中で800℃以上の高温で焼成処理
を行うことによって成形体を得る。
(c) The laminate of mixed fiber layers or the laminate of carbon fiber layers and pitch fiber layers prepared in (a) or (b) above can be used as is, or after being compressed and densified using rolls, etc. A molded body is obtained by performing firing treatment at a high temperature of 800° C. or higher in an inert atmosphere while maintaining a pressurized state by placing a weight on the molded body.

上記焼成処理を行う際の焼成温度は800℃以上であれ
ば良いが、製品成形体が800℃以上の高温で使用され
る場合には当該温度以上の高温で焼成処理することが、
製品寿命および使用中のガス発生を抑制する目的から望
ましい。
The firing temperature when performing the above firing treatment may be 800°C or higher, but if the product molded body is used at a high temperature of 800°C or higher, the firing treatment may be performed at a high temperature of 800°C or higher.
Desirable for the purpose of increasing product life and suppressing gas generation during use.

本発明の方法によれば、高価な含浸装置やC■D装置等
が不要なので安価に成形体を製造することができる。し
かも焼成処理前に炭素繊維とピッチ(繊維)が均一に混
合、もしくは交互に積層されているので、含浸性等の問
題がなく製品の厚肉化、大形化が容易である。また製造
装置も焼成炉だけであるので、大形化に対するコストア
ップが極めて小さく、技術的にも全く容易であるという
特長がある。
According to the method of the present invention, molded bodies can be produced at low cost since expensive impregnation equipment, CD equipment, etc. are not required. Moreover, since the carbon fibers and pitch (fibers) are uniformly mixed or alternately layered before firing, there is no problem with impregnation, and the product can be easily made thicker and larger. In addition, since the manufacturing equipment is only a firing furnace, there is an advantage that the cost increase due to enlargement is extremely small and it is technically easy.

(作 用) 本発明の方法において焼成処理を行う際の不活性雰囲気
中では、炭素繊維自体は何ら変化しないことは周知のと
おりであるが、f−rの値が小さい場合(特にr値が小
さい場合)は、焼成処理過程における昇温時に溶融する
ピッチの粘性が低いため流動性が高く、炭素繊維同志の
接点もしくは間隔の小さい場所に選択的に付着・残留し
炭化する。これによってできる成形体は炭素繊維の比率
が大きいので、原料炭素繊維(及びそのマット、フェル
ト等)の性質である柔軟性を残し、加工性に優れるが、
炭素繊維間の交点での接着は強固で充分な形態保持能力
を有する成形体が得られる。
(Function) It is well known that the carbon fiber itself does not change in any way in the inert atmosphere during the firing treatment in the method of the present invention, but when the value of f-r is small (especially when the r value is If the pitch is small), the viscosity of the pitch that melts when the temperature rises in the firing process is low, so it has high fluidity, and it selectively adheres to and remains at the contact points of carbon fibers or at places with small gaps, and carbonizes. The molded product produced by this method has a large proportion of carbon fiber, so it retains the flexibility of the raw material carbon fiber (and its mats, felts, etc.) and has excellent workability.
The bonding at the intersections between the carbon fibers is strong, and a molded article having sufficient shape retention ability can be obtained.

一方f−r値が大きい場合(特に圧縮処理又は加圧焼成
をした場合)には、炭素繊維の間隙を埋めるようにピッ
チ繊維が溶融した後炭化し、含浸法等で製造するのに似
た高密度で固い成形体を得ることができる。
On the other hand, when the f-r value is large (particularly when compression treatment or pressure firing is performed), pitch fibers are melted and carbonized to fill the gaps between carbon fibers, resulting in a process similar to that produced by the impregnation method. A high-density and hard molded body can be obtained.

本発明では使用するピッチ繊維の残炭率fの値と、ピッ
チ繊維と炭素繊維の比rとfとの積の値に制約があるこ
とは既に述べたが、これは以下の理由によるものである
It has already been mentioned that in the present invention, there are restrictions on the value of the residual carbon percentage f of the pitch fiber used and the value of the product of the ratio r and f of the pitch fiber and carbon fiber, but this is due to the following reasons. be.

fの値が0.3より小さいピッチ繊維を使用すると、溶
融時の流動性は良いが、製品成形体中でのピッチ繊維に
由来する炭化物の偏析が生じ良好な成形体が得られない
という問題が生じる。一方fの値が0.9より大きいと
焼成処理過程の中で、ピンチ繊維が溶融しないか、溶融
しても充分な流動性を発現しないため、均一な成形体が
得られないという問題を生じる。又f−rの値が0.1
より小さいと、炭素繊維間の接着に必要な量の、ピッチ
繊維に由来する炭化物が形成せず、形態保持能力に欠け
る成形体になるという問題が生じる(これは、本発明の
方法によって成形体を製造した場合、ピッチ繊維に由来
する炭化物の性成量が、残炭率fから期待される値より
通常かなり小さいことが主な原因である)。f−rの値
が4.0より大きいと、焼成処理時に溶融ピッチ相から
発生するガス等の抜けが悪く、成形体の中に気泡として
残り、均一な製品にならないという問題がある。
If pitch fibers with an f value of less than 0.3 are used, the fluidity during melting is good, but the problem is that carbides derived from the pitch fibers segregate in the product molded product, making it impossible to obtain a good molded product. occurs. On the other hand, if the value of f is larger than 0.9, the pinched fibers will not melt during the firing process, or even if they are melted, they will not exhibit sufficient fluidity, resulting in the problem that a uniform molded product cannot be obtained. . Also, the value of fr is 0.1
If the size is smaller, the amount of carbide derived from the pitch fibers required for adhesion between carbon fibers will not be formed, resulting in a molded product lacking in shape retention (this is because the method of the present invention will cause the molded product to The main reason for this is that the amount of carbide derived from pitch fibers is usually much smaller than the value expected from the residual carbon ratio f). If the value of f-r is greater than 4.0, there is a problem that gases generated from the molten pitch phase during the firing process do not escape easily and remain as bubbles in the molded product, resulting in an uneven product.

(実施例) 次に本発明を実施例により説明する。(Example) Next, the present invention will be explained by examples.

実1」1− 遠心紡糸法により製造された石炭ピッチ系炭素繊維のチ
ョップ品(平均径16μm、平均長80mm)1.00
0gと、この炭素繊維の原料となったピッチ繊維と同じ
ものから製造したチョップ状ピッチ繊維(平均径18μ
m 、平均長40mm、残炭率0.7)1 、000 
gを乾式で均一混合し、2.OOOmmX 500mm
のトレー上に積層し、厚さ200 mmの平板状にした
Fruit 1" 1- Chopped product of coal pitch carbon fiber manufactured by centrifugal spinning method (average diameter 16 μm, average length 80 mm) 1.00
0g, and chopped pitch fiber (average diameter 18μ) manufactured from the same pitch fiber as the raw material for this carbon fiber.
m, average length 40 mm, residual coal rate 0.7) 1,000
2. OOOmmX 500mm
They were stacked on a tray to form a flat plate with a thickness of 200 mm.

これをそのままN2雰囲気中で室温より900℃まで4
0分、900℃で5分間キープする条件で焼成したとこ
ろ表1の(1)のような成形体を得た。
This was heated as it was in a N2 atmosphere from room temperature to 900°C.
The molded product shown in Table 1 (1) was obtained by firing under the conditions of 0 minute and 900° C. for 5 minutes.

実施炎又 実施例1で用いた炭素繊維チョップ品1 、000 g
とピッチ繊維チョップ品3,000gを乾式で均一混合
し、2.000mm X 500mmのトレー上に積層
した後ローラープレスで厚さ80mmの平板状にした。
Carbon fiber chopped product 1,000 g used in Example 1
and 3,000 g of chopped pitch fibers were uniformly mixed in a dry method, stacked on a 2.000 mm x 500 mm tray, and then formed into a flat plate with a thickness of 80 mm using a roller press.

これをそのままN2雰囲気中で室温より1000℃まで
45分間、1000’Cで5分間キープする条件で焼成
処理して表1の(2)のような成形体を得た。
This was fired as it was in a N2 atmosphere under conditions of heating from room temperature to 1000°C for 45 minutes and holding at 1000'C for 5 minutes to obtain a molded body as shown in (2) in Table 1.

災脂拠主 実施例1で用いた炭素繊維から製造したフェルト(目付
200 g/m2)と、電極含浸用石炭系ピッチから製
造したピッチ繊維チョップ(平均径14μm、平均長3
0mm、残炭率0.5)の層を交互に各々10層(計2
0層)重ねて面積500m X 500mmの平板状と
し、その上にアルミナ製の500mm X 500mm
のプレート(重さ7.5 kg)10枚をのせて、0.
03kg/cm2の加圧状態で、室温から1200℃ま
で60分、キープなしの条件で焼成したところ表1の(
3)のような成形体を得た。
Felt manufactured from the carbon fiber used in Example 1 (fabric weight 200 g/m2) and pitch fiber chops manufactured from coal-based pitch for electrode impregnation (average diameter 14 μm, average length 3
0 mm, residual carbon ratio 0.5), 10 layers each (total 2
0 layer) is stacked to form a flat plate with an area of 500m x 500mm, and on top of that is a 500mm x 500mm layer made of alumina.
10 plates (weighing 7.5 kg) are placed on top of each other.
When baked from room temperature to 1200℃ for 60 minutes without holding under a pressure of 0.3kg/cm2, the results shown in Table 1 (
A molded article as shown in 3) was obtained.

(発明の効果) 本発明の製造方法に従うと、高温炉用断熱材等に適した
、炭素繊維を使用した大形の成形体を特別な装置を用い
ることなく安価に製造することができる。
(Effects of the Invention) According to the manufacturing method of the present invention, a large molded body made of carbon fiber and suitable for a heat insulating material for a high temperature furnace can be manufactured at low cost without using any special equipment.

Claims (1)

【特許請求の範囲】 1、炭素繊維と石炭系ピッチおよび/または石油系ピッ
チから製造された残炭率fが0.3〜0.9の範囲にあ
るピッチ繊維とを、ピッチ繊維と炭素繊維の重量比rと
前記fとの積f・rの値が0.1〜4.0の範囲となる
ように混合して得られた混合繊維の積層体を不活性雰囲
気中800℃以上の条件で焼成処理することを特徴とす
る炭素成形体の製造方法。 2.炭素繊維と石炭系ピッチおよび/または石油系ピッ
チから製造された残炭率fが0.3〜0.9の範囲にあ
るピッチ繊維とを、ピッチ繊維と炭素繊維の重量比rと
前記fとの積f・rの値が0.1〜4.0の範囲となる
ようにピッチ繊維と炭素繊維とを交互に積層し、不活性
雰囲気中800℃以上の条件で焼成処理することを特徴
とする炭素成形体の製造方法。
[Claims] 1. Pitch fibers and pitch fibers manufactured from coal-based pitch and/or petroleum-based pitch and having a carbon residual ratio f in the range of 0.3 to 0.9; A laminate of mixed fibers obtained by mixing so that the value of the product f・r of the weight ratio r of 1. A method for producing a carbon molded body, characterized by performing a firing treatment. 2. Carbon fibers and pitch fibers manufactured from coal-based pitch and/or petroleum-based pitch and having a residual carbon percentage f in the range of 0.3 to 0.9 are combined with the weight ratio r of pitch fibers and carbon fibers and the above f. Pitch fibers and carbon fibers are alternately laminated so that the value of the product f/r is in the range of 0.1 to 4.0, and then fired in an inert atmosphere at a temperature of 800°C or higher. A method for producing a carbon molded body.
JP2105213A 1990-04-23 1990-04-23 Production of carbon molded body Pending JPH046154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2105213A JPH046154A (en) 1990-04-23 1990-04-23 Production of carbon molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2105213A JPH046154A (en) 1990-04-23 1990-04-23 Production of carbon molded body

Publications (1)

Publication Number Publication Date
JPH046154A true JPH046154A (en) 1992-01-10

Family

ID=14401393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2105213A Pending JPH046154A (en) 1990-04-23 1990-04-23 Production of carbon molded body

Country Status (1)

Country Link
JP (1) JPH046154A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5903706A (en) * 1994-08-26 1999-05-11 Hitachi, Ltd. Imager apparatus with rotatable camera head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5903706A (en) * 1994-08-26 1999-05-11 Hitachi, Ltd. Imager apparatus with rotatable camera head

Similar Documents

Publication Publication Date Title
US4396663A (en) Carbon composite article and method of making same
JPS5829129Y2 (en) Multilayer molded insulation material for vacuum furnaces
US3174895A (en) Graphite cloth laminates
JPH0136670B2 (en)
EP2093453B1 (en) CVI followed by coal tar pitch densification by VPI
JPS6256103B2 (en)
JPH0451510B2 (en)
WO1999019273A1 (en) Fibrous composite material and process for producing the same
US3407038A (en) Shredded carbonaceous fiber compactions and method of making the same
US4080413A (en) Porous carbon fuel cell substrates and method of manufacture
JPH08226054A (en) Production of carbon primary molding and carbon/carbon composite material
JPH046154A (en) Production of carbon molded body
EP0029851B1 (en) Method of making carbon composite article
JP2783807B2 (en) Carbon fiber reinforced carbon composite material and method for producing the same
JPS6385116A (en) Heat insulating material of carbon fiber
JPH04107398A (en) Carbon fiber heat insulating material
JP2002234949A (en) Heat-resistant molding
JP2665957B2 (en) Carbon fiber / carbon composite
CN113373505B (en) Single crystal furnace thermal field heat preservation cylinder and preparation method thereof
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JPH11180781A (en) Production of carbon fiber reinforced carbon composite material and carbon fiber reinforced carbon composite material
JPH09157065A (en) Production of carbonaceous porous body and porous laminated sheet
JPH03141170A (en) Heat-insulation material and production thereof
JP3244280B2 (en) Manufacturing method of jig material for glass container manufacturing
JP3244281B2 (en) Manufacturing method of jig material for glass container manufacturing