JPH0460433A - Measuring method of curve in scanning optical system - Google Patents

Measuring method of curve in scanning optical system

Info

Publication number
JPH0460433A
JPH0460433A JP16983490A JP16983490A JPH0460433A JP H0460433 A JPH0460433 A JP H0460433A JP 16983490 A JP16983490 A JP 16983490A JP 16983490 A JP16983490 A JP 16983490A JP H0460433 A JPH0460433 A JP H0460433A
Authority
JP
Japan
Prior art keywords
polygon mirror
scanning
sensor
optical system
rotating polygon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16983490A
Other languages
Japanese (ja)
Inventor
Nobuo Oguma
小熊 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP16983490A priority Critical patent/JPH0460433A/en
Publication of JPH0460433A publication Critical patent/JPH0460433A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To reduce a curve of a linear image due to rotation of a rotary polyhedral mirror to a specific value or below and to improve the quality of a scanning optical system by providing three or more sensors at an imaging position and by setting a unit of the scanning optical system on a rotary pulse stage. CONSTITUTION:Three or more sensors 5 are provided at an imaging position and a unit of a scanning optical system is set on a rotary pulse stage 7, while the rotary pulse stage 7 is constructed so that it can rotate coaxially with the center of rotation of a rotary polyhedral mirror 3. In a state wherein the rotation of the rotary polyhedral mirror 3 is stopped, the stage 7 is moved, an emission beam is sensed by each sensor 5 and the barycenter of the beam is measured by each sensor 5. The stage 7 being fixed with a measured value used as a reference point, subsequently, the rotary polyhedral mirror 3 is rotated, the barycenter of the beam of each sensor 5 on each reflecting surface of the rotary polyhedral mirror 3 is measured, a difference in the barycenter of the beam at the position of each sensor on each reflecting surface of the rotary polyhedral mirror 3 is calculated, and a curve of the scanning beam on each reflecting surface is measured. According to this constitution, the curve of a linear image can be reduced to about 100 to 200 mum or below for 300 mm.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザプリンタ等の走査光学系におけるビー
ム形状測定方法に関し、レーザプリンタ等の走査光学系
の回転多面鏡により走査されるビームの曲がりの測定方
法に関するものであり、走査光学系のレンズ組立、検査
調整に通用できるものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a beam shape measurement method in a scanning optical system of a laser printer, etc. The present invention relates to a measurement method and can be used for lens assembly and inspection adjustment of scanning optical systems.

〔従来の技術] このような走査光学系において、回動する投光側の光束
を測光素子を備えた受光側鏡胴の光軸に合致させ、ビー
ム形状を測定することは、例えば特開昭55−6771
0号公報に記載されている。
[Prior Art] In such a scanning optical system, measuring the beam shape by aligning the rotating light beam on the light emitting side with the optical axis of the light receiving side lens barrel equipped with a photometric element is known, for example, as described in Japanese Patent Application Laid-Open No. 55-6771
It is described in Publication No. 0.

本発明者は、近年、走査光学系におけるビーム形状測定
方法についての開発を行っており、その内の一つとして
、本出願前公知ではないが、回転多面鏡、fθレンズで
走査される各走査軸と、受光部の設定された測定軸との
交点に、ミラー、ビームスプリッタを設け、各走査ビー
ムの光路長を調整するため、受光部を測定軸に沿って移
動し、ビームの輝度分布を測定する方法がある。
The present inventor has recently been developing a beam shape measurement method in a scanning optical system, and as one of the methods, although not known before this application, each scan scanned by a rotating polygon mirror and an fθ lens A mirror and a beam splitter are installed at the intersection of the axis and the measurement axis where the light receiver is set, and in order to adjust the optical path length of each scanning beam, the light receiver is moved along the measurement axis and the brightness distribution of the beam is adjusted. There is a way to measure it.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述した各走査ビームの光路長を調整するため、受光部
を測定軸に沿って移動する測定方法において、回転多面
鏡は実際の使用状態の走査速度より低い速度で測定され
、そして、受光部の走査方向の基準が設定されないので
、走査ビームの走査位置での副走査方向の絶対的な輝度
座標の位置、すなわちビームの走査方向での曲がりが測
定できない欠点を有している。
In the measurement method described above in which the light receiving section is moved along the measurement axis in order to adjust the optical path length of each scanning beam, the rotating polygon mirror is measured at a scanning speed lower than the scanning speed in actual use, and the light receiving section is Since a reference in the scanning direction is not set, it has a drawback that the position of the absolute brightness coordinate in the sub-scanning direction at the scanning position of the scanning beam, that is, the bending of the beam in the scanning direction cannot be measured.

本発明は、前記のごとき欠点を解消すると共に回転多面
鏡の回転に起因して、直線像が彎曲する曲がりを、30
01で約100〜200μm以下に抑えるに通した測定
法を提供し、デジタル画像用の走査光学系の品質を向上
させることができる走査光学系におけるビーム形状測定
方法を提供することを目的とするものである。
The present invention eliminates the above-mentioned drawbacks and also eliminates the bending of a straight line image by 30 degrees due to the rotation of a rotating polygon mirror.
01 to approximately 100 to 200 μm or less, and to provide a beam shape measurement method in a scanning optical system that can improve the quality of the scanning optical system for digital images. It is.

[課題を解決するだめの手段〕 本発明は、前記目的を達成するために、光源、シリンド
リカルレンズ、回転多面鏡、fθレンスからなる走査光
学系におけるfθレンズからの射出ビームの結像位置に
、センサを配置して、ビーム形状を測定方法において、
前記結像位置に三個以上のセンサを設置し、前記走査光
学系のユニントを回転パルスステージに載置すると共に
、該回転パルスステージを回転多面鏡の回転中心と同軸
で回動できるように構成し、回転多面鏡の回転を停止し
た状態において、回転パルスステージを移動して、各セ
ンサで射出ビームを受光して、各センサにおいてビーム
の重心を測定し、この測定値を基準点として、次に、回
転パルスステージを固定して、回転多面鏡を回転し、回
転多面鏡の各反射面における各センサのビームの重心を
測定し、しかる後、回転多面鏡の各反射面の各センサ位
置におけるビームの重心の差を算出し、反射面毎の走査
ビームの曲がりの測定を行うことを特徴とするものであ
る。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a scanning optical system that includes a light source, a cylindrical lens, a rotating polygon mirror, and an fθ lens, at the imaging position of the beam emitted from the fθ lens. In the method of arranging the sensor and measuring the beam shape,
Three or more sensors are installed at the image forming position, a unit of the scanning optical system is placed on a rotating pulse stage, and the rotating pulse stage is configured to be able to rotate coaxially with the center of rotation of the rotating polygon mirror. Then, with the rotation of the rotating polygon mirror stopped, the rotating pulse stage is moved, each sensor receives the emitted beam, the center of gravity of the beam is measured at each sensor, and this measurement value is used as a reference point for the next step. First, fix the rotating pulse stage, rotate the rotating polygon mirror, measure the center of gravity of each sensor beam on each reflecting surface of the rotating polygon mirror, and then measure the center of gravity of each sensor beam on each reflecting surface of the rotating polygon mirror. This method is characterized by calculating the difference in the center of gravity of the beam and measuring the curvature of the scanning beam for each reflecting surface.

〔作 用] 本発明の構成により、反射面毎の走査ビームの曲がりの
測定を行うことができ、走査ビームの曲がりの測定結果
により、回転多面鏡の取付は等の修正を行い、ビーム輝
度分布の正確な測定を可能とする。
[Function] With the configuration of the present invention, it is possible to measure the curvature of the scanning beam for each reflecting surface, and based on the measurement results of the curvature of the scanning beam, modifications such as the installation of the rotating polygon mirror can be made, and the beam brightness distribution can be adjusted. enables accurate measurement of

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図においで、レーザ光源1により発生したビームB
を、集光、走査するシリンドリカルレンズ2、軸0を中
心に回転する多面鏡3.41 、42を備えたfθレン
ズ4からなる走査光学系が、ビームの曲がりの測定のた
めに、ユニット枠8に設置されている。6は回転多面鏡
3を回転駆動することができる回転多面鏡駆動モータで
ある。
In FIG. 1, beam B generated by laser light source 1
A scanning optical system consisting of an fθ lens 4 equipped with a cylindrical lens 2 that condenses and scans the beam, and a polygon mirror 3, 41, and 42 that rotate around axis 0 is mounted on a unit frame 8 to measure beam curvature. It is installed in Reference numeral 6 denotes a rotating polygon mirror drive motor that can drive the rotating polygon mirror 3 to rotate.

ユニット枠8は、回転パルスステージ7の回転部71に
固定されており、回転多面鏡3の回転軸0と同軸で回転
することができる。
The unit frame 8 is fixed to the rotating part 71 of the rotating pulse stage 7 and can rotate coaxially with the rotation axis 0 of the rotating polygon mirror 3.

回転パルスステージ7の回転部71は、コントローラ1
2を介してマイクロコンピュータ10!こ連結されてお
り、回転モータ72によりユニット枠8を駆動する。
The rotating part 71 of the rotating pulse stage 7 is connected to the controller 1
Microcomputer 10 through 2! The unit frame 8 is driven by a rotary motor 72.

fθレンズ4の後方には、ビームの走査範囲内に3個の
ラインセンサ51 、52 、53が設置され、該ライ
ンセンサ51 、52 、53は、A/D変換装置9を
経てマイクロコンピュータ10に連結されている。
Three line sensors 51 , 52 , 53 are installed behind the fθ lens 4 within the scanning range of the beam, and the line sensors 51 , 52 , 53 are connected to the microcomputer 10 via the A/D converter 9 . connected.

実施例において、ラインセンサ3として、3個設けてい
るが、3個の限定されるものでなく、3個以上の適当な
数設けることができる。
In the embodiment, three line sensors 3 are provided, but the number is not limited to three, and an appropriate number of three or more may be provided.

このような構成からなる本発明において、回転多面鏡に
より走査されるビームの曲がりの測定について説明する
In the present invention having such a configuration, measurement of the curvature of a beam scanned by a rotating polygon mirror will be explained.

回転多面鏡3の反射面31の測定を行うため、先ず、レ
ーザ光源1からの射出ビームBが、シリンドリカルレン
ズ2、回転多面鏡3の反射面31、fθレンズ4により
走査され、走査ビームB、を形成し、ラインセンサ51
上の結像点P。に結像するように、ユニット枠8上に、
回転多面鏡3を固定状態に設定する。
In order to measure the reflective surface 31 of the rotating polygon mirror 3, first, the emitted beam B from the laser light source 1 is scanned by the cylindrical lens 2, the reflective surface 31 of the rotating polygon mirror 3, and the fθ lens 4, and the scanning beam B, and line sensor 51
Upper imaging point P. on the unit frame 8 so that the image is formed on the unit frame 8,
The rotating polygon mirror 3 is set in a fixed state.

次いで、回転多面鏡3の反射面31における反射位置を
変えない状態に、回転多面鏡3を固定設定したユニット
枠8は、回転モータ72と回転部71の作動による回転
パルスステージ7によって、射出ビームBを走査ビーム
B2として、ラインセンサ52上に結像されるように回
動される。このユニット枠8の回動位置において、ライ
ンセンサ52上には結像点P0′が得られる。
Next, the unit frame 8 in which the rotating polygon mirror 3 is fixedly set so that the reflection position on the reflecting surface 31 of the rotating polygon mirror 3 does not change is rotated by the rotating pulse stage 7 operated by the rotating motor 72 and the rotating part 71, so that the emitted beam is B is used as a scanning beam B2 and is rotated so that an image is formed on the line sensor 52. At this rotational position of the unit frame 8, an imaging point P0' is obtained on the line sensor 52.

同様に、射出ビームBが走査ビームB3としてラインセ
ンサ53に、回転多面鏡3の反射面31を介して結像す
るように、ユニット枠8を回動する。
Similarly, the unit frame 8 is rotated so that the emitted beam B is imaged on the line sensor 53 via the reflective surface 31 of the rotating polygon mirror 3 as a scanning beam B3.

そして、ラインセンサ53上には結像点P。′が得られ
る。
Then, an imaging point P is formed on the line sensor 53. ′ is obtained.

この結像点P。%POPo”は、基準となる光量の重心
位置となる。
This imaging point P. %POPo" is the center of gravity position of the light amount as a reference.

この後、ユニット枠8は、射出ビームBが走査ビームB
、を形成し、ラインセンサ51上の結像点Poに結像す
る位置に達するまで、回転パルスステージ7によって戻
され、ここで、ユニット枠8は固定される。
After this, the unit frame 8 is configured so that the emitted beam B is the scanning beam B.
, and is returned by the rotating pulse stage 7 until it reaches the position where it forms an image at the imaging point Po on the line sensor 51, at which point the unit frame 8 is fixed.

つぎに、回転多面鏡3を回転多面鏡駆動モータ6により
駆動すると、レーザ光源1からの射出ビームBは、回転
多面鏡3の各反射面31 、32 、33・・・に反射
された走査ビームB2 、B、、B、となって、ライン
センサ52 、51 、53上の結像される。
Next, when the rotating polygon mirror 3 is driven by the rotating polygon mirror drive motor 6, the emitted beam B from the laser light source 1 becomes a scanning beam reflected by each reflecting surface 31, 32, 33, . . . of the rotating polygon mirror 3. B2, B, , B, and are imaged on the line sensors 52, 51, and 53.

この場合、回転多面鏡3の反射面31で走査される走査
ビームB2  、B、、B3による、各ラインセンサ5
2 、51 、53上の結像点を、P2 、P、、P3
とすると、各走査ビームの走査による曲がりa、〜a3
は、第2図のグラフに示されるような値となる。この結
像点PI  、PZ  、P:lは、回転多面鏡の回転
状態での光量の重心位置となる。
In this case, each line sensor 5 is scanned by the scanning beams B2, B, B3 scanned by the reflecting surface 31 of the rotating polygon mirror 3.
The image forming points on 2, 51, and 53 are P2, P,, P3
Then, the bending due to scanning of each scanning beam a, ~a3
has a value as shown in the graph of FIG. The image forming points PI, PZ, and P:l are the center of gravity of the amount of light in the rotating state of the rotating polygon mirror.

すなわち、Po=P、  =P、”−P、=Oと設定し
、各ラインセンサ52 、51 、53上での結像点の
差を算出することによって、走査ビームの曲がりを測定
することができる。
That is, by setting Po=P, =P, ``-P, =O, and calculating the difference between the image formation points on each line sensor 52, 51, 53, it is possible to measure the bending of the scanning beam. can.

ここで、走査ビームB1の曲がりalは、a、=P、−
P、=0 走査ビームB2の曲がりa2は、 az =P、 −P 走査ビームB3の曲がりa3は、 a:1=P3−P。
Here, the bend al of the scanning beam B1 is a,=P,−
P, =0 The bend a2 of the scanning beam B2 is az =P, -P The bend a3 of the scanning beam B3 is a:1=P3-P.

となる。becomes.

第2図に示される結果は、マイクロコンピュータ10に
連結されたデイスプレィ11上に表示される。
The results shown in FIG. 2 are displayed on a display 11 connected to the microcomputer 10.

同様に、回転多面鏡3の反射面32について、走査ビー
ムの曲がりを測定し、順次、他の反射面について、走査
ビームの曲がりを測定することができる。
Similarly, it is possible to measure the curvature of the scanning beam on the reflective surface 32 of the rotating polygon mirror 3, and sequentially measure the curvature of the scanning beam on other reflective surfaces.

第3図には、本発明の他の実施例を示すものであり、前
記実施例におけるラインセンサの代わりに、二次元セン
サ15を設けたものであり、3個の二次元センサ15L
 152.153が走査ビームB、、B2 、B3に対
向して配置されており、前記実施例と同様の測定ができ
る。
FIG. 3 shows another embodiment of the present invention, in which a two-dimensional sensor 15 is provided instead of the line sensor in the previous embodiment, and three two-dimensional sensors 15L are provided.
152 and 153 are placed opposite the scanning beams B, , B2, and B3, and measurements similar to those in the previous embodiment can be made.

ご効 果; 本発明の構成により、走査線の曲がりを、基準となる光
量の重心位置と回転多面鏡の作動状態での光量の重心位
置とから測定することができ、よって、必要に応して回
転多面鏡の傾きの修正等により、デジタル画像用の走査
光学系の品質を向上させることができる効果を有する。
Effects: With the configuration of the present invention, the bending of the scanning line can be measured from the center of gravity of the light amount as a reference and the center of gravity of the light amount when the rotating polygon mirror is in operation. This has the effect of improving the quality of the scanning optical system for digital images by, for example, correcting the inclination of the rotating polygon mirror.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の走査曲がりの測定方法を実施するため
の構成を示す概略説明図、 第2図は回転多面鏡の回転状態における算出された光量
の重心の位置をデイスプレィ上に表示した一例を示すグ
ラフ、 第3図は第1回と異なる他の実施するための構成を示す
一部概略説明図である。 l・・・レーザ光源、2・・・シリンドリカルレンズ、
3・・・回転多面鏡、4・・・fθレンズ、5・・・ラ
インセンサ、6・・・回転多面鏡駆動用モータ、7・・
・回転パルスステージ、8・・・ユニット枠、9・・・
A/Dim装置、lO・・・マイクロコンピュータ、1
1・・・デイスプレィ、12・・・コントローラ、15
・・・二次元センサ。
Fig. 1 is a schematic explanatory diagram showing the configuration for implementing the scanning curvature measurement method of the present invention, and Fig. 2 is an example of displaying the position of the center of gravity of the calculated light amount in the rotating state of the rotating polygon mirror on the display. FIG. 3 is a partially schematic explanatory diagram showing another implementation configuration different from the first one. l...Laser light source, 2...Cylindrical lens,
3... Rotating polygon mirror, 4... fθ lens, 5... Line sensor, 6... Rotating polygon mirror driving motor, 7...
・Rotating pulse stage, 8...Unit frame, 9...
A/Dim device, lO...microcomputer, 1
1...Display, 12...Controller, 15
...Two-dimensional sensor.

Claims (1)

【特許請求の範囲】[Claims] 光源、シリンドリカルレンズ、回転多面鏡、fθレンズ
からなる走査光学系におけるfθレンズからの射出ビー
ムの結像位置に、センサを配置して、ビーム形状を測定
方法において、前記結像位置に三個以上のセンサを設置
し、前記走査光学系のユニットを回転パルスステージに
載置すると共に、該回転パルスステージを回転多面鏡の
回転中心と同軸で回動できるように構成し、回転多面鏡
の回転を停止した状態において、回転パルスステージを
移動して、各センサで射出ビームを受光して、各センサ
においてビームの重心を測定し、この測定値を基準点と
して、次に、回転パルスステージを固定して、回転多面
鏡を回転し、回転多面鏡の各反射面における各センサの
ビームの重心を測定し、しかる後、回転多面鏡の各反射
面の各センサ位置におけるビームの重心の差を算出し、
反射面毎の走査ビームの曲がりの測定を行うことを特徴
とする走査光学系における曲がり測定方法。
In a scanning optical system consisting of a light source, a cylindrical lens, a rotating polygon mirror, and an fθ lens, three or more sensors are placed at the imaging position of the beam emitted from the fθ lens, and three or more sensors are placed at the imaging position. The unit of the scanning optical system is placed on a rotating pulse stage, and the rotating pulse stage is configured to be able to rotate coaxially with the rotation center of the rotating polygon mirror, so that the rotation of the rotating polygon mirror is controlled. In the stopped state, move the rotary pulse stage to receive the emitted beam with each sensor, measure the center of gravity of the beam at each sensor, use this measurement value as a reference point, and then fix the rotary pulse stage. Then, rotate the rotating polygon mirror, measure the center of gravity of each sensor's beam on each reflecting surface of the rotating polygon mirror, and then calculate the difference in the center of gravity of the beam at each sensor position on each reflecting surface of the rotating polygon mirror. ,
A method for measuring curvature in a scanning optical system, the method comprising measuring the curvature of a scanning beam for each reflecting surface.
JP16983490A 1990-06-29 1990-06-29 Measuring method of curve in scanning optical system Pending JPH0460433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16983490A JPH0460433A (en) 1990-06-29 1990-06-29 Measuring method of curve in scanning optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16983490A JPH0460433A (en) 1990-06-29 1990-06-29 Measuring method of curve in scanning optical system

Publications (1)

Publication Number Publication Date
JPH0460433A true JPH0460433A (en) 1992-02-26

Family

ID=15893787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16983490A Pending JPH0460433A (en) 1990-06-29 1990-06-29 Measuring method of curve in scanning optical system

Country Status (1)

Country Link
JP (1) JPH0460433A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005177752A (en) * 2003-12-19 2005-07-07 Xerox Corp Internal fluid filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005177752A (en) * 2003-12-19 2005-07-07 Xerox Corp Internal fluid filter

Similar Documents

Publication Publication Date Title
US5104227A (en) Apparatus for measuring three-dimensional curved surface shapes
US7697120B2 (en) Scanning apparatus
US20020036779A1 (en) Apparatus for measuring three-dimensional shape
US6061126A (en) Detecting system for surface form of object
JP2001183108A (en) Distance measuring apparatus
JPH0460433A (en) Measuring method of curve in scanning optical system
JPH0886622A (en) Apparatus for measuring shape
JP3324367B2 (en) 3D input camera
JP2001518648A (en) Scanner facet height error correction device for selective pixel correction
JP3360505B2 (en) Three-dimensional measuring method and device
JP2702750B2 (en) Laser beam scanning device
JP3206948B2 (en) Interferometer and interferometer alignment method
JP2002214073A (en) Scanning beam measuring instrument and measuring method using the same
JPS5815768B2 (en) Sousakou Gakkei
JPH08105721A (en) Method and apparatus for measuring distance
US20240219177A1 (en) Surveying system and method of operating a surveying system
JPH0436629A (en) Beam shape measuring instrument of scanning optical system
EP0704738A1 (en) A facet inaccuracy compensation unit
JP2000249960A (en) Method and device for measuring scanning position for scanning optical system
US5302972A (en) Method of setting density for image recording apparatus
JP2001050810A (en) Method and apparatus for measuring beam of scanning optical system
JP2002040352A (en) Scanner and three-dimensional measuring device
JP2536821Y2 (en) 3D position measuring device
JP2004028792A (en) Non-contact sectional shape measurement method and measurement device
JP2000304649A (en) Method and instrument for measuring beam shape of scanning optical system