JPH0459896B2 - - Google Patents

Info

Publication number
JPH0459896B2
JPH0459896B2 JP62282671A JP28267187A JPH0459896B2 JP H0459896 B2 JPH0459896 B2 JP H0459896B2 JP 62282671 A JP62282671 A JP 62282671A JP 28267187 A JP28267187 A JP 28267187A JP H0459896 B2 JPH0459896 B2 JP H0459896B2
Authority
JP
Japan
Prior art keywords
signal
signals
delay
circuit
scanning line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62282671A
Other languages
Japanese (ja)
Other versions
JPH01124446A (en
Inventor
Yasuto Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP62282671A priority Critical patent/JPH01124446A/en
Publication of JPH01124446A publication Critical patent/JPH01124446A/en
Publication of JPH0459896B2 publication Critical patent/JPH0459896B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、全領域にわたつて分解能の良好なエ
コー画像を得るために焦点を切り替えつつエコー
を受信するようにエコー信号の合成を行う超音波
診断装置の信号編集回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is an ultra-high-performance ultrasonic technology that synthesizes echo signals so as to receive echoes while switching the focus in order to obtain echo images with good resolution over the entire area. The present invention relates to a signal editing circuit for a sonic diagnostic device.

(従来の技術) 超音波診断装置は超音波を被検体内に送波し、
その反射波が各組織や病変部によつて異なること
から、これを画像化して表示して診断の用に供し
ている。この場合、単一焦点で送受波して遠距離
にある反射体からの反射波と、近距離にある反射
体からの反射波とを同一の画面上に表示したので
は、全画像を良好な分解能で表示することは困難
である。これを解決するために受信時に反射源を
追従するように焦点位置を変化する受波ダイナミ
ツクフオーカス法又は同一部分に対し数回の走査
を行つて各走査毎に送受の焦点を変化させ、最適
な分解能が得られる領域をそれぞれ画像メモリを
介して編集して表示装置上で繋ぎ合わせ表示する
多段フオーカス法が用いられている。受波ダイナ
ミツクフオーカス法は、1回の送波に対し受信時
に距離によつて異なる焦点で受信するために完像
速度を落さずに済み、動きの速い臓器に適した方
法であるが、送波のフオーカスがすべての焦点に
整合できないので分解能に関しては多段フオーカ
ス法によりやや劣つている。しかしながら、受波
ダイナミツクフオーカス法をこのように焦点切り
替え式の手法により実現するためには、電子フオ
ーカスの機構を何種類か重複して持ち、その各々
を予め必要な各焦点位置に分担して設定してお
き、受波の途上では該当区間の反射波が受波され
ている時間帯に該当する電子フオーカス手段の出
力に接続されるように信号通路の切り替えを行い
つつ受波を行う。
(Conventional technology) Ultrasonic diagnostic equipment transmits ultrasonic waves into the subject,
Since the reflected waves differ depending on each tissue or lesion, this is converted into an image and displayed for diagnostic purposes. In this case, if you transmit and receive waves at a single focal point and display the reflected waves from a reflector at a long distance and the reflected waves from a reflector at a short distance on the same screen, it will not be possible to display the entire image in a good manner. It is difficult to display with resolution. To solve this problem, the reception dynamic focus method is used, in which the focal position is changed to follow the reflection source during reception, or the same area is scanned several times, and the transmission and reception focus is changed for each scan. A multi-stage focus method is used in which regions that provide the optimum resolution are edited via an image memory, and then connected and displayed on a display device. The receiving dynamic focus method is a method suitable for fast-moving organs because it receives waves at different focal points depending on the distance for each transmitted wave, so there is no need to reduce the image completion speed. Since the focus of the transmitted wave cannot be matched to all the focal points, the resolution is slightly inferior to the multi-stage focus method. However, in order to realize the receiving dynamic focus method using the focus switching method, it is necessary to have several types of electronic focus mechanisms and to assign each of them to each required focus position in advance. During wave reception, the signal path is switched so that the reflected wave in the corresponding section is connected to the output of the electronic focus means corresponding to the time period when the wave is being received.

(発明が解決しようとする問題点) ところで、このような切り替え型の受波ダイナ
ミツクフオーカス法のおいては、n組の焦点の異
なる受波ビームフオーマの整相出力信号からそれ
ぞれ最適な分解能の得られる部分を繋ぎ合わせて
1本の走査線信号を得るために、高周波部、中間
周波部又はビデオ信号部で信号を切り替えて繋ぎ
合わせを行つていた。この繋ぎ合わせを行つた切
れ目の所に雑音が入つてきて、画面上に白線とな
つて現われ、特に信号レベルの低い所でこれが目
立つていた。信号が切り替わつた所で画質が変る
という問題もあるが、切り替えノイズに由来する
白線が入るという点が最も問題の多い点であつ
た。
(Problem to be Solved by the Invention) By the way, in such a switching type reception dynamic focus method, the optimal resolution is determined from the phased output signals of n sets of reception beamformers with different focuses. In order to obtain a single scanning line signal by connecting the obtained parts, the signals are switched in the high frequency section, intermediate frequency section, or video signal section to perform the connection. Noise entered the gap where the connections were made, appearing as white lines on the screen, and was especially noticeable in areas where the signal level was low. Although there is the problem that the image quality changes where the signal switches, the most problematic point is that white lines appear due to switching noise.

これを避けるために、それぞれ焦点距離の異な
るデイレーレンズ(受波ビームフオーマの焦点決
定手段)の組み合わせによる分波器の後段をすべ
て各焦点毎に並列に用意して、受信信号を検波し
てフレームメモリに書き込む所で合成して、少な
くとも高周波的に混入するスパイクノイズが検波
されて白線となつて出てくることを防ごうという
考えもあるが、回路規模が大きく成り過ぎてコス
ト的に問題である。
In order to avoid this, a post-demultiplexer consisting of a combination of delay lenses (focus determination means of the receiving beamformer) each having a different focal length is prepared in parallel for each focal point, and the received signal is detected and the frame is There is an idea to synthesize it at the point where it is written to the memory, at least to prevent the spike noise mixed in at high frequency from being detected and appearing as a white line, but the circuit size would be too large and it would be a problem in terms of cost. be.

本発明は上記の問題点に鑑みてなされたもの
で、その目的は、切り替え型の受波ダイナミツク
フオーカス法において、信号経路を切り替えても
フレームメモリに正確なデータの書き込みがで
き、当然最終表示画面に白線が入らない信号編集
回路であつて、簡単な構成のものを実現すること
にある。
The present invention has been made in view of the above-mentioned problems.The purpose of the present invention is to enable accurate data to be written to the frame memory even if the signal path is switched in the switching type reception dynamic focus method, and of course to enable the final To realize a signal editing circuit that does not include white lines on a display screen and has a simple configuration.

(問題点を解決するための手段) 前記の問題点を解決する本発明は、全領域にわ
たつて分解能の良好な画像を得るために信号経路
の切り替えと合成を行う超音波診断装置の信号編
集回路において、焦点の異なる走査線信号をそれ
ぞれ整相加算する複数の電子フオーカス制御手段
と、該電子フオーカス制御手段からの出力信号に
それぞれ異なる遅延時間を与える複数の遅延手段
と、該遅延手段に出力信号を切り替えて1本の走
査線データに合成する切り替え手段と、前記合成
された走査線信号の中重複する信号に狭まれた繋
ぎ目を略中心とする領域の信号を除いてフレーム
メモリへの書き込み制御を行う書き込み制御手段
とを具備することを特徴とするものである。
(Means for Solving the Problems) The present invention solves the above-mentioned problems, and the present invention provides signal editing for an ultrasonic diagnostic apparatus that switches and combines signal paths in order to obtain images with good resolution over the entire region. In the circuit, a plurality of electronic focus control means for phasing and adding scanning line signals of different focuses, a plurality of delay means for respectively giving different delay times to output signals from the electronic focus control means, and an output to the delay means. a switching means for switching signals and combining them into one scanning line data; and a switching means for switching signals and combining them into one scanning line data; The present invention is characterized by comprising a write control means for performing write control.

(作用) 焦点の異なる領域の走査線信号を送受波し、受
信信号をそれぞれの領域の電子フオーカス手段に
て整相加算した後異なる遅延時間で遅延させる。
切り替え手段は各領域の遅延処理された信号を逐
次焦点位置に対応した時間間隔で切り替えて合成
し、信号処理後、遅延時間の異なる隣接領域の信
号間で重複した領域の信号を繋ぎ目と共に除去し
てフレームメモリに書き込む。
(Operation) Scanning line signals in areas with different focal points are transmitted and received, and the received signals are phased and summed by the electronic focus means in each area, and then delayed by different delay times.
The switching means sequentially switches and synthesizes the delay-processed signals of each region at time intervals corresponding to the focal position, and after signal processing, removes the overlapped region signals together with the joints between the signals of adjacent regions with different delay times. and write it to frame memory.

(実施例) 以下、図面を参照して本発明の実施例を詳細に
説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例のブロツク図であ
る。図において、1は送信パルス発生のためのト
リガ信号を発信する送波トリガ発振器で、出力ト
リガ信号は送波ビームフオーマに入力されて音線
を形成するため、異なつた遅延量を持つ例えば64
回線の信号に分離される。3は送波ビームフオー
マ2からの64回線分の入力信号を適宜切り替えて
音線を形成してスキヤンさせ、各音線の反射波受
波信号を切り替えて開口面内のエレメント位置に
対応する64回線分の信号に組み戻すスキヤナスイ
ツチで、スイツチ数節約のために2段構えにされ
ており、2段の中間には送受信回路4が設けられ
ている。送受信回路4には送信用電力増幅器、送
受信切り替えスイツチ、受信用増幅器等が含まれ
ている。5は送信用高周波信号を受けて超音波を
発振し、反射波を受信して高周波信号に変換する
多数の振動子エレメントで構成される超音波探触
子アレイである。6A〜6Dは被検体を距離によ
つて4つのゾーンに分類したそれぞれが受信ビー
ムフオーマである4個の電子フオーカス回路で、
電子フオーカス回路6Aは最近距離のゾーン0、
電子フオーカス回路6Bは次に近い距離のゾーン
1、電子フオーカス回路6Cは次に遠い距離のゾ
ーン2、電子フオーカス回路6Dは最遠距離のゾ
ーン3にそれぞれ焦点を結んだ送波信号による受
信信号を整相加算する。受信信号の各電子フオー
カス回路6A〜6Dに対する振り分けはスキヤナ
スイツチ3で行つている。7Bは電子フオーカス
回路6Bからの信号をΔτ1だけ遅延させてF2信号
を出力する遅延回路、7Cは電子フオーカス回路
6Cからの信号をΔτ2だけ遅延させてF3信号を出
力する遅延回路、7Dは電子フオーカス回路6D
からの信号をΔτ3だけ遅延させてF4信号を出力す
る遅延回路である。電子フオーカス回路6Aは遅
延を受けないF1信号を出力している。遅延量に
は次の関係がある。
FIG. 1 is a block diagram of one embodiment of the present invention. In the figure, 1 is a transmitting trigger oscillator that emits a trigger signal for generating a transmitting pulse, and the output trigger signal is input to a transmitting beamformer to form a sound ray, so for example 64
Separated into line signals. 3 appropriately switches the 64 lines of input signals from the transmitting beamformer 2 to form and scan sound rays, and switches the reflected wave reception signal of each sound ray to generate 64 lines corresponding to the element position within the aperture plane. It is a scanner switch that recombines the signal into a signal, and is arranged in two stages in order to save on the number of switches, with a transmitter/receiver circuit 4 provided between the two stages. The transmitting/receiving circuit 4 includes a transmitting power amplifier, a transmitting/receiving changeover switch, a receiving amplifier, and the like. Reference numeral 5 denotes an ultrasonic probe array composed of a large number of transducer elements that receive a high-frequency signal for transmission, oscillate an ultrasonic wave, and receive a reflected wave and convert it into a high-frequency signal. 6A to 6D are four electronic focus circuits that classify the object into four zones according to distance, each of which is a receiving beam former.
The electronic focus circuit 6A is the closest zone 0,
The electronic focus circuit 6B receives the received signal based on the transmitted signal focused on the next closest zone 1, the electronic focus circuit 6C focuses on the next farthest zone 2, and the electronic focus circuit 6D focuses on the farthest zone 3. Perform phasing and addition. The scanner switch 3 distributes the received signals to the electronic focus circuits 6A to 6D. 7B is a delay circuit that delays the signal from the electronic focus circuit 6B by Δτ 1 and outputs the F 2 signal; 7C is a delay circuit that delays the signal from the electronic focus circuit 6C by Δτ 2 and outputs the F 3 signal; 7D is electronic focus circuit 6D
This is a delay circuit that delays the signal from F4 by Δτ3 and outputs the F4 signal. The electronic focus circuit 6A outputs an F1 signal that is not subject to delay. The amount of delay has the following relationship.

Δτ3>Δτ2>Δτ1>0 8は焦点位置の異なる4本の走査線信号F1
F4信号をゾーン0〜ゾーン3の各焦点位置の距
離に応じたタイミングで切り替えて1本分の走査
線信号Fsに合成して出力するフオーカルゾーン
切り替えスイツチである。9は不要な高域及び低
域の周波数を除去する帯域濾波器(以下BPFと
いう)、10は右信信号の非常に広いダイナミツ
クレンジを感光材料やCRTの特性に適合するよ
うにレベル圧縮を行う対数増幅器で、その出力信
号は検波器11で検波され、AD変換器12でデ
イジタル信号に変換される。13はフレームメモ
リ、書き込みアドレス発生器、読み出しアドレス
発生器、制御回路等から成り、入力された走査線
信号をフレームメモリに書き込む時にノイズ部分
を除去する書き込み制御論理回路である。ノイズ
を除去された信号はCRTに表示されるが、以下
の回路は通常の回路と同じなので省略する。
Δτ 3 >Δτ 2 >Δτ 1 >0 8 is the four scanning line signals F 1 to F 1 with different focal positions
This is a focal zone switching switch that switches the F4 signal at a timing corresponding to the distance of each focal position in zones 0 to 3, synthesizes it into one scanning line signal Fs, and outputs the signal. 9 is a bandpass filter (hereinafter referred to as BPF) that removes unnecessary high and low frequencies, and 10 is a level compressor that adapts the very wide dynamic range of the right signal to the characteristics of the photosensitive material and CRT. The output signal is detected by a detector 11 and converted into a digital signal by an AD converter 12. Reference numeral 13 denotes a write control logic circuit which includes a frame memory, a write address generator, a read address generator, a control circuit, etc., and removes a noise portion when writing the input scanning line signal to the frame memory. The noise-removed signal is displayed on the CRT, but the circuit below is the same as the normal circuit, so it will be omitted.

次に上記のように構成された実施例の動作を説
明する。送波トリガ発振器1から出力されたトリ
ガ信号は、送波ビームフオーマ2において種々の
遅延を受けた64ビツトの信号に変換される。この
出力信号は焦点位置の異なる4個の同一の音線を
形成している。例えば第1トリガ信号ではゾーン
0に焦点を結ぶように整相されたS1信号が出力さ
れる。第2トリガ信号では同一音線でゾーン1に
焦点を結ぶように整相されたS2信号が出力され、
同様にしてゾーン2のS3信号、ゾーン3のS4信号
が出力される。各S1〜S4信号は次々にそれぞれス
キヤナスイツチ3で音線を形成するように振り分
けられ、送受信回路4で電力増幅された後、超音
波探触子アレイ5で超音波信号に変えられて被検
体内に送波される。被検体内の反射体から反射さ
れた超音波信号は超音波探触子アレイ5で受波さ
れ、電気信号に変換される。この受信信号は送受
信回路4において増幅され、スキヤナスイツチ3
によつてS1〜S4信号に復元される。S1信号は電子
フオーカス回路6Aでゾーン0に焦点位置を持つ
たF1信号に整相加算される。S2信号は電子フオ
ーカス回路6Bでゾーン1に焦点位置を持つた信
号に整相加算され、遅延回路7BでΔτ1の遅延を
受けてF2信号として出力される。S3信号は電子
フオーカス回路6Cで、S4信号は電子フオーカス
回路6Dでそれぞれ整相加算され、遅延回路7C
及び7DでそれぞれΔτ2,Δτ3の遅延を受けてF3
信号、F4信号として出力される。上記のF1〜F4
信号はフオーカルゾーン切り替えスイツチ8で
次々に切り替えられて繋ぎ合わされ、1本分の走
査線信号FSに合成される。F2〜F4信号はそれぞ
れ異なつた遅延量の遅延を受けているため遅延を
受けていないF1信号と共に合成されたFS信号に
は、第2図に例示したように信号の繋ぎ目におい
て、お互いの遅延量の差に相当する部分の受信信
号が2度現れる。第2図において、イはF1信号
の波形で、ロはF2信号の波形である。ハはフオ
ーカルゾーン切り替えスイツチ8の切り替えのタ
イミングの図、ニはF1信号とF2信号がフオーカ
ルゾーン切り替えスイツチ8の切り替えによつて
合成された波形である。図において、明らかなよ
うに、イのF1信号中顕著な反射波a1,b1,c1,d1
に注目すると、ロのF2信号においてはΔτ1の遅延
を受けたa2,b2,c2,d2になつている。ハの切り
替え制御によりニのFS信号が得られているが、こ
のFS信号には反射波b1,b2の波形がフオーカルゾ
ーン切り替えスイツチ8の切り替えにより生じた
スパイクノイズeを挟んでΔτ1の差で出現してい
る。即ちb1−b2の区間は実質的にもとの信号が2
回重複して続けて現れる。図示はしないがゾーン
1とゾーン2、ゾーン2とゾーン3の繋ぎ目にお
いても同様な波形の信号が出現している。
Next, the operation of the embodiment configured as described above will be explained. The trigger signal output from the transmit trigger oscillator 1 is converted into a 64-bit signal which is subjected to various delays in the transmit beam former 2. This output signal forms four identical sound rays with different focal positions. For example, in the first trigger signal, a phased S1 signal focused on zone 0 is output. The second trigger signal outputs a phased S 2 signal so that the same sound line focuses on zone 1,
Similarly, the S3 signal of zone 2 and the S4 signal of zone 3 are output. Each of the S 1 to S 4 signals is sequentially distributed by a scanner switch 3 to form a sound ray, power amplified by a transmitter/receiver circuit 4, and then converted into an ultrasonic signal by an ultrasonic probe array 5 to be transmitted to the receiver. Waves are transmitted into the specimen. Ultrasonic signals reflected from a reflector within the subject are received by the ultrasound probe array 5 and converted into electrical signals. This received signal is amplified in the transmitter/receiver circuit 4, and the scanner switch 3
The signal is restored to the S 1 to S 4 signals by . The S 1 signal is phased and added to the F 1 signal having a focal position in zone 0 in an electronic focus circuit 6A. The S 2 signal is phased and added to the signal having the focus position in zone 1 in the electronic focus circuit 6B, and is delayed by Δτ 1 in the delay circuit 7B and output as the F 2 signal. The S3 signal is phased and summed by the electronic focus circuit 6C, and the S4 signal is phased and summed by the electronic focus circuit 6D, and the delay circuit 7C
and F 3 after receiving delays of Δτ 2 and Δτ 3 at 7D and 7D, respectively.
signal, output as F 4 signal. F 1 to F 4 above
The signals are switched and connected one after another by a focal zone changeover switch 8, and are combined into one scanning line signal F S. Since the F 2 to F 4 signals have been delayed by different amounts of delay, the F S signal combined with the undelayed F 1 signal has a , the portion of the received signal corresponding to the difference in delay amount appears twice. In FIG. 2, A is the waveform of the F 1 signal, and B is the waveform of the F 2 signal. C is a diagram showing the switching timing of the focal zone changeover switch 8, and D is a waveform in which the F 1 signal and the F 2 signal are synthesized by the changeover of the focal zone changeover switch 8. As is clear from the figure, there are significant reflected waves a 1 , b 1 , c 1 , d 1 in the F 1 signal of A.
If we pay attention to , the F 2 signal in (b) becomes a 2 , b 2 , c 2 , and d 2 which have been delayed by Δτ 1 . The F S signal (2) is obtained by the switching control in (c), but in this F S signal, the waveforms of the reflected waves b 1 and b 2 are sandwiched with the spike noise e generated by the switching of the focal zone changeover switch 8. They appear with a difference of Δτ 1 . In other words, in the section b 1 - b 2 , the original signal is essentially 2
Appears multiple times in a row. Although not shown, signals with similar waveforms also appear at the joints between zone 1 and zone 2, and between zone 2 and zone 3.

この出力のFS信号は、通常の装置のように
BPF9、対数増幅器10、検波器11で信号処
理されてAD変換器12でデイジタル信号に変換
される。デイジタル信号に変換された第2図ニの
FS信号は書き込み制御論理回路13において、書
き込みアドレスによりフレームメモリに書き込ま
れるが、その書き込みは第2図ホのように行われ
る。即ちニのFS信号の中、反射波パルスb1までの
区間D1と、反射波パルスb2以降の区間D3とがも
との反射波信号における連続性を復元するように
フレームメモリに書き込まれ、反射波パルスb1
反射波パルスb2の間の区間D2においては例えば
フレームメモリのアドレス進行を中止するとかの
手法で書き込みが中止され、その区間の信号は書
き込まれない。従つて、その間に存在するスパイ
クノイズeも書き込まれずに実質的に除去され
る。ゾーン1とゾーン2、ゾーン2とゾーン3の
間も同様にしてスパイクノイズの除去が行われ
る。第2図に示した波形例においてはフレームメ
モリに反射波のRFデータをそのまま書き込む場
合を示したが、検波後のビデオデータを書き込む
場合も同様な主旨により切り替えノイズを含む重
複区間を避けて書き込むことにより同じ目的を達
することができる。
This output F S signal is like a normal device
The signal is processed by the BPF 9, the logarithmic amplifier 10, and the detector 11, and converted into a digital signal by the AD converter 12. Figure 2 D converted to digital signal
The F S signal is written into the frame memory by the write address in the write control logic circuit 13, and the writing is performed as shown in FIG. That is, in the second F S signal, the section D 1 up to the reflected wave pulse b 1 and the section D 3 after the reflected wave pulse b 2 are stored in the frame memory so as to restore the continuity in the original reflected wave signal. In the interval D 2 between the reflected wave pulse b 1 and the reflected wave pulse b 2 , the writing is stopped by, for example, stopping the address progression of the frame memory, and the signal in that interval is not written. Therefore, the spike noise e existing in between is also substantially removed without being written. Spike noise is similarly removed between zones 1 and 2, and between zones 2 and 3. The waveform example shown in Figure 2 shows the case where the RF data of the reflected wave is written as is into the frame memory, but when writing the video data after detection, the same principle applies to writing while avoiding overlapping sections that include switching noise. The same objective can be achieved by doing so.

以上説明したように、遅延時間の差に相当する
微小区間のずらしの時間幅は切り替えによつて生
ずるスパイクノイズの幅に依存するが、スパイク
ノイズは高々数百nSであるため、オーバーラツ
プ区間はスパイクノイズを中心に前後合計1μSも
あれば良いと考えられ、これがゾーン0とゾーン
1、ゾーン1とゾーン2、ゾーン2とゾーン3の
間の3箇所にわたつても既存の送受信シーケンス
を大幅に変更しなければならないようなことは起
こらない。
As explained above, the time width of the shift in the minute section corresponding to the difference in delay time depends on the width of the spike noise caused by switching, but since the spike noise is several hundred nanoseconds at most, the overlap section has no spikes. It is thought that a total of 1μS before and after the noise is sufficient, and this significantly changes the existing transmission and reception sequence in three locations: zone 0 and zone 1, zone 1 and zone 2, and zone 2 and zone 3. Nothing happens that you have to do.

このようにして本実施例によれば、3個の遅延
回路を加え、従来設けられていたデイジタルスキ
ヤンコンバータの書き込み制御を多少変更するの
みで、高周波段で切り替える手法のまま画面に白
線の出ない多段フオーカス法が実現できる。
In this way, according to this embodiment, by adding three delay circuits and slightly changing the write control of the conventional digital scan converter, white lines do not appear on the screen while maintaining the method of switching at the high frequency stage. A multi-stage focus method can be realized.

尚、本発明は上記実施例に限定されるものでは
ない。例えば、第3図のような回路を遅延回路7
B〜7Dに代えて用いてもよい。図において、第
1図と同等の部分には同一の符号を付してある。
図中、15Aは周波数f0を中心周波数とする周波
帯域幅Δf1のBPF、15Bは中心周波数は同じf0
の周波数帯域幅Δf2のBPF、15Cは中心周波数
f0の周波数帯域幅Δf3のBPF、15Dは中心周波
数f0の周波数帯域幅Δf4のBPFである。ここで、
周波数帯域幅は次式の関係にある。
Note that the present invention is not limited to the above embodiments. For example, a circuit like that shown in FIG.
It may be used instead of B to 7D. In the figure, parts equivalent to those in FIG. 1 are given the same reference numerals.
In the figure, 15A is a BPF with a frequency bandwidth Δf 1 with the center frequency f 0 as the center frequency, and 15B is a BPF with the same center frequency f 0
BPF with frequency bandwidth Δf 2 , 15C is the center frequency
The BPF of f 0 has a frequency bandwidth Δf 3 , and 15D is the BPF of the frequency bandwidth Δf 4 of the center frequency f 0 . here,
The frequency bandwidth has the following relationship.

Δf1>Δf2>Δf3>Δf4 BPFは通常LCで構成されていて入力信号に対
して位相の遅延を生じさせる。その遅延量は同一
方式の場合は周波数帯域幅の狭いもの程遅延時間
が長いので、BPF15A〜15Dにより第1図
の実施例と同様な効果が得られる。
Δf 1 >Δf 2 >Δf 3 >Δf 4 The BPF is usually configured with an LC and causes a phase delay with respect to the input signal. Regarding the amount of delay, in the case of the same system, the narrower the frequency bandwidth, the longer the delay time, so the BPFs 15A to 15D can provide the same effect as the embodiment of FIG. 1.

又、BPFは遅延回路に代えるのではなく追加
することにしてもよい。更に、電子フオーカス回
路及び遅延回路を4個の例で説明したが、その数
は自由に選択出来るものである。
Further, the BPF may be added instead of replacing the delay circuit. Furthermore, although four electronic focus circuits and four delay circuits have been described, the number can be freely selected.

(発明の効果) 以上詳細に説明したように、本発明によれば、
焦点の異なる走査線信号にそれぞれ異なる遅延量
を与え、これを切り替えて合成して、この合成信
号中に前記遅延量の差による重複部分を生じさせ
ると共に、切り替えによつて生じるスパイクノイ
ズをこの重複部分に乗せ、合成信号をフレームメ
モリに書き込む際に、この重複部分を除去するこ
とにより、前記スパイクノイズも除去するので、
信号経路を切り替えても、フレームメモリには正
確なデータだけが書き込まれる。この結果、当然
最終表示画面には白線が入らない。又、前述のよ
うに、異なる遅延量を走査線信号に与えること
で、合成信号中に生じる重複部分にスパイクノイ
ズを乗せ、これを重複部分と共に除去するので、
信号の合成に際してメモリ等は不要であり、構成
が簡単になる。
(Effects of the Invention) As explained in detail above, according to the present invention,
Different amounts of delay are given to scanning line signals with different focuses, and these are switched and synthesized to create an overlapping part due to the difference in the delay amount in this composite signal, and to eliminate the spike noise caused by the switching. By removing this overlapping portion when writing the composite signal to the frame memory, the spike noise is also removed.
Even if the signal path is switched, only accurate data is written to the frame memory. As a result, of course, no white line appears on the final display screen. Furthermore, as mentioned above, by giving different amounts of delay to the scanning line signal, spike noise is added to the overlapping part that occurs in the composite signal, and this is removed together with the overlapping part.
No memory or the like is required for signal synthesis, which simplifies the configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロツク図、第2
図はスパイクノイズ除去の説明図、第3図は本発
明の他の実施例の説明図である。 2……送波ビームフオーマ、3……スキヤナス
イツチ、4……送受信回路、5……超音波探触子
アレイ、6A,6B,6C,6D……電子フオー
カス回路、7B,7C,7D……遅延回路、8…
…フオーカルゾーン切り替えスイツチ、9,15
A,15B,15C,15D……BPF、13…
…書き込み制御論理回路。
FIG. 1 is a block diagram of one embodiment of the present invention, and FIG.
The figure is an explanatory diagram of spike noise removal, and FIG. 3 is an explanatory diagram of another embodiment of the present invention. 2...Transmission beam former, 3...Scanner switch, 4...Transmission/reception circuit, 5...Ultrasonic probe array, 6A, 6B, 6C, 6D...Electronic focus circuit, 7B, 7C, 7D...Delay circuit , 8...
...Focal zone changeover switch, 9,15
A, 15B, 15C, 15D...BPF, 13...
...Write control logic circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 全領域にわたつて分解能の良好なエコー画像
を得るために焦点を切り替えつつエコーを受信す
るようにエコー信号の合成を行う超音波診断装置
の信号編集回路において、焦点の異なる走査線信
号をそれぞれ整相加算する複数の電子フオーカス
制御手段と、該電子フオーカス制御手段からの出
力信号にそれぞれ異なる遅延時間を与える複数の
遅延手段と、該遅延手段の出力信号を切り替えて
1本の走査線データに合成する切り替え手段と、
前記合成された走査線信号の中重複する領域の信
号を除いて連続性を復元するようにフレームメモ
リへの書き込み制御を行う書き込み制御手段とを
具備することを特徴とする信号編集回路。
1 In the signal editing circuit of an ultrasound diagnostic device, which synthesizes echo signals so as to receive echoes while switching the focus in order to obtain echo images with good resolution over the entire area, scanning line signals with different focuses are A plurality of electronic focus control means that perform phasing and summation, a plurality of delay means that give different delay times to the output signals from the electronic focus control means, and a plurality of delay means that switch the output signals of the delay means to form one scanning line data. a switching means for compositing;
A signal editing circuit comprising write control means for controlling writing to a frame memory so as to restore continuity by excluding signals in overlapping areas of the combined scanning line signals.
JP62282671A 1987-11-09 1987-11-09 Signal editing circuit Granted JPH01124446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62282671A JPH01124446A (en) 1987-11-09 1987-11-09 Signal editing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62282671A JPH01124446A (en) 1987-11-09 1987-11-09 Signal editing circuit

Publications (2)

Publication Number Publication Date
JPH01124446A JPH01124446A (en) 1989-05-17
JPH0459896B2 true JPH0459896B2 (en) 1992-09-24

Family

ID=17655538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62282671A Granted JPH01124446A (en) 1987-11-09 1987-11-09 Signal editing circuit

Country Status (1)

Country Link
JP (1) JPH01124446A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139638A (en) * 1985-12-16 1987-06-23 株式会社日立メデイコ Ultrasonic diagnostic apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139638A (en) * 1985-12-16 1987-06-23 株式会社日立メデイコ Ultrasonic diagnostic apparatus

Also Published As

Publication number Publication date
JPH01124446A (en) 1989-05-17

Similar Documents

Publication Publication Date Title
US5419330A (en) Ultrasonic diagnostic equipment
JP2006288679A5 (en)
JP2770391B2 (en) Ultrasound imaging device
JP2900836B2 (en) Electronic scanning ultrasonic diagnostic equipment
JPS63143039A (en) Ultrasonic diagnostic apparatus
JPS62133945A (en) Ultrasonic diagnostic apparatus
JPH06114056A (en) Ultrasonic diagnostic apparatus
JPH05277117A (en) Method and device for ultrasonic diagnosis
JPH0459896B2 (en)
JPH11276477A (en) Ultrasonic device
JPH0113546B2 (en)
JPS6145791B2 (en)
JPH07236642A (en) Ultrasonic diagnostic device
JPH01288244A (en) Ultrasonic diagnosing device having video editing device
JPH02147052A (en) Electronic scanning type ultrasonic diagnosing device
JPH0614927A (en) Ultrasonic diagnostic device
JPS58127185A (en) Ultrasonic wave receiving circuit
JPS60261443A (en) Ultrasonic diagnostic apparatus
JPS5990555A (en) Multi-frequency ultrasonic photographic apparatus
JPS6221537B2 (en)
JP3515630B2 (en) Ultrasound diagnostic equipment
JPH074385B2 (en) Ultrasonic diagnostic equipment
JP2763140B2 (en) Ultrasound diagnostic equipment
KR20230148875A (en) Apparatus for improving ultrasound compounding image using multi-focal technique
JPH01256938A (en) Ultrasonic diagnoser