JPH01288244A - Ultrasonic diagnosing device having video editing device - Google Patents

Ultrasonic diagnosing device having video editing device

Info

Publication number
JPH01288244A
JPH01288244A JP11897188A JP11897188A JPH01288244A JP H01288244 A JPH01288244 A JP H01288244A JP 11897188 A JP11897188 A JP 11897188A JP 11897188 A JP11897188 A JP 11897188A JP H01288244 A JPH01288244 A JP H01288244A
Authority
JP
Japan
Prior art keywords
signal
signals
reading
delay
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11897188A
Other languages
Japanese (ja)
Inventor
Yasuto Takeuchi
康人 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP11897188A priority Critical patent/JPH01288244A/en
Publication of JPH01288244A publication Critical patent/JPH01288244A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a white line from going into a final display picture even when a signal route is switched by executing a reading control from a storing means so as to restore a continuity except for the signal of an area to be overlapped among scanning signals. CONSTITUTION:Electronic focusing circuits 6A-6D classify a subject into four zones according to a distance, and receiving signals by wave-sending signals to connect focuses, respectively, are phasing-added. A changeover switch 8 switches scanning line signals F1-F4 different in focusing positions by a timing according to the distances of respective focusing positions, the signals are outputted by being synthesized to a scanning line signal Fs for one line, and a band-pass filter 9 removes unnecessary frequencies of a high band and a low band. A logarithmic amplifier 10 level-compresses the dynamic range to be very wide of the receiving signal so as to make it adaptive to the characteristics of a photosensitive material and a CRT, the output signal is detected by a detector 11, and it is converted to a digital signal by an AD converter 12. A read/write control logic circuit 13 removes a noise part at the time of reading the inputted scanning line signal from a frame memory, and the signal, in which the nose is removed, is displayed on the CRT.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は全領域に亘って分解能の良好なエコー画像を得
るために焦点を切り替えつつエコーを受信するようにエ
コー信号の編集を行う映像編集装置を有する超音波診断
装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to video editing in which echo signals are edited so as to receive echoes while switching the focus in order to obtain echo images with good resolution over the entire area. The present invention relates to an ultrasonic diagnostic apparatus having a device.

(従来の技術) 超音波診断装置は超音波を被検体内に送波し、その反射
波が各組織や病変部によって異なることから、これを画
像化して表示して診断の用に供している。この場合、単
一焦点で送受波して遠距離にある反射体からの反射波と
、近距離にある反射体からの反射波とを同一の画面上に
表示したのでは、全画像を良好な分解能で表示すること
は困難である。これを解決するために受信時に反射源を
追跡するように焦点位置を変化する受波ダイナミックフ
ォーカス法又は同一部分に対し数回の走査を行って各走
査毎に送受の焦点を変化させ、最適な分解能が得られる
領域をそれぞれ画像メモリを介して編集して表示装置上
で繋ぎ合わせ表示する多段フォーカス法が用いられてい
る。受波ダイナミックフォーカス法は、1回の送波に対
し受信時に距離によって異なる焦点で受信するために完
像速度を落さずに済み、動きの速い臓器に適した方法で
あるが、送波のフォーカスがすべての焦点には整合でき
ないので分解能に関しては多段フォーカス法よりやや劣
っている。しかしながら、受波ダイナミックフォーカス
法をこの、ように焦点切り替え式の手法により実現する
ためには、電子フォーカスの機構を何種類か重複して持
ち、その各々を予め必要な各焦点位置に分担して設定し
ておき、受波の途上では該当区間の反射波が受波されて
いる時間帯に該当する電子フォーカス手段の出力に接続
されるように信号通路の切り替えを行いつつ受波を行う
(Prior art) Ultrasonic diagnostic equipment transmits ultrasonic waves into the subject's body, and since the reflected waves vary depending on each tissue or lesion, this is converted into an image and displayed for diagnostic purposes. . In this case, if you transmit and receive waves at a single focal point and display the reflected waves from a reflector at a long distance and the reflected waves from a reflector at a short distance on the same screen, it will not be possible to display the entire image in a good manner. It is difficult to display with resolution. To solve this problem, the receiver dynamic focus method changes the focus position to track the reflection source during reception, or the receiver dynamic focus method scans the same area several times and changes the transmitter/receiver focus for each scan. A multi-stage focusing method is used in which regions where resolution can be obtained are edited individually via an image memory and then connected and displayed on a display device. The reception dynamic focus method is a method suitable for fast-moving organs because it receives waves at different focal points depending on the distance for each transmission, so there is no need to reduce the image completion speed. Since the focus cannot be matched to all the focal points, the resolution is slightly inferior to the multi-step focusing method. However, in order to realize the receiving dynamic focus method using a focus switching method like this, it is necessary to have several types of electronic focus mechanisms redundantly, and to divide each of them into each required focal position in advance. In the course of wave reception, the signal path is switched so that the reflected wave in the corresponding section is connected to the output of the electronic focusing means corresponding to the time period in which the wave is being received.

(発明が解決しようとする課題) ところで、このような切り替え型の受波ダイナミックフ
ォーカス法においては、0組の焦点の異なる受波ビーム
フォーマの整相出力信号からそれぞれ最適な分解能の得
られる部分を繋ぎ合わせて走査線信号を得るために、高
周波部、中間周波部又はビデオ信号部で信号を切り替え
て繋ぎ合わせを行っていた。この繋ぎ合わせを行った切
れ目の所に雑音が入ってきて、画面上に白線となって現
われ、特に信号レベルの低い所でこれが目立っていた。
(Problem to be Solved by the Invention) By the way, in such a switching type reception dynamic focusing method, a portion where the optimum resolution can be obtained is determined from the phased output signals of the reception beamformer having 0 sets of different focuses. In order to connect these signals to obtain a scanning line signal, the signals are switched in the high frequency section, intermediate frequency section, or video signal section to perform the connection. Noise entered the area where the connections were made, appearing as white lines on the screen, and this was especially noticeable in areas where the signal level was low.

信号が切り替わった所で画質が変るという問題もあるが
、切り替えノイズに由来する白線が入るという点が最も
問題の多い点であった。
There is also the problem that the image quality changes where the signal switches, but the most problematic point is that white lines appear due to switching noise.

これを避けるために、それぞれ焦点距離の異なるデイレ
−レンズ(受波ビームフォーマの焦点決定手段)の組み
合わせによる分波器の後段をすべて各焦点毎に並列に用
意して、受信信号を検波してフレームメモリに由き込む
所で合成して、少なくとも高周波的に混入するスパイク
ノイズが検波されて白線となって出てくることを防ごう
という考えもあるが、回路規模が大きく成り過ぎてコス
ト的に問題である。
In order to avoid this, the downstream stages of the demultiplexer, each consisting of a combination of delay lenses (focus determining means of the receiving beamformer) with different focal lengths, are prepared in parallel for each focal point, and the received signals are detected. There is an idea to combine it at the point where it goes into the frame memory to at least prevent the spike noise mixed in at high frequency from being detected and appearing as a white line, but the circuit scale would be too large and the cost would be high. This is a problem.

本発明は上記の問題点に鑑みてなされたもので、その目
的は、切り替え型の受波ダイナミックフォーカス法にお
いて、信号経路を切り替えても最終表示画面に白線の入
らない映像編集装置を有する超音波診断装置を実現する
ことにある。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to use ultrasonic waves having a video editing device in which a white line does not appear on the final display screen even if the signal path is switched in a switching type receiving dynamic focus method. The objective is to realize a diagnostic device.

(課題を解決するための手段) 前記の課題を解決する本発明は、全領域に■って分解能
の良好なエコー画像を得るために焦点を切り替えつつエ
コーを受信するようにエコー信号の編集を行う映像編集
装置を有する超音波診断装置において、焦点の異なる走
査線信号をそれぞれ整相加算する複数の電子フォーカス
制御手段と、該電子フォーカス制御手段からの出力信号
を零を含んでそれぞれ異なる遅延時間を与える複数の遅
延手段と、該遅延手段の出力信号を切り替えて1本の走
査線データに合成する切り替え手段と、前記合成された
走査信号をそのまま書き込む記憶手段と、前記走査信号
の中重複する領域の信号を除いて連続性を復元するよう
に記憶手段からの読み出し制御を行う読み出し制御手段
とを具備することを特徴とする。
(Means for Solving the Problems) The present invention solves the above problems by editing echo signals so as to receive echoes while switching the focus in order to obtain echo images with good resolution over the entire area. In an ultrasound diagnostic apparatus having a video editing device, a plurality of electronic focus control means each perform phasing and summation of scanning line signals of different focuses, and output signals from the electronic focus control means are controlled at different delay times including zero. a switching means for switching the output signals of the delay means and combining them into one scanning line data; a storage means for writing the combined scanning signals as they are; The apparatus is characterized by comprising a read control means for controlling read from the storage means so as to restore continuity except for signals in the area.

(作用) 焦点の異なる領域の走査線信号を送受波し、受信信号を
それぞれの領域の電子フォーカス手段にて整相加算した
後異なる遅延時間で遅延させる。
(Function) Scanning line signals in areas with different focal points are transmitted and received, and the received signals are phased and summed by electronic focusing means in each area, and then delayed by different delay times.

切り替え手段は各領域の遅延処理された信号を逐次焦点
位置に対応した時間間隔で切り替えて合成し、信号処理
J3よび記憶の後、遅延時間の異なる隣接領域の信号間
で重複した領域の映像を繋ぎ目と共に除去して記憶手段
から読み出し、表示装置に表示する。
The switching means sequentially switches and synthesizes the delay-processed signals of each area at time intervals corresponding to the focal position, and after signal processing J3 and storage, images of areas overlapping between signals of adjacent areas with different delay times are synthesized. It is removed together with the joint, read out from the storage means, and displayed on the display device.

(実施例) 以下、図面を参照して本発明の実施例を詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例のブロック図である。FIG. 1 is a block diagram of one embodiment of the present invention.

図において、1は送信パルス発生のためのトリガ信号を
発振する送波トリガ発振器で、出力トリガ信号は送波ビ
ームフォーマ2に入力されて音線を形成するため、異な
った遅延量を持つ例えば64回線の信号に分離される。
In the figure, 1 is a transmit trigger oscillator that oscillates a trigger signal for generating a transmit pulse.The output trigger signal is input to a transmit beam former 2 to form a sound ray, so for example 64 Separated into line signals.

3は送波ビームフォーマ2からの64回線分の入力信号
を適宜切り替えて音線を形成してスキャンさせ、各音線
の反射波受波信号を切り替えて開口面内のエレメント位
置に対応する64回線分の信号に組み戻すスキャナスイ
ッチで、スイッチ数節約のために2段構えにされており
、2段の中間には送受信回路4が設けられている。送受
信回路4には送信用電力増幅器。
3 appropriately switches the 64 lines of input signals from the transmit beam former 2 to form sound rays and scan them, and switches the reflected wave reception signal of each sound ray to correspond to the element position within the aperture plane. This is a scanner switch that recombines signals for lines, and is arranged in two stages to save on the number of switches, with a transmitting/receiving circuit 4 provided in the middle of the two stages. The transmitting/receiving circuit 4 includes a transmitting power amplifier.

送受信切り替えスイッチ。受信用増幅器等が含まれてい
る。5は送信用高周波信qを受けて超音波を発振し、反
射波を受信して高周波信号に変換する多数の振動子エレ
メントで構成される超音波探触子アレイである。6Δ〜
6Dは被検体を距離によって4つのゾーンに分類したそ
れぞれが受信ビームフォーマである4個の電子フォーカ
ス回路で、電子フォーカス回路6 A G、を最近距離
のゾーン0゜電子フォーカス回路6Bは次に近い距離の
ゾーン1、N子フォーカス回路6Cは次に遠い距離のゾ
ーン2.電子フォーカス回路6Dは最遠距離のゾーン3
にそれぞれ焦点を結んだ送波信号による受信信号を整相
加算する。受信信号の各電子フォーカス回路6△〜6D
に対する振り分けはスキャナスイッチ3で行っている。
Transmission/reception switch. Includes receiving amplifier, etc. Reference numeral 5 denotes an ultrasonic probe array composed of a large number of transducer elements that receive a high-frequency signal q for transmission, oscillate an ultrasonic wave, and receive a reflected wave and convert it into a high-frequency signal. 6Δ~
6D is four electronic focus circuits, each of which is a receiving beamformer, which classifies the subject into four zones based on distance, and electronic focus circuits 6A, G, and 6D are the closest to the zone 0°, and electronic focus circuit 6B is the next closest zone. Distance zone 1, N child focus circuit 6C is the next farthest distance zone 2. Electronic focus circuit 6D is the farthest zone 3
The received signals from the transmitted signals focused on each are phased and summed. Each electronic focus circuit 6△~6D of received signal
The distribution is performed by the scanner switch 3.

7Bは電子フォーカス回路6Bからの信号をΔτまたけ
遅延させてF2信号を出力する遅延回路、7Cは電子フ
ォーカス回路6Cからの信号をΔτ2だけ遅延させてF
3信号を出力する遅延回路、7Dは電子フォーカス回路
6Dからの信号をΔτ3だけ遅延させてF4信号を出力
する遅延回路である。電子フォーカス回路6Δは遅延を
受けないF1信号を出力している。遅延量には次の関係
がある。
7B is a delay circuit that delays the signal from the electronic focus circuit 6B by Δτ and outputs the F2 signal. 7C is a delay circuit that delays the signal from the electronic focus circuit 6C by Δτ2 and outputs the F2 signal.
The delay circuit 7D outputs the F3 signal and is a delay circuit that delays the signal from the electronic focus circuit 6D by Δτ3 and outputs the F4 signal. The electronic focus circuit 6Δ outputs an F1 signal that is not subject to delay. The amount of delay has the following relationship.

Δτ3〉Δτ2〉Δτt>0 8は焦点位置の異なる4本の走査線信号F1〜F4信号
をゾーンO〜ゾーン3の各焦点位置の距離に応じたタイ
ミングで切り替えて1本分の走査線信号Fsに合成して
出力するフォーカルゾーン切り替えスイッチである。9
は不要な高域及び低域の周波数を除去する帯域濾波器(
以下BPFという)、10は受信信号の非常に広いダイ
ナミックレンジを感光材料やCRTの特性に適合するよ
うにレベル圧縮を行う対数増幅器で、その出力信号は検
波器11で検波され、AD変換器12でディジタル信号
に変換される。13はフレームメモリ、書き込みアドレ
ス発生鼎、読み出し制御回路及び同期信号発生器等から
成り、入力された走査線信号をフレームメモリから読み
出す時にノイズ部分を除去する読み書き制御論理回路で
ある。ノイズを除去された信号はCRTに表示される。
Δτ3>Δτ2>Δτt>0 8 is one scanning line signal Fs by switching four scanning line signals F1 to F4 signals with different focal positions at a timing according to the distance of each focal position in zones O to zone 3. This is a focal zone switch that synthesizes and outputs the image. 9
is a bandpass filter (
(hereinafter referred to as BPF), 10 is a logarithmic amplifier that performs level compression to adapt the extremely wide dynamic range of the received signal to the characteristics of the photosensitive material or CRT. is converted into a digital signal. Reference numeral 13 denotes a read/write control logic circuit which includes a frame memory, a write address generator, a read control circuit, a synchronization signal generator, etc., and removes noise when reading the input scanning line signal from the frame memory. The noise-removed signal is displayed on a CRT.

読み占き制御論理回路13の内部の構成とそれ以降の回
路の一実施例の概略を第3図に示す。図において、第1
図と同じ部分には同一の符号を付しである。図中、21
はフォーカルゾーンを切り替えスイッチ8で切り替えら
れて入力される1フレ一ム分のデータを書き込みアドレ
ス発生回路22からの占き込みアドレスにより書き込ま
れるフレームメモリ、23はフレームメモリ21に書き
込まれているデータを同期信号発生器24からのトID
、VD両信号のIIJ IIIによって読み出す読み出
し制御回路である。占き込みアドレス発生回路22の由
き込みアドレスによってフレームメモリ21に占き込ま
れたデータには次の3種がある。
FIG. 3 shows an outline of the internal structure of the fortune-telling control logic circuit 13 and one embodiment of the circuits subsequent thereto. In the figure, the first
The same parts as in the figure are given the same reference numerals. In the figure, 21
23 is a frame memory in which data for one frame is input by changing the focal zone with the switch 8 and is written in accordance with the fortune-telling address from the address generation circuit 22; 23 is data written in the frame memory 21; ID from the synchronization signal generator 24
, VD signals IIJ and III. There are three types of data read into the frame memory 21 by the reading address of the reading address generation circuit 22:

(イ)IIき横読みのリニアスキ11ン(0)縦古き縦
読みのリニアスキャン (ハ)縦書き曲線読みのヒクタスキャン読み出し制御回
路23はHD倍信号VD倍信号基づいて前記のように書
込まれたデータを読み出す。
(a) Linear scan for horizontal reading (0) Vertical old linear scan for vertical reading (c) Hikta scan for vertical writing curve reading The readout control circuit 23 writes as described above based on the HD double signal and the VD double signal. Read the stored data.

25は読み出されたフレームメモリ21がらのデータを
アナログ信号に変換するAD変換器、26はアナログ信
号を増幅してCRT27に供給する増幅器である。
25 is an AD converter that converts the read data from the frame memory 21 into an analog signal, and 26 is an amplifier that amplifies the analog signal and supplies it to the CRT 27.

次に上記のように構成された実施例の動作を説明する。Next, the operation of the embodiment configured as described above will be explained.

送波トリガ発振鼎1から出力されたトリガ信号は、送波
ビームフォーマ2において種々の遅延を受けた64ビツ
トの信号に変換される。この出力信号は焦点位置の異な
る4個の同一の音線を形成している。例えば、第1トリ
ガ信号ではゾーン0に焦点を結ぶように整相されたs1
信号が出力される。第2トリガ信号では同一音線でゾー
ン1に焦点を結ぶように整相された82信号が出力され
、同様にしてゾーン2の83信号、ゾーン3の84信号
が出力される。各81〜s4信号は次々にそれぞれスキ
ャナスイッチ3で音線を形成するように振り分けられ、
送受信回路4で電力増幅された後、超音波探触子アレイ
5で超音波信号に変えられて被検体内に送波される。被
検体内の反射体から反射された超音波信号は超音波探触
子アレイ5で受波され、電気信号に変換される。この受
信信号は送受信回路4において増幅され、スキャナスイ
ッチ3によって81〜S4信号に復元される。Sl信号
は電子フォーカス回路6Aでゾーン0に焦点位置を持っ
たF1信号に整相加算される。S2信号は電子フォーカ
ス回路6Bでゾーン1に焦点位置を持った信号に整相加
算され、遅延回路7BでΔτtの遅延を受けてFz倍信
号して出力される。S3信号は電子フォーカス回路6C
で、S4信号は電子フォーカス回路6Dでそれぞれ整相
加算され、遅延回路7C及び7DでそれぞれΔτ2.Δ
τ3の遅延を受けてF3信号。
The trigger signal outputted from the transmitting trigger oscillator 1 is converted into a 64-bit signal subjected to various delays in the transmitting beamformer 2. This output signal forms four identical sound rays with different focal positions. For example, in the first trigger signal, s1 is phased to focus on zone 0.
A signal is output. In the second trigger signal, the 82 signal phased so as to focus on the zone 1 with the same sound ray is output, and similarly the 83 signal of the zone 2 and the 84 signal of the zone 3 are output. Each of the 81 to s4 signals is sequentially distributed by the scanner switch 3 to form a sound ray,
After being power amplified by the transmitting/receiving circuit 4, the ultrasonic probe array 5 converts the signal into an ultrasonic signal and transmits it into the subject. Ultrasonic signals reflected from a reflector within the subject are received by the ultrasound probe array 5 and converted into electrical signals. This received signal is amplified in the transmitter/receiver circuit 4 and restored to signals 81 to S4 by the scanner switch 3. The Sl signal is phased and added to the F1 signal having a focal position in zone 0 by an electronic focus circuit 6A. The S2 signal is phased and added to the signal having the focus position in zone 1 in the electronic focus circuit 6B, and is delayed by Δτt in the delay circuit 7B, and is output as a signal multiplied by Fz. S3 signal is electronic focus circuit 6C
The S4 signals are phased and summed by the electronic focus circuit 6D, and the delay circuits 7C and 7D add Δτ2. Δ
F3 signal after delay of τ3.

F4信号として出力される。上記のE1〜F4信号はフ
ォーカルゾーン切り替えスイッチ8で次々に切り替えら
れて繋ぎ合わされ、1本分の走査線信号Fsに合成され
る。F2〜F4信号はそれぞれ異なった遅延量の遅延を
受けているため遅延を受けていないF1信号と共に合成
されたF5信号には、第2図に例示したように信号の繋
ぎ目において、お互いの遅延量の差に相当する部分の受
信信号が2度現れる。第2図において、(イ)はFl信
号の波形で、(ロ)はF2信号の波形である。(ハ〉は
フォーカルゾーン切り替えスイッチ8の切り台えのタイ
ミングの図、(ニ)はF1信号とF2信号がフォーカル
ゾーン切り替えスイッチ8の切り替えによって合成され
た波形である。
It is output as an F4 signal. The above E1 to F4 signals are successively switched and connected by the focal zone changeover switch 8, and are combined into one scanning line signal Fs. Since the F2 to F4 signals are each delayed by a different amount of delay, the F5 signal that is combined with the undelayed F1 signal has a delay between them at the joint of the signals, as illustrated in Figure 2. The portion of the received signal corresponding to the difference in amount appears twice. In FIG. 2, (a) is the waveform of the Fl signal, and (b) is the waveform of the F2 signal. (C) is a diagram showing the timing of switching the focal zone changeover switch 8, and (D) is a waveform in which the F1 signal and the F2 signal are synthesized by switching the focal zone changeover switch 8.

図において、明らかなように、(イ)のF!信信号順顕
著反射波a+、b1.c1.dlに注目すると、(ロ)
のF2信号においてはΔτ1の遅延を受けたa2.b2
+C2+d2になっている。
In the figure, as is clear, F! of (a)! Remarkable reflected waves a+, b1. c1. If you pay attention to dl, (b)
In the F2 signal of a2. which has been delayed by Δτ1. b2
+C2+d2.

(ハ)の切り替え制御により(ニ)のFs倍信号(qら
れているが、このFs倍信号は反射波b!。
Due to the switching control in (c), the Fs multiplied signal (q) of (d) is generated, but this Fs multiplied signal is a reflected wave b!.

b2の波形がフォーカルゾーン切り替えスイッチ8の切
り替えにより生じたスパイクノイズeを挟んでΔτ1の
差で出現している。即ち、bl−b2の区間は実質的に
もとの信号が2回重複して続けて現れる。図示はしない
がゾーン1とゾーン2、ゾーン2とゾーン3の繋ぎ目に
おいても同様な波形の信号が出現している。
The waveform b2 appears with a difference of Δτ1 between the spike noise e generated by switching the focal zone changeover switch 8. That is, in the section bl-b2, the original signal appears twice in succession. Although not shown, signals with similar waveforms also appear at the joints between zone 1 and zone 2, and between zone 2 and zone 3.

° この出力のFs倍信号、通常の装置のようにBPF
9.対数増幅器10.検波器11で信号処理されてAD
変換器12でディジタル信号に変換される。ディジタル
信号に変換された第2図(ニ)のFs倍信号、読み書き
制御論理回路13に入力される。
° Fs multiplied signal of this output, BPF like a normal device
9. Logarithmic amplifier 10. The signal is processed by the detector 11 and AD
A converter 12 converts it into a digital signal. The Fs multiplied signal shown in FIG. 2(d) converted into a digital signal is input to the read/write control logic circuit 13.

読み書き制御論理回路13に入力されたデータは書き込
みアドレス発生回路22の書き込みアドレスによってフ
レームメモリ21に縦古きされる。
The data input to the read/write control logic circuit 13 is stored in the frame memory 21 according to the write address of the write address generation circuit 22.

読み出し回路23はHD、VD信号によって前記の3種
類の何れか1種類の指定された読み方で読み出しを行う
。その読み出しは第2図の(ホ)のように行われる。即
ち、(ニ)の1.s信号の中、反射波パルスb1までの
区間D+と反射波パルスb2以降の区間D3とがもとの
反射波信号における連続性を復元するようにフレームメ
モリ21から読み出され、反射波パルスb1と反射波パ
ルスb2の間の区間D2においては、例えばフレームメ
モリ21のアドレスを進行中に小区間スキップするとい
うような手法で読み出しが中止され、その区゛間の信号
は読み出されない。従ってその間に存在するスパイクノ
イズeも読み出されずに実質的に除去される。ゾーン1
とゾーン2.ゾーン2とゾーン3の間も同様にしてスパ
イクノイズの除去か行われる。第4図はフレームメモリ
21の内容を簡略にゾーンOとゾーン1の部分のみを示
す図である。図において、上から下へ01を読みD2を
飛ばしてD3を読み出す状況が示されている。
The reading circuit 23 performs reading using one of the three types of reading methods specified by the HD and VD signals. The reading is performed as shown in FIG. 2 (E). That is, (d) 1. In the s signal, the section D+ up to the reflected wave pulse b1 and the section D3 after the reflected wave pulse b2 are read out from the frame memory 21 so as to restore the continuity in the original reflected wave signal, and the reflected wave pulse b1 In the interval D2 between the signal and the reflected wave pulse b2, reading is stopped by, for example, skipping a small interval while the address of the frame memory 21 is in progress, and the signal in that interval is not read out. Therefore, the spike noise e existing in between is also substantially removed without being read out. zone 1
and zone 2. Spike noise is similarly removed between zone 2 and zone 3. FIG. 4 is a diagram showing only the zone O and zone 1 portions of the contents of the frame memory 21 in a simplified manner. The figure shows a situation in which 01 is read from top to bottom, D2 is skipped, and D3 is read.

要訳すれば書き込み時はお構いなく1本調子で占き込み
、読み出し時は重複部を読み飛ばず、、読み出し後直接
CRTへ送り出すか、読み出しアドレスをコントロール
して走査変換を行ってもよい。
In other words, when writing, the data is read in one line at a time, and when reading, the overlapping part is not skipped, and after reading, the data may be sent directly to the CRT, or the read address may be controlled to perform scan conversion.

何れの場合もCRT画面上の表示アドレスとフレームメ
モリ21の読み出すべきアドレスとの間の変換テーブル
又はそれに相当する変換機能を読み出し制御回路23に
持たせておく。この変換テーブルにFROMを用いれば
、縦書き横読みのリニアスキャン用DSCでも、縦書き
縦読みのリニアスキャン用DSCでも、又変換入力のセ
クタススキャン用読み出し変換型DSCでも、書き込ま
れた結果の重複区間が同じ所にあれば同じPROMを使
用することができる。
In either case, the read control circuit 23 is provided with a conversion table or an equivalent conversion function between the display address on the CRT screen and the address to be read from the frame memory 21. If FROM is used for this conversion table, the written result can be used for a linear scan DSC with vertical writing and horizontal reading, a linear scan DSC with vertical writing and vertical reading, and a read conversion type DSC for sector scan with conversion input. If the overlapping sections are in the same location, the same PROM can be used.

尚、本発明は上記実施例に限定されるものではない。例
えば、第5図のような回路を遅延回路7B〜7Dに代え
て用いてもよい。図において、第1図と同等の部分には
同一の符号を付しである。
Note that the present invention is not limited to the above embodiments. For example, a circuit as shown in FIG. 5 may be used in place of the delay circuits 7B to 7D. In the figure, parts equivalent to those in FIG. 1 are given the same reference numerals.

図中、31Aは周波数f、を中心周波数とする周波数帯
域幅Δf1のBPF、31Bは中心周波数は同じfOの
周波数帯域幅Δ「2のBPF。
In the figure, 31A is a BPF with a frequency bandwidth Δf1 whose center frequency is f, and 31B is a BPF whose center frequency is the same fO and a frequency bandwidth Δ“2.

31Cは中心周波数[0の周波数帯域幅Δf3のBPF
、310は中心周波数「0の周波数帯域幅Δf4のBP
Fである。ここで周波数帯域幅は次式の関係にある。
31C is a BPF with a frequency bandwidth Δf3 at the center frequency [0
, 310 is the BP of the frequency bandwidth Δf4 with the center frequency "0"
It is F. Here, the frequency bandwidth has the following relationship.

ΔfI>Δf2>Δ[3〉Δf4 BPFは通常LCで構成されていて入力信号に対して位
相の遅延を生じさせる。その遅延間は同一方式の場合は
周波数帯域幅の狭いもの程近延時間が長いので、BPF
31A〜31Dにより第1図の実施例と同様な効果が得
られる。
ΔfI>Δf2>Δ[3>Δf4 The BPF is usually composed of an LC and causes a phase delay with respect to the input signal. If the delay time is the same, the narrower the frequency bandwidth, the longer the delay time, so the BPF
31A to 31D provide the same effect as the embodiment shown in FIG.

又、BPFは遅延回路に代えるのではなく追加すること
にしてもよい。更に、電子フォーカス回路及び遅延回路
を4個の例で説明したが、その数は自由に選択できるも
のである。
Further, the BPF may be added instead of replacing the delay circuit. Furthermore, although four electronic focus circuits and four delay circuits have been described, the number can be freely selected.

(発明の効果) 以上詳細に説明したように、本発明によれば、多段フォ
ーカス法において、高周波段で切り替えても最終画面に
白線が入らなくなり、実用上の効果は大きい。
(Effects of the Invention) As described above in detail, according to the present invention, in the multi-stage focusing method, even if switching is performed at a high frequency stage, no white line appears on the final screen, and the practical effect is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロック図、第2図はスパ
イクノイズ除去の説明図、第3図は読み出し制御論理回
路の内部構成とそれ以降の回路の一実施例の概略図、第
4図はフレームメモリの内容を示す図、第5図は本発明
の他の実施例の説明図である。 2・・・送波ビームフォーマ 3・・・スキャナスイッチ 4・・・送受信回路 5・・・超音波探触子アレイ 6A、6B、6C,6D・・・電子フォーカス回路78
.7C,7D・・・遅延回路 8・・・フォーカルゾーン切り替えスイッチ9・・・3
1A、31B、31C,31D・・・BPF12・・・
△D変換器 13・・・読み書き制御論理回路 21・・・フレームメモリ 22・・・書き込みアドレス発生回路 23・・・読み出し制御回路 24・・・同期信号発生器 25・・・DA変換器 27・・・CRT 特許出願人 横河メディカルシステム株式会社第2図
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is an explanatory diagram of spike noise removal, FIG. 3 is a schematic diagram of an embodiment of the internal configuration of a read control logic circuit and subsequent circuits, and FIG. FIG. 4 is a diagram showing the contents of the frame memory, and FIG. 5 is an explanatory diagram of another embodiment of the present invention. 2... Transmission beam former 3... Scanner switch 4... Transmission/reception circuit 5... Ultrasonic probe array 6A, 6B, 6C, 6D... Electronic focus circuit 78
.. 7C, 7D...Delay circuit 8...Focal zone changeover switch 9...3
1A, 31B, 31C, 31D...BPF12...
ΔD converter 13...Read/write control logic circuit 21...Frame memory 22...Write address generation circuit 23...Read control circuit 24...Synchronization signal generator 25...DA converter 27...・・CRT Patent applicant Yokogawa Medical Systems Corporation Figure 2

Claims (1)

【特許請求の範囲】[Claims] 全領域に亘つて分解能の良好なエコー画像を得るために
焦点を切り替えつつエコーを受信するようにエコー信号
の編集を行う映像編集装置を有する超音波診断装置にお
いて、焦点の異なる走査線信号をそれぞれ整相加算する
複数の電子フォーカス制御手段と、該電子フォーカス制
御手段からの出力信号を零を含んでそれぞれ異なる遅延
時間を与える複数の遅延手段と、該遅延手段の出力信号
を切り替えて1本の走査線データに合成する切り替え手
段と、前記合成された走査信号をそのまま書き込む記憶
手段と、前記走査信号の中重複する領域の信号を除いて
連続性を復元するように記憶手段からの読み出し制御を
行う読み出し制御手段とを具備することを特徴とする映
像編集装置を有する超音波診断装置。
In an ultrasonic diagnostic system that has a video editing device that edits echo signals to receive echoes while switching the focus in order to obtain echo images with good resolution over the entire region, scanning line signals with different focuses are A plurality of electronic focus control means perform phasing and summation, a plurality of delay means give different delay times including zero to the output signals from the electronic focus control means, and a single output signal is switched between the output signals of the delay means. A switching means for combining the scan line data, a storage means for writing the combined scanning signal as it is, and a reading control from the storage means for restoring continuity by excluding signals in overlapping areas of the scanning signal. What is claimed is: 1. An ultrasonic diagnostic apparatus having a video editing device, characterized in that the ultrasound diagnostic apparatus is equipped with a readout control means for controlling the reading operation.
JP11897188A 1988-05-16 1988-05-16 Ultrasonic diagnosing device having video editing device Pending JPH01288244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11897188A JPH01288244A (en) 1988-05-16 1988-05-16 Ultrasonic diagnosing device having video editing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11897188A JPH01288244A (en) 1988-05-16 1988-05-16 Ultrasonic diagnosing device having video editing device

Publications (1)

Publication Number Publication Date
JPH01288244A true JPH01288244A (en) 1989-11-20

Family

ID=14749814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11897188A Pending JPH01288244A (en) 1988-05-16 1988-05-16 Ultrasonic diagnosing device having video editing device

Country Status (1)

Country Link
JP (1) JPH01288244A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010176A (en) * 2001-06-19 2003-01-14 Ge Medical Systems Global Technology Co Llc Method and device for ultrasonic transmitting and receiving, and ultrasonic imaging device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145652A (en) * 1982-02-03 1982-09-08 Hitachi Medical Corp Ultrasonic tomogram apparatus
JPS6266844A (en) * 1985-09-18 1987-03-26 株式会社 日立メデイコ Ultrasonic diagnostic apparatus
JPS6284748A (en) * 1985-10-09 1987-04-18 株式会社日立製作所 Ultrasonic receiving and phasing circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145652A (en) * 1982-02-03 1982-09-08 Hitachi Medical Corp Ultrasonic tomogram apparatus
JPS6266844A (en) * 1985-09-18 1987-03-26 株式会社 日立メデイコ Ultrasonic diagnostic apparatus
JPS6284748A (en) * 1985-10-09 1987-04-18 株式会社日立製作所 Ultrasonic receiving and phasing circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010176A (en) * 2001-06-19 2003-01-14 Ge Medical Systems Global Technology Co Llc Method and device for ultrasonic transmitting and receiving, and ultrasonic imaging device

Similar Documents

Publication Publication Date Title
US4649927A (en) Real time display of an ultrasonic compound image
US4305296A (en) Ultrasonic imaging method and apparatus with electronic beam focusing and scanning
US5419330A (en) Ultrasonic diagnostic equipment
JP2770391B2 (en) Ultrasound imaging device
WO2015145836A1 (en) Acoustic wave processing device, method for processing signals in acoustic wave processing device and program
JP2900836B2 (en) Electronic scanning ultrasonic diagnostic equipment
JPS63143039A (en) Ultrasonic diagnostic apparatus
JPS62133945A (en) Ultrasonic diagnostic apparatus
JPH01288244A (en) Ultrasonic diagnosing device having video editing device
JPH06114056A (en) Ultrasonic diagnostic apparatus
JPH01124446A (en) Signal editing circuit
JPH11276477A (en) Ultrasonic device
JPH0113546B2 (en)
JPH07236642A (en) Ultrasonic diagnostic device
JPS58127185A (en) Ultrasonic wave receiving circuit
JPH02147052A (en) Electronic scanning type ultrasonic diagnosing device
JPH0614927A (en) Ultrasonic diagnostic device
JPH0138540Y2 (en)
JPS60261443A (en) Ultrasonic diagnostic apparatus
KR20230148875A (en) Apparatus for improving ultrasound compounding image using multi-focal technique
JPH0380017B2 (en)
JPH06205773A (en) Ultrasonic diagnostic system
JPH074385B2 (en) Ultrasonic diagnostic equipment
JPH0147754B2 (en)
JP3515630B2 (en) Ultrasound diagnostic equipment