JPH0459884A - Cold-accumulation material - Google Patents

Cold-accumulation material

Info

Publication number
JPH0459884A
JPH0459884A JP2172141A JP17214190A JPH0459884A JP H0459884 A JPH0459884 A JP H0459884A JP 2172141 A JP2172141 A JP 2172141A JP 17214190 A JP17214190 A JP 17214190A JP H0459884 A JPH0459884 A JP H0459884A
Authority
JP
Japan
Prior art keywords
magnetic material
lead
cold
cold storage
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2172141A
Other languages
Japanese (ja)
Other versions
JPH0791534B2 (en
Inventor
Kazuo Nomura
野村 和雄
Shigeru Murayama
茂 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2172141A priority Critical patent/JPH0791534B2/en
Publication of JPH0459884A publication Critical patent/JPH0459884A/en
Publication of JPH0791534B2 publication Critical patent/JPH0791534B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/003Gas cycle refrigeration machines characterised by construction or composition of the regenerator

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide a cold-accumulation material composed of a magnetic material containing a number of lead particles and pulverized rare-earth elements attached to the lead particle, having good specific heat characteristic at low temperature and high packing ratio, and useful for an extremely low- temperature refrigerator such as GM, Solvay or Stirling cycle refrigerator. CONSTITUTION:The objective cold-accumulation material 3 can be produced by coating the surface of a number of lead particles 1 (a material easily formable in spherical form) with a magnetic material 2 containing rare-earth elements and pulverized e.g. to about 3mmphi. The coating of the magnetic material 2 to the lead particle can be carried out simply by mixing both components with each other. The magnetic material 2 is thrust into the surface of the lead particle 1 by this process to form the objective cold-accumulation material 3.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はGM、  ソルベー、スターリングサイクル等
による極低温冷凍機に用いる蓄冷材に関するものである
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a cold storage material used in cryogenic refrigerators manufactured by GM, Solvay, Stirling Cycle, etc.

〈従来の技術〉 従来用いられるこの種の冷却器に詰める蓄冷材としては
、Er3NiやDyo、、Ero、。
<Conventional Technology> Conventionally used cold storage materials packed in this type of cooler include Er3Ni, Dyo, Ero, etc.

Ni2等の希土類磁性材料を用い、より低い到達温度を
得られることが、第42回低温工学・超電導学合予稿集
に述べられている。
It is stated in the proceedings of the 42nd Low Temperature Engineering and Superconductivity Conference that a lower ultimate temperature can be obtained by using rare earth magnetic materials such as Ni2.

〈発明が解決しようとする課題〉 しかし乍ら、これらの磁性材料は硬度が高く球状に成形
することが困難なため、現在蓄冷材として検討されてい
るものは方形状のものが多く、蓄冷器に対する充填率が
低く蓄冷材としての性能(蓄冷効率)が十分に発揮され
ていない。
<Problem to be solved by the invention> However, since these magnetic materials have high hardness and are difficult to form into a spherical shape, many of the materials currently being considered as cold storage materials are rectangular. The filling rate is low, and its performance as a cold storage material (cold storage efficiency) is not fully demonstrated.

また、これら磁性材料は熱伝導率も低く蓄冷効率が比熱
特性より期待される値いより低いものとなる欠点を有す
る。なお、磁性材aとな鉛の粒(pb粒)bを別々に要
約に詰める蓄冷器Cも考えられているが(第6図参照)
、装置が大型化するものである。
Furthermore, these magnetic materials have the disadvantage that their thermal conductivity is low and their cold storage efficiency is lower than expected based on their specific heat characteristics. Note that a regenerator C is also being considered in which magnetic material a and lead grains (pb grains) b are packed separately (see Figure 6).
, the equipment becomes larger.

本発明は上記実情に鑑み、磁性材と鉛の粒(pb粒)と
の組合わせに改良を加えることにより、上記課題を解決
するようにした蓄冷材を提供する二′とを目的としたも
のである。
In view of the above circumstances, the present invention aims to provide a cold storage material that solves the above problems by improving the combination of magnetic material and lead grains (PB grains). It is.

く課題を解決するための手段〉 本発明は、粉体化した希土類元素を含む磁性材と、この
磁性材か付着した多数の鉛の粒とから構成したものであ
る。
Means for Solving the Problems> The present invention is composed of a magnetic material containing a powdered rare earth element and a large number of lead grains attached to the magnetic material.

く作 用〉 上記のように、充填率の高い形状となる鉛の粒(Pb粒
)を主体とし、該鉛の粒の表面に粉体(微粒)化した希
土類元素を含む磁性材をコーティングしてなるため、蓄
冷器に対する充填率と、磁性材の低温での良好な比熱特
性を利用し蓄冷効率が向上する。
Effect> As mentioned above, the main body is lead grains (Pb grains) that have a shape with a high filling rate, and the surface of the lead grains is coated with a magnetic material containing powdered (fine grains) rare earth elements. As a result, the cold storage efficiency is improved by utilizing the filling rate of the regenerator and the good specific heat characteristics of the magnetic material at low temperatures.

〈実施例〉 以下、本発明の実施例を図面に基づいて説明すれば、次
の通りである。
<Example> Hereinafter, an example of the present invention will be described based on the drawings.

第1図、第2図において、1は球状に形成が容易な多数
の鉛(P b)粒で、該鉛の粒1の表面に、例えばφ0
.3順程度に粉体化した希土類元素を含む磁性材2をコ
ーティングすることによって付着させて、この多数の鉛
の粒1と磁性材2とて蓄冷材3を形成している。
In FIGS. 1 and 2, reference numeral 1 denotes a large number of lead (Pb) grains that are easily formed into spherical shapes, and on the surface of the lead grains 1, for example,
.. A large number of lead particles 1 and the magnetic material 2 form a cold storage material 3 by coating and adhering a magnetic material 2 containing a rare earth element powdered into powder.

いまこの球状の鉛の粒1に対する粉体の磁性材2の付着
は、球状の鉛の粒1(第4図参照)と磁性材2(第3図
参照)とを単に混ぜ合わせるだけで、鉛の粒1の表面に
磁性材2が食い込み蓄冷材3(第1図、第2図参照)と
なる。
Now, the adhesion of the powdered magnetic material 2 to the spherical lead grains 1 is achieved by simply mixing the spherical lead grains 1 (see Figure 4) and the magnetic material 2 (see Figure 3). The magnetic material 2 bites into the surface of the grains 1, forming a cold storage material 3 (see FIGS. 1 and 2).

ここにおいて、蓄冷器4の構成に当たっては、単にこの
蓄冷材3を筐体内に詰め込めばよい。、この主体とな鉛
の粒は球状を呈しているため、充填率は向上する。この
場合、蓄冷効率は鉛の粒だけの場合と比較して低温での
比熱特性の向上分だけ向上する。
Here, in constructing the regenerator 4, it is sufficient to simply pack the regenerator material 3 into the housing. Since the main lead particles are spherical, the filling rate is improved. In this case, the cold storage efficiency is improved by the improvement in specific heat characteristics at low temperatures compared to the case of using only lead particles.

〈発明の効果〉 上述のように、本発明の蓄冷材は多数の鉛の粒に粉体の
磁性材をコーティングしたことにより、低温での比熱特
性が良好な充填率の高い蓄冷材となる。また、磁性材は
粉体化しているため、鉛の粒の粒径が小さくてもよく、
熱伝導率の低い物質でも、蓄冷材としての熱移動に支障
を生じないようになる等の効果を有する。
<Effects of the Invention> As described above, the regenerator material of the present invention has a large number of lead grains coated with a powdered magnetic material, resulting in a regenerator material with good specific heat characteristics at low temperatures and a high filling rate. In addition, since the magnetic material is powdered, the particle size of the lead particles may be small.
Even substances with low thermal conductivity have the effect of not causing any hindrance to heat transfer as a cold storage material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す蓄冷材群の正面図、第2
図は同車−の拡大蓄冷材の正面図、第3図は磁性材形状
の説明図、第4図は鉛粒形状の説明図、第5図は本発明
の蓄冷材を詰めた蓄冷器の説明図、第6図は従来の蓄冷
器の説明図である。 1・・・鉛の粒、2・・・磁性材。 第1図 代  理  人 尾  股  行  雄 第3図 t′R4図 第5図 第6囚
FIG. 1 is a front view of a group of cold storage materials showing an embodiment of the present invention, and FIG.
The figure is a front view of the enlarged cold storage material of the same vehicle, Figure 3 is an explanatory diagram of the shape of the magnetic material, Figure 4 is an explanatory diagram of the shape of lead particles, and Figure 5 is a diagram of the regenerator filled with the cold storage material of the present invention. Explanatory diagram, FIG. 6 is an explanatory diagram of a conventional regenerator. 1... Lead grains, 2... Magnetic material. Figure 1 Deputy Osamu Hitomi Mata Yuki Male Figure 3 t'R4 Figure 5 Figure 6 Prisoner

Claims (1)

【特許請求の範囲】[Claims] 1、粉体化した希土類元素を含む磁性材と、この磁性材
が付着した多数の鉛の粒とから構成したことを特徴とす
る蓄冷材。
1. A cold storage material comprising a magnetic material containing a powdered rare earth element and a large number of lead grains to which the magnetic material is attached.
JP2172141A 1990-06-29 1990-06-29 Cool storage material Expired - Lifetime JPH0791534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2172141A JPH0791534B2 (en) 1990-06-29 1990-06-29 Cool storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2172141A JPH0791534B2 (en) 1990-06-29 1990-06-29 Cool storage material

Publications (2)

Publication Number Publication Date
JPH0459884A true JPH0459884A (en) 1992-02-26
JPH0791534B2 JPH0791534B2 (en) 1995-10-04

Family

ID=15936328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2172141A Expired - Lifetime JPH0791534B2 (en) 1990-06-29 1990-06-29 Cool storage material

Country Status (1)

Country Link
JP (1) JPH0791534B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159828A (en) * 1992-11-20 1994-06-07 Mitsubishi Electric Corp Cold heat storage type refrigerating machine
WO1998018880A1 (en) * 1996-10-30 1998-05-07 Kabushiki Kaisha Toshiba Cold accumulation material for ultra-low temperature, refrigerating machine using the material, and heat shield material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159828A (en) * 1992-11-20 1994-06-07 Mitsubishi Electric Corp Cold heat storage type refrigerating machine
WO1998018880A1 (en) * 1996-10-30 1998-05-07 Kabushiki Kaisha Toshiba Cold accumulation material for ultra-low temperature, refrigerating machine using the material, and heat shield material
US6003320A (en) * 1996-10-30 1999-12-21 Kabushiki Kaisha Toshiba Cold accumulating material for extremely low temperature cold, refrigerator using the same and heat shielding member

Also Published As

Publication number Publication date
JPH0791534B2 (en) 1995-10-04

Similar Documents

Publication Publication Date Title
Yamada et al. Successive antiferromagnetic phase transitions in single-crystal La 2 Co O 4
Syono et al. X-Ray and electron microscopic study of a high temperature superconductor Y0. 4Ba0. 6CuO2. 22
Hidaka et al. Large anisotropy of the upper critical magnetic field in single crystal Bi-(Sr, Ca)-Cu-O
Iguchi et al. Tunneling spectroscopy of Y-Ba-Cu-O compound
Tohge et al. Direct Preparation of Uniformly-Distributed YBa2Cu3O7-x Powders by Spray-Pyrolysis
Murayama et al. Densification and grain-orientation of Bi-Pb-Sr-Ca-Cu-O superconductors by hot-pressing
Lu et al. Phase transition, elastic and electronic properties of topological insulator Sb2Te3 under pressure: First principle study
Maeda et al. Study on the preparation and the physical properties of a 110 K (Bi, Pb) 2Sr2Ca2Cu3Oy superconductor
US5269854A (en) Regenerative material
JPH0459884A (en) Cold-accumulation material
EP0073115B1 (en) Refrigerator having a regenerative heat exchanger
Murayama et al. New Oxygen-Deficient Perovskite Phase, La1-xSrxCuO3-y (0.20≦ x≦ 0.25)
JP2962286B2 (en) Cold storage material and cold storage refrigerator
Kim et al. The formation of the high-Tc phase in Pb-doped Bi-Sr-Ca-Cu-O system
JPS63147801A (en) Hydrogen occluding body and preparation thereof
JPS6383235A (en) Manufacture of working substance for magnetic refrigeration
Koyano et al. Mechanical Alloying Process of a Mixture of α-Fe and γ′-Fe4N Powders
JPS61235655A (en) Working substance for magnetic refrigeration
Wadayama et al. Phase compatibility and superconductivity of Y-Ba-Cu-O compounds
JPS63179052A (en) Manufacture of magnetic polycrystalline substance
Kobayashi et al. Pressure effect on charge-transfer phase transition in a mixed-valence iron complex,(n-C3H7) 4N [FeIIFeIII (dto) 3](dto= C2O2S2)
Ono High-pressure synthesis of Mo-containing 1212 and 1222 compounds,(Cu, Mo) Sr2YCu2Oz and (Cu, Mo) Sr2 (Y, Ce) 2Cu2Oz
JPH06240241A (en) Cold-reserving agent for cryogenic temperature and cold-reserving apparatus for cryogenic temperature using the same
JPH0784957B2 (en) Low temperature regenerator
Eberhart et al. The Jahn-Teller effect and icosahedral stability in metallic glasses