JPH0459356B2 - - Google Patents

Info

Publication number
JPH0459356B2
JPH0459356B2 JP63153446A JP15344688A JPH0459356B2 JP H0459356 B2 JPH0459356 B2 JP H0459356B2 JP 63153446 A JP63153446 A JP 63153446A JP 15344688 A JP15344688 A JP 15344688A JP H0459356 B2 JPH0459356 B2 JP H0459356B2
Authority
JP
Japan
Prior art keywords
weight
oil
less
temperature
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63153446A
Other languages
Japanese (ja)
Other versions
JPH01103698A (en
Inventor
Tadayuki Oomae
Kentaro Mashita
Sumio Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP15344688A priority Critical patent/JPH01103698A/en
Publication of JPH01103698A publication Critical patent/JPH01103698A/en
Publication of JPH0459356B2 publication Critical patent/JPH0459356B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は石油の中、重質留分と低温流動性向上
剤から調製される低温流動性の良好な燃料油組成
物に関する。 周知のとうり原油を蒸留して得られる留分のな
かで、中、重質留分とよばれる沸点が約150ない
し450℃の留分は、燈油、軽油、A重油など各種
燃料源として大量に使用される。 なかでも特に軽油やA重油は、冬期等の低温度
下において油に含有するワツクス分の析出のため
に、流動性が著しく悪化して重大な問題を生ずる
ことがある。 例えば、冬期の寒冷条件下において軽油中に含
有するワツクス分の析出のために、デイーゼル自
動車における軽油タンクからエンジンに軽油を供
給するラインの途中に設けられた夾雑物阻止用の
濾過器に組み込まれた微細スクリーンが目詰まり
を起こして、軽油の供給ができなくなり、エンジ
ンが停止してしまう例や、さらに低温度下では軽
油全体がゲル化状態に陥つて流動性を失う例があ
る。 また漁船のエンジン駆動やハウス加温栽培用加
温機、ビル暖房等に用いられるA重油の場合にも
同様のワツクス析出によつて燃焼不良が起こり、
人命や植物等に重大な影響を与えることがある。 〔従来の技術〕 燃料油の低温下における流動性を保つ目的で、
従来種々の対策がとられている。 例えば、気温の低下が直接に燃料油の温度低下
をきたさない様に保温するため温水や電気ヒータ
ーにより加熱するなどの方法があるが、設備の改
善や新たなエネルギーコストの負担が必要とな
り、現実的には有利な方法とは言い難い。 また比較的低温においても低温流動性にすぐれ
ている、例えば灯油用留分によつて解釈し、ワツ
クスの析出量を低下させる方法もあるが、灯油用
留分のごとき比較的軽質な燃料油は需要量が多
く、付加価値が高いので、好ましい方法とは言い
難い。 燃料油の低温流動性を向上させる別の方法とし
て、低温流動性向上剤を添加する方法が知られて
いる。 低温流動性向上剤の作用は、燃料油からワツク
スが析出する際に影響を与え、ワツクスの巨大成
長化を防げて微少結晶で安定化させるものであ
る。 低温流動性向上剤には種々の化学合成品が提案
されているが、対象とする燃料油の性状によつて
効果が極端に変わり、安定に品質管理できる燃料
油性状の把握が急務であつたが、数多くの原油種
や複雑な蒸留装置の運転条件等の要因で困難を極
めていた。 低温流動性向上剤による添加効果を有効に発現
するために、対象燃料油の性状について幾つかの
検討がなされてきた。 例えば、特開昭58−134188号は中質留分燃料油
100重量部にエチレン共重合体と炭素数26ないし
27のn−パラフインを0.2ないし1.5重量部添加す
ることにより、低温流動性を改良するものであ
る。 しかしこの方法ではエチレン共重合体とn−パ
ラフインの双方を燃料油に添加する必要があり、
設備や操作が複雑化するだけでなく、ワツクス析
出に伴なう低温流動性悪化の主原因物質たるn−
パラフインを積極的に添加するために、低温下で
のワツクス析出量が増加する。その結果流動性向
上剤が有効に作用しなくなる場合が多い。 代表的用途であるデイーゼール自動車用燃料と
して用いるにあたり、燃料供給ラインの途中には
ストレーナーが設けられているが、多量のワツク
ス析出により、ストレーナーへのワツクス飽和時
間が短縮され、早期に閉塞を起こすことになり、
この方法は好ましい方法とは言えない。 また特開昭61−58116号には−20℃で析出する
パラフインワツクス量が5.5ないし12重量%に調
整された軽油に流動点降下剤を用いた組成物が示
されている。 しかしながら−20℃で析出するパラフインワツ
クス量が5.5ないし12重量%の範囲に特定された
軽油でも、流動点降下剤の添加によつてCFPP
(低温濾過目詰まり温度)が全く低下しない場合
や、特定種の流動点降下剤でしか低下できない場
合があり十分なものとは言えない。 〔発明が解決しようとする課題〕 以上に述べたように、従来の技術では特定の性
状の燃料油にしか低温流動性を改良できる添加剤
がなかつたり、また添加剤の効果を発現しやすく
するために添加剤以外の特定の物質をかなり多量
に加える必要があり、低温流動性が安定的に改善
された燃料油を提供することは困難を極めてい
た。 本発明の目的は、原油の中質および/または重
質留出油を多割合の基油とする低温流動性を改善
した燃料油を提供するにあたり、低温流動性を改
善するために用いる低温流動性向上剤の効果を十
分に発揮させうるように原油の中質および/また
は重質留出油に含有するn−パラフインの量を最
適化することにある。 〔課題を解決するための手段〕 本発明者らはかかる課題を解決すべく鋭意検討
した結果、本発明に到達したものである。 すなわち本発明は、 (1) 多割合の石油の中質および/または重質留出
油からなり、炭素数25以上のn−パラフインを
0.1重量%以上0.6重量%未満含有し、かつ曇り
点より10℃低い温度において析出するワックス
の量が4重量%未満である燃料基油に、エチレ
ン含有量60ないし80重量%、数平均分子量1000
ないし5000、分子量分布が4.0以下のエチレン
と飽和カルボン酸のビニルエステルとの共重合
体を30ないし1500ppm添加してなることを特徴
とする燃料油組成物、 (2) 燃料基油に含有される炭素数25以上のn−パ
ラフインが0.2重量%以上、0.5重量%未満であ
る前記(1)の燃料油組成物、 (3) 飽和カルボン酸のビニルエステルが酢酸ビニ
ルである前記(1)の燃料油組成物、 (4) エチレンと酢酸ビニルとの共重合体がエチレ
ン含有量60ないし75重量%、数平均分子量1000
ないし4000、分子量分布4.0以下、アセチル基
のメチル基以外に主鎖メチレン基100個あたり
6個以下のメチル末端側鎖を有する前記(3)の燃
料油組成物、 に関するものである。 本発明において多割合の基油として用いられる
石油の中質および/または重質留出油とは原油を
蒸留して得られる留出油であつて、沸点が約150
〜450℃程度の範囲にある炭化水素を主体とする
数多くの成分の混合物である。 一般的な石油蒸留設備から得られる留分として
は、常圧蒸留装置から得られるライトガスオイ
ル、ヘビーガスオイルもしくはこれらをユニフア
イナーのごとき脱硫装置で水素添加したもの、あ
るいは常圧蒸留装置の留出残油を減圧蒸留装置で
減圧蒸留して得られるバキュームガスオイルおよ
びその水素添加物などがあり、これらは用途によ
り適宜ブレンドされる場合もある。 また必要により、石油精製設備から発生する
中、重質油、例えば接触分解装置や水素化分解装
置などで処理されたオイルあるいは潤滑油製造で
脱ワツクスされた残りのオイルなどを少量混合し
ても差し支えない。 さらには、通常A重油の調整手法として一般的
に行なわれている常圧残渣油または減圧残渣油、
あるいは潤滑油精製工程で生成するエキストラク
ト油を少量混合してもよい。 本発明において、基油としての石油の中質およ
び/または重質留出油に含有される炭素数25以上
のn−パラフイン量は昇温式ガスクロマトグラフ
装置を用いて通常の方法で分析されるものであ
る。 すなわち、極性の弱い分配剤と多孔質担体から
なる充填剤を詰めたカラムを用いて、水素炎イオ
ン化方式と検出器によつて微量試料を分析し、分
離された各成分よりなるクロマトグラムからn−
パラフイン含有量を求めるものである。 例えば、和光純薬工業(株)より市販されているカ
ラム充填剤(シリコンGE SE−30、2%、60/
80メツシユ、Uniport HP担体)をステンレス
製、直径3mm、長さ4000mmの管に詰めたカラムを
用いて試料油を注入し、70℃から5℃/minの速
度で270℃に昇温して水素炎イオン化方式で検出
する。検出した電気信号は外部出力として記録計
またはデータ処理器によつて処理し、n−パラフ
インピークを求めることによつて得られる。 本発明においては、基油である石油の中質およ
び/または重質留出油に含有される炭素数25以上
のn−パラフイン量は、0.1重量%以上0.6%重量
%未満の範囲が好ましい。 炭素数25以上のn−パラフインの量が0.1重量
%より少ないと、低温流動性向上剤による低温濾
過目詰まり温度の改良効果が乏しくなり、また
0.6重量%より多いと極めて多量、例えば
2000ppm以上の低温流動性向上剤の添加によつて
低温濾過目詰まり温度の改良が可能な場合もある
が、析出するワツクスの総量が増加し、実用に供
し得ない燃料油となつてしまうことが多い。 低温流動性向上剤の添加効果により一層発揮し
得る炭素数25以上のn−パラフインの好ましい量
は0.2重量%以上0.5重量%未満である。 この範囲内においては比較的少ない添加量の低
温流動性向上剤によつて十分な低温濾過目詰まり
温度の低下が可能である。 本発明において用いられる低温流動性向上剤の
例としては、「新版石油製品添加剤」(桜井俊男編
著、幸書房昭和61年7月発行)第192頁〜第195頁
に記載の物質が参考になるが、さらに具体的には
特公昭48−23165号、特公昭55−33480号、特公昭
60−17399号、特開昭59−136391号などに開示さ
れているエチレン共重合体が挙げられる。 エチレン共重合体の例としては、コモノマーと
して酢酸ビニル、プロピオン酸ビニル、酪酸ビニ
ルなどの飽和脂肪酸のビニルエステルを1種また
は2種以上用いたものが挙げられ、これらは高分
子量エチレン共重合体として製造されたものの酸
素、過酸化物、熱などにより分解された低分子量
化物であつてもよい。 エチレン共重合体においては、特にエチレン含
有量が60ないし80重量%、蒸気圧平衡法で測定し
た数平均分子量が1000ないし5000、分子量分布が
4.0以下の範囲のものが好ましい。 エチレン含有量が60重量%未満もしくは80重量
%以上、数平均分子量が1000未満もしくは5000以
上であると、低温濾過目詰まり温度の改良効果が
やや乏しくなり、多量の添加を必要とするので、
経済的に有利とは言い難い。 エチレン共重合体は1種類でもよく、また2種
類以上の混合物を用いてもよい。エチレン共重合
体はそのまま燃料油に混合し溶解することが可能
であるが、工業的には炭化水素系の溶媒に溶解し
て、10ないし90重量%の溶液として用いるのが好
都合である。 上記エチレン共重合体の中でも、工業的に入手
が容易であり、低温流動性の改良効果にすぐれて
いるエチレン−酢酸ビニル共重合体が特に好まし
い。 エチレン−酢酸ビニル共重合体においてさらに
好ましいのは、エチレン含有量が60ないし75重量
%、数平均分子量が1000ないし4000であり、分子
量分布が4.0以下、アセチル基のメチル基以外に
主鎖メチレン基100個あたり6個以下のメチル末
端側鎖を有するものであり、低温濾過目詰まり温
度の一段の低下を果すことができる。 なお、分子量分布は、ゲル浸透クロマトグラフ
イー(GPC)法[「高分子測定法、構造と物性
(上)」高分子学会編、培風館 昭和48年発行、第
76〜89頁に記載の方法が参考となる。]によつて
標準ポリスチレン換算の重量平均分子量
(Mw)/数平均分子量(Mn)比から求められる
ものである。 さらに、本発明において分岐度は「アセトキシ
基のメチル基以外に主鎖メチレン基100個あたり
のメチル末端側鎖数」で表現し、核磁気共鳴
1H NMR)法(「日本化学会誌」1980年、第1
号、第74〜78頁に記載の方法が参考となる。)に
よつて求めた結果を用いて計算される。 すなわち、プロトン核磁気共鳴スペクトルにお
ける、メチル基とメチレン基にもとづくピーク比
を求め、ケン化法により求めた酢酸ビニル含有量
と、蒸気圧浸透圧法により求めた数平均分子量を
用いて計算されるものである。なお、主鎖メチレ
ン基の両末端はメチル基になつており、かつ側鎖
は全てエチル基であるとして、該末端メチル基2
個を差し引いて求めるものである。 本発明に用いる低温流動性向上剤の添加量は、
石油の中質および/または重質留分からなる基油
に対して、重量で30〜1500ppmの範囲が好まし
く、より好ましくは50ないし1000ppmの範囲であ
る。 添加量が30ppm未満では、低温濾過目詰まり温
度の低下はほとんど期待できず、添加量が
1500ppmを超える場合は、得られる効果に比較し
経済的に不利になるので好ましくない。 本発明による燃料油組成物に対して、防錆剤、
酸化防止剤、静電気帯電防止剤、セタン価向上剤
あるいは防食剤などを併用してもよい。 [実施例] 以下、本発明の燃料油組成物を実施例によつて
具体的に説明するが、本発明はこれらの記載によ
つて限定されるものではない。 なお、用いた試料油の各種分析、測定は次の方
法により行なつた。 比重 JIS K2249(1986年) 動粘度 JIS K2283(1986年) 蒸留試験 JIS K2254(1986年) 曇り点 JIS K2269(1986年) 流動点 JIS K2269(1986年) CFPP(低温濾過目詰まり温度) IP−309(1976年英国)に示されるCold
Filter Plugging Point of Distillate Fueleに
準拠して製作された自動低温濾過目詰まり点試
験器「吉田化学器械(株)製A4F2型」で測定 ワックス析出量 試料油50gに住友化学工業(株)より市販されて
いる低温流動性向上剤「スタビノール(登録商
標)FI−18」を200ppm溶解し、100mlメスシ
リンダー中で室温より1℃/hrの速度で−5
℃、−10℃、または曇り点より10℃低い温度ま
で冷却する。冷却した試料油から析出したワツ
クス分以外の油分を、5μmメンブランフイル
ターを取り付けた濾過金具を通して減圧排出
し、残存ワツクス分に冷エタノール/エチルエ
ーテル(2/1容量比)を50ml添加し、軽く撹
拌の後再び油分を減圧排出する。 さらに残ワツクス分に冷メタノールを50ml添
加し、11G4ガラスフイルターに全量を流し込
んで油分を減圧排出し、ガラスフイルターに残
存したワツクス分を一昼夜風乾の後、ワツクス
分の重量を測定してワツクス析出量とする。 n−パラフイン含有量 島津製作所社製のガスクロマトグラフGC−
9A型とクロマトパツクC−R2AXデータ処理
器により、試料油中のn−パラフイン含有量を
求めた。なお定量のために内部標準物質とし
て、n−トリアコンタンを用いた。主要操作条
件を次に示す。 カラム:ステンレス製内径3mm、長さ4m カラム充填剤:和光純薬(株)製シリコンGE SE
−30、2%、60/80メツシユ(Uniport HP
担体) インジエクシヨン温度:270℃ キヤリヤーガス:ヘリウム 検出器:水素炎イオン化方式(FID) カラム昇温速度:5℃/min(70→270℃) 実施例 1 第1表および第2表に性状を示すデイーゼル軽
油試料No.1からNo.4に対して第3表に示す各種の
低温流動性改良物質をキシレンの50重量%溶液と
した低温流動性向上剤500ppmを添加し、CFPP
を測定した。 試料油自身のCFPPからの降下温度(△CFPP)
によつて効果の有効性を検討した結果を第3表に
示す。
[Industrial Field of Application] The present invention relates to a fuel oil composition with good low-temperature fluidity prepared from a heavy petroleum fraction and a low-temperature fluidity improver. As is well known, among the fractions obtained by distilling crude oil, those with a boiling point of approximately 150 to 450°C, called medium and heavy fractions, are used in large quantities as a source of various fuels such as kerosene, light oil, and heavy oil A. used for. Among these, especially light oil and A heavy oil, the fluidity may deteriorate significantly due to the precipitation of wax contained in the oil at low temperatures such as in winter, resulting in serious problems. For example, in order to prevent the wax contained in diesel oil from precipitating under cold conditions in winter, it is installed in a filter to prevent contaminants installed in the line that supplies diesel oil from the diesel tank to the engine. There have been cases where the fine screens have become clogged, making it impossible to supply light oil and causing the engine to stop, and furthermore, at low temperatures, the entire light oil has gelled and lost fluidity. In addition, similar wax precipitation causes poor combustion in the case of heavy oil A, which is used to drive the engines of fishing boats, heating machines for greenhouse cultivation, heating buildings, etc.
It may have a serious impact on human life and plants. [Prior art] In order to maintain the fluidity of fuel oil at low temperatures,
Various countermeasures have been taken in the past. For example, there are methods such as heating the fuel oil with hot water or an electric heater to keep it warm so that the drop in temperature does not directly cause a drop in the temperature of the fuel oil, but this requires equipment improvements and new energy costs. It is hard to say that this is an advantageous method. There is also a method of reducing the amount of wax precipitation by using kerosene fractions, which have excellent low-temperature fluidity even at relatively low temperatures, but relatively light fuel oils such as kerosene fractions Since the demand is large and the added value is high, it is difficult to say that it is a preferable method. Another known method for improving the low-temperature fluidity of fuel oil is to add a low-temperature fluidity improver. The action of the low-temperature fluidity improver affects the precipitation of wax from fuel oil, preventing the wax from growing to a gigantic size and stabilizing it with microcrystals. Various chemically synthesized products have been proposed as low-temperature fluidity improvers, but their effectiveness varies dramatically depending on the properties of the target fuel oil, and there is an urgent need to understand the properties of fuel oil to ensure stable quality control. However, this has been extremely difficult due to factors such as the large number of crude oil types and the complicated operating conditions of distillation equipment. In order to effectively express the effect of adding a low-temperature fluidity improver, several studies have been made on the properties of target fuel oil. For example, JP-A-58-134188 discloses medium distillate fuel oil.
100 parts by weight of ethylene copolymer and carbon number 26 or more
By adding 0.2 to 1.5 parts by weight of n-paraffin No. 27, low-temperature fluidity is improved. However, this method requires the addition of both ethylene copolymer and n-paraffin to the fuel oil.
In addition to complicating equipment and operations, n-
Since paraffin is actively added, the amount of wax deposited at low temperatures increases. As a result, the fluidity improver often does not work effectively. When used as fuel for diesel automobiles, which is a typical application, a strainer is installed in the middle of the fuel supply line, but due to the large amount of wax deposited, the wax saturation time in the strainer is shortened, causing early blockage. become,
This method cannot be said to be a preferable method. Furthermore, JP-A No. 61-58116 discloses a composition using a pour point depressant in light oil in which the amount of paraffin wax precipitated at -20 DEG C. is adjusted to 5.5 to 12% by weight. However, even if the amount of paraffin wax precipitated at -20℃ is specified to be in the range of 5.5 to 12% by weight, CFPP can be improved by adding a pour point depressant.
(low-temperature filtration clogging temperature) may not be lowered at all, or may only be lowered with a specific type of pour point depressant, so it cannot be said to be sufficient. [Problems to be solved by the invention] As described above, in the conventional technology, there are no additives that can improve the low-temperature fluidity of fuel oils with specific properties, and there are no additives that can improve the low-temperature fluidity of fuel oils with specific properties. Therefore, it is necessary to add a fairly large amount of specific substances other than additives, and it has been extremely difficult to provide a fuel oil with stably improved low-temperature fluidity. An object of the present invention is to provide a fuel oil with improved low-temperature fluidity that uses medium and/or heavy distillate oil of crude oil as a base oil in a large proportion. The object of the present invention is to optimize the amount of n-paraffin contained in medium and/or heavy distillate of crude oil so that the effect of the property improver can be fully exhibited. [Means for Solving the Problems] The present inventors have made extensive studies to solve the problems and have arrived at the present invention. That is, the present invention provides: (1) consisting of a large proportion of medium and/or heavy distillate oil of petroleum, containing n-paraffin having 25 or more carbon atoms;
The fuel base oil contains 0.1% by weight or more and less than 0.6% by weight, and the amount of wax that precipitates at a temperature 10°C lower than the cloud point is less than 4% by weight, an ethylene content of 60 to 80% by weight, and a number average molecular weight of 1000.
A fuel oil composition characterized by adding 30 to 1500 ppm of a copolymer of ethylene and a vinyl ester of a saturated carboxylic acid having a molecular weight distribution of 4.0 to 5000 and a molecular weight distribution of 4.0 or less, (2) contained in a fuel base oil. The fuel oil composition according to (1) above, in which n-paraffin having a carbon number of 25 or more is 0.2% by weight or more and less than 0.5% by weight, (3) the fuel according to (1) above, in which the vinyl ester of a saturated carboxylic acid is vinyl acetate. oil composition, (4) a copolymer of ethylene and vinyl acetate having an ethylene content of 60 to 75% by weight and a number average molecular weight of 1000;
4,000 to 4000, a molecular weight distribution of 4.0 or less, and having 6 or less methyl-terminated side chains per 100 methylene groups in the main chain in addition to the methyl group of the acetyl group. The medium and/or heavy distillate oil of petroleum used as a large proportion of base oil in the present invention is a distillate oil obtained by distilling crude oil, and has a boiling point of about 150.
It is a mixture of many components, mainly hydrocarbons, in the range of ~450°C. Fractions obtained from general petroleum distillation equipment include light gas oil and heavy gas oil obtained from atmospheric distillation equipment, or those obtained by hydrogenating these oils with a desulfurization equipment such as a unifier, or distillates from atmospheric distillation equipment. There are vacuum gas oils obtained by distilling residual oil under reduced pressure using a vacuum distillation apparatus, hydrogenated products thereof, and the like, and these may be blended as appropriate depending on the purpose. If necessary, a small amount of heavy oil generated from petroleum refining equipment, such as oil processed in catalytic cracking equipment or hydrocracking equipment, or residual oil dewaxed during lubricating oil production, may be mixed. No problem. Furthermore, normal pressure residual oil or vacuum residual oil, which is commonly used as a preparation method for A heavy oil,
Alternatively, a small amount of extract oil produced in the lubricating oil refining process may be mixed. In the present invention, the amount of n-paraffin having 25 or more carbon atoms contained in the medium and/or heavy distillate of petroleum as the base oil is analyzed by a conventional method using a temperature-programmed gas chromatograph. It is something. That is, using a column packed with a packing material consisting of a weakly polar distributing agent and a porous carrier, a trace amount of sample is analyzed using a flame ionization method and a detector, and n is determined from a chromatogram consisting of each separated component. −
This is to determine the paraffin content. For example, a column packing material commercially available from Wako Pure Chemical Industries, Ltd. (Silicon GE SE-30, 2%, 60/
A sample oil was injected into a column packed with a stainless steel tube with a diameter of 3 mm and a length of 4000 mm, and the temperature was raised from 70°C to 270°C at a rate of 5°C/min, and hydrogen was added. Detected using flame ionization method. The detected electrical signal is processed as an external output by a recorder or a data processor, and is obtained by determining the n-paraffin peak. In the present invention, the amount of n-paraffin having 25 or more carbon atoms contained in the medium and/or heavy distillate of petroleum as the base oil is preferably in the range of 0.1% by weight or more and less than 0.6% by weight. If the amount of n-paraffin having a carbon number of 25 or more is less than 0.1% by weight, the effect of improving the low-temperature filtration clogging temperature by the low-temperature fluidity improver will be poor, and
More than 0.6% by weight is an extremely large amount, e.g.
Although it may be possible to improve the clogging temperature of the low-temperature filter by adding 2000 ppm or more of a low-temperature fluidity improver, the total amount of precipitated wax may increase, resulting in a fuel oil that cannot be put to practical use. many. The preferred amount of n-paraffin having 25 or more carbon atoms is 0.2% by weight or more and less than 0.5% by weight, which can be further enhanced by the effect of adding a low-temperature fluidity improver. Within this range, the low-temperature filtration clogging temperature can be sufficiently lowered by adding a relatively small amount of the low-temperature fluidity improver. As an example of the low-temperature fluidity improver used in the present invention, the substances described on pages 192 to 195 of "New Edition Petroleum Product Additives" (edited and authored by Toshio Sakurai, published by Koshobo, July 1986) can be referred to. However, more specifically, Tokuko Sho No. 48-23165, Tokko Sho 55-33480, Tokko Sho No.
Examples include ethylene copolymers disclosed in No. 60-17399 and JP-A-59-136391. Examples of ethylene copolymers include those using one or more vinyl esters of saturated fatty acids such as vinyl acetate, vinyl propionate, and vinyl butyrate as comonomers, and these can be used as high molecular weight ethylene copolymers. It may be a low-molecular-weight product that is produced and decomposed by oxygen, peroxide, heat, or the like. In particular, ethylene copolymers have an ethylene content of 60 to 80% by weight, a number average molecular weight of 1000 to 5000 measured by vapor pressure equilibrium method, and a molecular weight distribution of 60 to 80% by weight.
A range of 4.0 or less is preferable. If the ethylene content is less than 60% by weight or more than 80% by weight, and the number average molecular weight is less than 1000 or more than 5000, the effect of improving the low temperature filtration clogging temperature will be somewhat poor, and a large amount will need to be added.
It is hard to say that it is economically advantageous. One type of ethylene copolymer may be used, or a mixture of two or more types may be used. Ethylene copolymer can be mixed and dissolved in fuel oil as it is, but industrially it is convenient to dissolve it in a hydrocarbon solvent and use it as a 10 to 90% by weight solution. Among the above ethylene copolymers, ethylene-vinyl acetate copolymers are particularly preferred because they are industrially easily available and have excellent effects on improving low-temperature fluidity. More preferably, the ethylene-vinyl acetate copolymer has an ethylene content of 60 to 75% by weight, a number average molecular weight of 1000 to 4000, a molecular weight distribution of 4.0 or less, and a main chain methylene group in addition to the methyl group of the acetyl group. It has 6 or less methyl-terminated side chains per 100 pieces, and can further reduce the clogging temperature of low-temperature filtration. The molecular weight distribution was determined using the gel permeation chromatography (GPC) method ["Polymer Measurement Methods, Structure and Physical Properties (Part 1)" edited by the Society of Polymer Science and Technology, Baifukan, published in 1972, Vol.
The method described on pages 76-89 is helpful. ] is determined from the ratio of weight average molecular weight (Mw)/number average molecular weight (Mn) in terms of standard polystyrene. Furthermore, in the present invention, the degree of branching is expressed as "the number of methyl-terminated side chains per 100 methylene groups in the main chain other than the methyl group of the acetoxy group," and is expressed by the nuclear magnetic resonance ( 1 H NMR) method ("Journal of the Chemical Society of Japan" 1980). Year, 1st
The method described in No. 1, pp. 74-78 can be used as a reference. ) is calculated using the results obtained by That is, it is calculated by determining the peak ratio based on methyl groups and methylene groups in the proton nuclear magnetic resonance spectrum, and using the vinyl acetate content determined by the saponification method and the number average molecular weight determined by the vapor pressure osmotic pressure method. It is. Assuming that both ends of the main chain methylene group are methyl groups and all side chains are ethyl groups, the terminal methyl group 2
It is calculated by subtracting the number of individuals. The amount of the low temperature fluidity improver used in the present invention is:
The range is preferably from 30 to 1500 ppm, more preferably from 50 to 1000 ppm by weight, relative to the base oil consisting of medium and/or heavy fractions of petroleum. If the amount added is less than 30 ppm, little reduction in the clogging temperature of the low-temperature filtration can be expected;
If it exceeds 1500 ppm, it is not preferable because it is economically disadvantageous compared to the effect obtained. For the fuel oil composition according to the present invention, a rust inhibitor,
An antioxidant, an antistatic agent, a cetane number improver, an anticorrosion agent, or the like may be used in combination. [Examples] Hereinafter, the fuel oil composition of the present invention will be specifically explained using Examples, but the present invention is not limited by these descriptions. In addition, various analyzes and measurements of the sample oil used were performed by the following methods. Specific gravity JIS K2249 (1986) Kinematic viscosity JIS K2283 (1986) Distillation test JIS K2254 (1986) Cloud point JIS K2269 (1986) Pour point JIS K2269 (1986) CFPP (cold filtration clogging temperature) IP-309 Cold shown in (UK 1976)
Measured using an automatic low-temperature filtration clogging point tester "Model A4F2 manufactured by Yoshida Kagaku Kikai Co., Ltd." manufactured in accordance with Filter Plugging Point of Distillate Fuele Amount of wax precipitation Commercially available from Sumitomo Chemical Co., Ltd. in 50 g of sample oil Dissolve 200 ppm of the low-temperature fluidity improver "Stabinol (registered trademark) FI-18" and heat the mixture at -5°C from room temperature at a rate of 1°C/hr in a 100ml graduated cylinder.
℃, -10℃, or 10℃ below cloud point. The oil content other than the wax content precipitated from the cooled sample oil is discharged under reduced pressure through a filter fitting equipped with a 5 μm membrane filter, and 50 ml of cold ethanol/ethyl ether (2/1 volume ratio) is added to the remaining wax content, and stirred lightly. After that, drain the oil under reduced pressure again. Furthermore, 50ml of cold methanol was added to the remaining wax, and the entire amount was poured into a 11G4 glass filter to remove the oil under reduced pressure.The wax remaining in the glass filter was air-dried for a day and night, and the weight of the wax was measured to determine the amount of wax deposited. shall be. N-paraffin content Gas chromatograph GC- manufactured by Shimadzu Corporation
The n-paraffin content in the sample oil was determined using Model 9A and Chromatopack C-R2AX data processor. Note that n-triacontane was used as an internal standard substance for quantitative determination. The main operating conditions are shown below. Column: Stainless steel, inner diameter 3 mm, length 4 m Column packing material: Silicone GE SE manufactured by Wako Pure Chemical Industries, Ltd.
-30, 2%, 60/80 mesh (Uniport HP
Carrier) Injection temperature: 270°C Carrier gas: Helium Detector: Flame ionization (FID) Column heating rate: 5°C/min (70 → 270°C) Example 1 Diesel whose properties are shown in Tables 1 and 2 To light oil samples No. 1 to No. 4, 500 ppm of a low temperature fluidity improver made of a 50% by weight solution of various low temperature fluidity improvers shown in Table 3 in xylene was added, and CFPP
was measured. Temperature drop from CFPP of sample oil itself (△CFPP)
Table 3 shows the results of examining the effectiveness of the effects.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 実施例 2 第4表および第5表に示すデイーゼル軽油試料
No.5とNo.9を容量比で75/25(試料No.6)、50/50
(試料No.7)および25/75(試料No.8)に混合し
た。混合系の試料油の性状をも第4表および第5
表に示す。 この試料油に、酢酸ビニル含有量36.5重量%、
数平均分子量1690、分子量分布2.4、メチル末端
側鎖3.8個/100メチンレンのエチレン−酢酸ビニ
ル共重合体の60重量%キシレン溶液(添加剤A)
を300または500ppm添加し、CFPPを測定した。 試料油自身からの降下温度(ΔCFPP)によつ
て効果の有効性を検討した結果を第6表および第
2図に示す。
[Table] Example 2 Diesel gas oil samples shown in Tables 4 and 5
Capacity ratio of No. 5 and No. 9 is 75/25 (sample No. 6), 50/50
(Sample No. 7) and 25/75 (Sample No. 8). The properties of the mixed sample oil are also shown in Tables 4 and 5.
Shown in the table. This sample oil had a vinyl acetate content of 36.5% by weight,
60% by weight xylene solution of ethylene-vinyl acetate copolymer with number average molecular weight 1690, molecular weight distribution 2.4, 3.8 methyl-terminated side chains/100 methinelene (Additive A)
was added at 300 or 500 ppm and CFPP was measured. Table 6 and Figure 2 show the results of examining the effectiveness of the effect using the temperature drop (ΔCFPP) from the sample oil itself.

【表】【table】

【表】【table】

【表】【table】

【表】 * No.5の試料油のガスクロマトグラムを第
1図に示す。
[Table] * Figure 1 shows the gas chromatogram of sample oil No. 5.

【表】 実施例 3 第7表に示す燃料油試料に、実施例2で用いた
添加剤Aを500ppm添加し、CFPPを測定した。 試料油自身のCFPPからの降下温度(ΔCFPP)
によつて効果の有効性を検討した結果を第7表に
併記し、また第2図に示す。 さらに、比較用として添加剤Bと添加剤Cを用
いた結果を第7表に併記するとともに、それぞれ
第3図および第4図に示す。
[Table] Example 3 Additive A used in Example 2 was added at 500 ppm to the fuel oil samples shown in Table 7, and CFPP was measured. Temperature drop from CFPP of sample oil itself (ΔCFPP)
The results of examining the effectiveness of the effects are shown in Table 7 and in Figure 2. Furthermore, the results using Additive B and Additive C for comparison are also listed in Table 7, and are shown in FIGS. 3 and 4, respectively.

【表】【table】

【表】 [発明の効果] 以上の実施例により明らかなとうり、炭素数25
以上のn−パラフイン含有量が0.1重量%未満も
しくは0.6重量%以上含有し、かつ曇り点より10
℃低い温度において析出するワツクスの量が4重
量%以上である試料油に対しては低温流動性向上
剤の添加によるCFPPの降下を得ることができな
かつたが、n−パラフイン含有量が0.1重量%以
上0.6重量%未満含有し、かつ曇り点より10℃低
い温度において析出するワツクスの量が4重量%
未満である試料油では降下することができ、特に
0.2重量%以上0.5重量%未満の試料油に対して顕
著な効果が得られた。 また、低温流動性向上剤として、特にエチレン
含有量が60ないし75重量%、数平均分子量が1000
ないし4000のエチレン−酢酸ビニル共重合体を用
いるとCFPPが大幅に降下し、中でも分子量分布
4.0以下、メチル末端側鎖6個/100メチレン以下
のものでより顕著な効果が得られた。
[Table] [Effects of the invention] As is clear from the above examples, the number of carbon atoms is 25.
The n-paraffin content is less than 0.1% by weight or 0.6% by weight or more, and the cloud point is 10% or more.
For sample oils in which the amount of wax precipitated at low temperatures was 4% by weight or more, it was not possible to reduce CFPP by adding a low-temperature fluidity improver, but when the n-paraffin content was 0.1% by weight, % or more and less than 0.6% by weight, and the amount of wax that precipitates at a temperature 10°C lower than the cloud point is 4% by weight.
Especially in sample oils that are less than
Remarkable effects were obtained for sample oils containing 0.2% by weight or more and less than 0.5% by weight. Also, as a low-temperature fluidity improver, it is especially suitable for use with an ethylene content of 60 to 75% by weight and a number average molecular weight of 1000.
When using an ethylene-vinyl acetate copolymer of
A more significant effect was obtained when the ratio was 4.0 or less and the number of methyl-terminated side chains was 6/100 methylene or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例に示したガスクロマトグラフ
法n−パラフイン分析の手法によつて得た試料油
No.5のガスクロマトグラムであり、n−パラフイ
ンとして計算した部分を斜線で示した。第2図は
各種試料油中の炭素数25以上のn−パラフイン含
有量と、酢酸ビニル含有量36.5重量%、数平均分
子量1690のエチレン−酢酸ビニル共重合体のキシ
レン60重量%溶液(添加剤A)500ppmを添加し
た際の低温濾過目詰まり温度の降下温度
(ΔCFPP)との関係を示す。 第3図は各試料油
中の炭素数25以上のn−パラフイン含有量と、酢
酸ビニル含有量16.5重量%、数平均分子量2200の
エチレン−酢酸ビニル共重合体のキシレン60重量
%溶液(添加剤B)500ppmを添加した際の低温
濾過目詰まり温度の降下温度(ΔCFPP)との関
係を示す。第4図は各試料油中の炭素数25以上の
n−パラフイン含有量と、酢酸ビニル含有量44.6
重量%、数平均分子量1820のエチレン−酢酸ビニ
ル共重合体のキシレン60重量%溶液(添加剤C)
500ppmを添加した際の低温濾過目詰まり温度の
降下温度(ΔCFPP)との関係を示す。
Figure 1 shows sample oil obtained by the gas chromatography n-paraffin analysis method shown in the example.
This is the gas chromatogram of No. 5, and the portion calculated as n-paraffin is shown with diagonal lines. Figure 2 shows the content of n-paraffin having 25 or more carbon atoms in various sample oils and the xylene 60% solution of an ethylene-vinyl acetate copolymer with a vinyl acetate content of 36.5% and a number average molecular weight of 1690 (additives). A) Shows the relationship between the temperature at which the low temperature filtration clogging temperature drops (ΔCFPP) when 500 ppm is added. Figure 3 shows the content of n-paraffin having 25 or more carbon atoms in each sample oil, and the xylene 60% solution of an ethylene-vinyl acetate copolymer with a vinyl acetate content of 16.5% and a number average molecular weight of 2200 (additives). B) Shows the relationship between the low temperature filtration clogging temperature drop temperature (ΔCFPP) when 500 ppm is added. Figure 4 shows the n-paraffin content with carbon numbers of 25 or more in each sample oil and the vinyl acetate content of 44.6
60% by weight solution of ethylene-vinyl acetate copolymer with a number average molecular weight of 1820 in xylene (Additive C)
The relationship between the temperature at which the low-temperature filtration clogging temperature drops (ΔCFPP) when 500 ppm is added is shown.

Claims (1)

【特許請求の範囲】 1 多割合の石油の中質および/または重質留出
油からなり、炭素数25以上のn−パラフインを
0.1重量%以上0.6重量%未満含有し、かつ曇り点
より10℃低い温度において析出するワツクスの量
が4重量%未満である燃料基油に、エチレン含有
量60ないし80重量%、数平均分子量1000ないし
5000、分子量分布が4.0以下のエチレンと飽和カ
ルボン酸のビニルエステルとの共重合体を30ない
し1500ppm添加してなることを特徴とする燃料油
組成物。 2 燃料基油に含有される炭素数25以上のn−パ
ラフインが0.2重量%以上、0.5重量%未満である
特許請求の範囲第1項に記載の燃料油組成物。 3 飽和カルボン酸のビニルエステルが酢酸ビニ
ルである特許請求の範囲第1項に記載の燃料油組
成物。 4 エチレンと酢酸ビニルとの共重合体がエチレ
ン含有量60ないし75重量%、数平均分子量1000な
いし4000、分子量分布が4.0以下、アセチル基の
メチル基以外に主鎖メチレン基100個あたり6個
以下のメチル末端側鎖を有する特許請求の範囲第
3項に記載の燃料油組成物。
[Claims] 1. Consisting of a large proportion of medium and/or heavy distillate oil of petroleum, containing n-paraffin having 25 or more carbon atoms.
The fuel base oil contains 0.1% by weight or more and less than 0.6% by weight, and the amount of wax that precipitates at a temperature 10°C lower than the cloud point is less than 4% by weight, an ethylene content of 60 to 80% by weight, and a number average molecular weight of 1000. No
5000, a fuel oil composition comprising 30 to 1500 ppm of a copolymer of ethylene and a vinyl ester of a saturated carboxylic acid having a molecular weight distribution of 4.0 or less. 2. The fuel oil composition according to claim 1, wherein the fuel base oil contains 0.2% by weight or more and less than 0.5% by weight of n-paraffin having 25 or more carbon atoms. 3. The fuel oil composition according to claim 1, wherein the vinyl ester of a saturated carboxylic acid is vinyl acetate. 4. The copolymer of ethylene and vinyl acetate has an ethylene content of 60 to 75% by weight, a number average molecular weight of 1000 to 4000, a molecular weight distribution of 4.0 or less, and 6 or less per 100 methylene groups in the main chain in addition to the methyl groups of acetyl groups. A fuel oil composition according to claim 3 having a methyl-terminated side chain of.
JP15344688A 1987-07-28 1988-06-23 Fuel oil composition Granted JPH01103698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15344688A JPH01103698A (en) 1987-07-28 1988-06-23 Fuel oil composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18665187 1987-07-28
JP62-186651 1987-07-28
JP15344688A JPH01103698A (en) 1987-07-28 1988-06-23 Fuel oil composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP27905993A Division JP2714747B2 (en) 1987-07-28 1993-10-12 Method for improving low temperature fluidity of fuel oil

Publications (2)

Publication Number Publication Date
JPH01103698A JPH01103698A (en) 1989-04-20
JPH0459356B2 true JPH0459356B2 (en) 1992-09-22

Family

ID=26482069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15344688A Granted JPH01103698A (en) 1987-07-28 1988-06-23 Fuel oil composition

Country Status (1)

Country Link
JP (1) JPH01103698A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4856958B2 (en) * 2006-01-23 2012-01-18 コスモ石油株式会社 Fuel oil composition
JP4856959B2 (en) * 2006-01-23 2012-01-18 コスモ石油株式会社 Fuel oil composition
JP5046978B2 (en) * 2008-01-30 2012-10-10 Jx日鉱日石エネルギー株式会社 A heavy oil composition

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3620696A (en) * 1968-09-17 1971-11-16 Exxon Research Engineering Co Fuel oil with improved flow properties
US3640691A (en) * 1968-09-17 1972-02-08 Exxon Research Engineering Co Enhancing low-temperature flow properties of fuel oil
GB1263152A (en) * 1968-04-01 1972-02-09 Exxon Research Engineering Co Distillate petroleum oil compositions
JPS57207696A (en) * 1981-06-17 1982-12-20 Nippon Sekiyu Seisei Kk Diesel gas oil composition
JPS598789A (en) * 1982-07-06 1984-01-18 Kao Corp Improving agent for fluidity at low temperature of distillated fuel petroleum
JPS602355A (en) * 1983-06-21 1985-01-08 第一工業製薬株式会社 Metal coated article
JPS6035396A (en) * 1984-06-15 1985-02-23 Nec Corp Driving method of semiconductor memory device
JPS6158116A (en) * 1984-08-29 1986-03-25 松下電器産業株式会社 Device for mounting square pushbutton
JPS61287985A (en) * 1985-05-30 1986-12-18 Sumitomo Chem Co Ltd Method of improving low-temperature flowability of fuel oil
JPS62270687A (en) * 1986-03-18 1987-11-25 エクソン ケミカル パテンツ インコ−ポレ−テツド Liquid fuel product

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1263152A (en) * 1968-04-01 1972-02-09 Exxon Research Engineering Co Distillate petroleum oil compositions
US3620696A (en) * 1968-09-17 1971-11-16 Exxon Research Engineering Co Fuel oil with improved flow properties
US3640691A (en) * 1968-09-17 1972-02-08 Exxon Research Engineering Co Enhancing low-temperature flow properties of fuel oil
JPS57207696A (en) * 1981-06-17 1982-12-20 Nippon Sekiyu Seisei Kk Diesel gas oil composition
JPS598789A (en) * 1982-07-06 1984-01-18 Kao Corp Improving agent for fluidity at low temperature of distillated fuel petroleum
JPS602355A (en) * 1983-06-21 1985-01-08 第一工業製薬株式会社 Metal coated article
JPS6035396A (en) * 1984-06-15 1985-02-23 Nec Corp Driving method of semiconductor memory device
JPS6158116A (en) * 1984-08-29 1986-03-25 松下電器産業株式会社 Device for mounting square pushbutton
JPS61287985A (en) * 1985-05-30 1986-12-18 Sumitomo Chem Co Ltd Method of improving low-temperature flowability of fuel oil
JPS62270687A (en) * 1986-03-18 1987-11-25 エクソン ケミカル パテンツ インコ−ポレ−テツド Liquid fuel product

Also Published As

Publication number Publication date
JPH01103698A (en) 1989-04-20

Similar Documents

Publication Publication Date Title
JP5204956B2 (en) Fuel oil composition
US8152868B2 (en) Fuel compositions
JP2714748B2 (en) Method for improving low temperature fluidity of fuel oil
EP1013744B1 (en) Base fuel oil for diesel fuel oil and diesel fuel oil composition comprising the same
JP7170001B2 (en) Use of paraffinic gas oil
CA2774619C (en) Improvements in fuel oils
JP4577925B2 (en) A heavy oil composition
US20120046506A1 (en) Diesel fuel composition
JP2714747B2 (en) Method for improving low temperature fluidity of fuel oil
JP6057509B2 (en) Light oil fuel composition
JPH0459356B2 (en)
JP2010168537A (en) Light oil fuel composition
EP2935530B1 (en) Fischer-tropsch derived fuel compositions
JPH0459357B2 (en)
US6203583B1 (en) Cold flow improvers for distillate fuel compositions
AU2021367047B2 (en) Use of a diesel fuel composition
JP3911061B2 (en) Fuel oil composition
RU2788009C2 (en) Diesel fuel with improved ignition characteristics
GB2387175A (en) Oxidised fuel formulations
JPH0210197B2 (en)
JP2009051875A (en) Low-sulfur diesel oil
JP3482284B2 (en) Low-temperature fluidity evaluation method
JP3482283B2 (en) Low-temperature fluidity evaluation method
JP5483913B2 (en) Light oil composition
JP5552202B2 (en) Additives for oil compositions

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070922

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 16