JPH0459014A - Gas separator - Google Patents

Gas separator

Info

Publication number
JPH0459014A
JPH0459014A JP2161878A JP16187890A JPH0459014A JP H0459014 A JPH0459014 A JP H0459014A JP 2161878 A JP2161878 A JP 2161878A JP 16187890 A JP16187890 A JP 16187890A JP H0459014 A JPH0459014 A JP H0459014A
Authority
JP
Japan
Prior art keywords
gas
product
adsorption
tank
adsorption tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2161878A
Other languages
Japanese (ja)
Other versions
JP3119659B2 (en
Inventor
Katsushi Hidano
克史 肥田野
Toshiyuki Muraoka
村岡 俊之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP02161878A priority Critical patent/JP3119659B2/en
Publication of JPH0459014A publication Critical patent/JPH0459014A/en
Application granted granted Critical
Publication of JP3119659B2 publication Critical patent/JP3119659B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To gradually purge a remaining gas in a adsorption vessel and to efficiently desorb the gas adsorbed in the vessel by evacuating the vessel and returning the gaseous product compressed in a product tank to the adsorption vessel little by little in plural steps. CONSTITUTION:Gas discharge valves 13 and 14 are opened to discharge the remaining gas in adsorption vessels 1 and 2 into the atmosphere from a discharge pipeline 12, and the vessels 1 and 2 are controlled almost to atmospheric pressure. The pressure in a product tank 20 is read by the detection signal from a pressure sensor 30, the total returning time of the gaseous nitrogen at a specified flow rate, namely the total opening time of discharge valves 18 and 19, is calculated from the reading, and then the frequency of openings of the discharge valves 18 and 19 is calculated. The discharge valves 18 and 19 are intermittently opened based on the calculated frequency, and the gaseous nitrogen is intermittently returned to the upper parts of the vessels 1 and 2 little by little. The gaseous nitrogen is gradually moved downward in the vessels 1 and 2, and the vessel 1 and 2 are purged. Consequently, the precision in desorbing the adsorbent is enhanced, and the adsorbent is surely regenerated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は気体分離装置に係り、特(こPSA式%式% に係り、特に吸着剤の脱着精度を高め吸着剤の再生を確
実に行なうよう構成した気体分離装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas separation device, and particularly relates to a PSA type % type % type, in particular a structure configured to improve the accuracy of adsorbent desorption and reliably regenerate the adsorbent. The present invention relates to a gas separation device.

従来の技術 一般に、PSA式気体分離装置は、分子ふるいカーホン
からなる吸着剤を用いて、空気を窒素と酸素に分1ζf
fi L、いずれか一方を製品ノJスとして取出し、使
用するものである。
Conventional technology In general, a PSA gas separation device separates air into nitrogen and oxygen using an adsorbent made of molecular sieve carbon.
Fi L, either one is taken out and used as a product.

このため、例えばPSA式窒素発生装置にあっては、吸
着剤を充填した吸着槽に圧縮空気を尋人して加圧する吸
着工程と、該吸着槽内を大気開放し又は真空ポンプで減
圧する脱着工程とを繰返し、吸着工程では吸着槽内の吸
着剤に酸素分子を吸着させて、製品ガスとしての窒素を
外部に取出し、一方脱着工程ては吸着された酸素を脱着
し、次の吸着工程に備えるようになっている。
For this reason, for example, in a PSA nitrogen generator, there is an adsorption process in which an adsorption tank filled with an adsorbent is pressurized with compressed air, and a desorption process in which the inside of the adsorption tank is opened to the atmosphere or the pressure is reduced using a vacuum pump. The process is repeated, and in the adsorption process, oxygen molecules are adsorbed to the adsorbent in the adsorption tank and nitrogen is taken out as a product gas, while in the desorption process, the adsorbed oxygen is desorbed and transferred to the next adsorption process. Be prepared.

発明か解決しようとする課題 従来の装置では例えば起動時吸着槽に圧縮空気を供給し
てから、目的とする純度の製品ガスか取り出せるように
なるまでの立」二り時間か長いといった課題かある。そ
のため、製品タンク内に貯溜された製品ガスを減圧され
た吸着槽に還流させて吸着槽内に残留していた気体を吸
着槽の排気配管より大気中にパージすることか考えられ
ている。
Problems to be Solved by the Invention With conventional equipment, for example, there is a problem in that it takes up to two hours from supplying compressed air to the adsorption tank at start-up until a product gas of the desired purity can be taken out. . Therefore, it has been considered to return the product gas stored in the product tank to a reduced pressure adsorption tank and purge the gas remaining in the adsorption tank into the atmosphere from the exhaust pipe of the adsorption tank.

ところか、窒素発生装置において、吸着槽内を製品ガス
でパージする際は、製品タンクと吸着槽との間に配設さ
れた取出用弁を開弁じて、製品タンク内に蓄圧された約
”’gf/ci程度の圧力に圧縮された製品ガスを短時
間還流させることになる。
However, in a nitrogen generator, when purging the adsorption tank with product gas, the take-out valve installed between the product tank and the adsorption tank is opened to remove the pressure accumulated in the product tank. The product gas compressed to a pressure of about 'gf/ci is refluxed for a short time.

その場合、パージ時間か短いので吸着槽内の残留気体を
効率よくパージすることかできす、吸着剤に吸着された
酸素を十分脱着することができず、脱着精度か低いとい
った課題が生ずる。
In that case, since the purge time is short, it is not possible to efficiently purge the residual gas in the adsorption tank, and the oxygen adsorbed by the adsorbent cannot be sufficiently desorbed, resulting in problems such as low desorption accuracy.

そのため、上記の如く圧縮された製品ガスをそのまま吸
着槽に還流させるたけては、吸着槽に残存する酸素を完
全にパージすることかできず、原料気体か吸着槽に供給
されても高純度の窒素ガスか得られるまで時間かかかり
立上り時間を短縮することができないといった課題も生
ずる。
Therefore, if the compressed product gas is directly returned to the adsorption tank as described above, it is not possible to completely purge the oxygen remaining in the adsorption tank, and even if the raw material gas is supplied to the adsorption tank, it will not be possible to completely purge the oxygen remaining in the adsorption tank. Another problem arises that it takes a long time to obtain nitrogen gas, making it impossible to shorten the rise time.

又、脱着精度か高まるようにパージ時間を長くすると、
製品ガスの消費量か増太し、折角製造した製品ガスか浪
費されてしまうことになる。
Also, if you lengthen the purge time to increase the attachment/desorption accuracy,
The amount of product gas consumed will increase, and the product gas that has been manufactured will be wasted.

又、上記パージ方法とは別にパージ時間を長くするため
、起動特製品タンク内に貯溜された製品ガスを低圧に減
圧して少量ずつ吸着槽に還流させ、徐々に吸着槽内の残
存気体をパーツする方法か考えられている。ところか、
この方法では製品カスを低圧に減圧する減圧弁が設けら
れた専用のパジ配管か必要であり、気体分離装置の構成
が複雑化するばかりか製造コストも増大してしまうとい
った課題が生ずる。尚、」−記課題は起動時たけてなく
通常の製品ガス生成する際の脱着工程においても生ずる
In addition to the above purging method, in order to lengthen the purge time, the product gas stored in the startup special product tank is reduced to a low pressure and returned to the adsorption tank little by little, and the residual gas in the adsorption tank is gradually removed from the parts. There are ways to do this. However,
This method requires a dedicated purge pipe equipped with a pressure reducing valve to reduce the pressure of the product waste to a low pressure, which poses problems such as not only complicating the configuration of the gas separation device but also increasing manufacturing costs. Incidentally, the problem mentioned above occurs not only during startup, but also during the desorption process during normal product gas generation.

そこで、本発明は上記課題を解決した気体分離装置を提
供することを目的とする。
Therefore, an object of the present invention is to provide a gas separation device that solves the above problems.

課題を解決するための手段 本発明は、内部に一の気体を吸着する吸着剤か充填され
た吸着槽に圧縮気体を供給し、該吸着槽と製品タンクと
の間に設けられた弁を開弁し該吸着剤により一の気体が
除去されたことで生成された製品ガスを前記製品タンク
に蓄圧する吸着工程と、前記吸着槽内の残存気体を外部
に排出して吸着槽内を減圧する脱着工程とを繰り返す気
体分離装置において、 前記吸着槽内か減圧された状態で前記弁を間欠的に開弁
じ、前記製品タンク内の製品ガスを複数回に分けて前記
吸着槽に還流させる製品ガス還流手段を具備してなる。
Means for Solving the Problems The present invention supplies compressed gas to an adsorption tank filled with an adsorbent that adsorbs one gas, and opens a valve provided between the adsorption tank and a product tank. an adsorption step in which the pressure of the product gas generated by removing the first gas with the adsorbent is accumulated in the product tank; and the remaining gas in the adsorption tank is discharged to the outside to reduce the pressure in the adsorption tank. In a gas separation device that repeats a desorption step, the valve is intermittently opened while the adsorption tank is under reduced pressure, and the product gas in the product tank is divided into multiple portions and returned to the adsorption tank. It is equipped with a reflux means.

作用 吸着槽内か減圧された状態で吸着槽と製品タンクとの間
に設けられた弁を間欠的に開弁させて、製品タンク内の
加圧された製品ガスを少量ずつ複数回に分けて還流させ
ることにより、吸着槽内の残存気体を徐々にパージし、
還流動作を繰り返すことにより効率良く吸着槽内をパー
ジ(脱着)する。
Operation: While the pressure inside the adsorption tank is reduced, the valve installed between the adsorption tank and the product tank is opened intermittently, and the pressurized product gas in the product tank is divided into small portions multiple times. By refluxing, residual gas in the adsorption tank is gradually purged,
By repeating the reflux operation, the inside of the adsorption tank is efficiently purged (desorbed).

実施例 第1図に本発明になる気体分離装置の一実施例を示す。Example FIG. 1 shows an embodiment of a gas separation device according to the present invention.

同図中、1,2は第1.第2の吸着槽て、各吸着槽1,
2内にはそれぞれ分子ふるいカーボンlA、2Aか充填
されている。
In the figure, 1 and 2 are the first. The second adsorption tank, each adsorption tank 1,
2 is filled with molecular sieves 1A and 2A, respectively.

3は圧縮空気供給源となるコンプレッサて、コンプレッ
サ3からの圧縮空気は空気ドライヤ4及び配管6,7を
介して吸着槽1,2にそれぞれ交互に供給されるように
なっており、このため該配管6.7の途中にはそれぞれ
電磁弁からなる空気供給用弁8,9か設けられている。
A compressor 3 serves as a compressed air supply source, and the compressed air from the compressor 3 is alternately supplied to the adsorption tanks 1 and 2 via an air dryer 4 and piping 6 and 7, respectively. Air supply valves 8 and 9 each consisting of a solenoid valve are provided in the middle of the pipes 6 and 7.

尚、空気ドライヤとしては冷凍式のドライヤか使用され
ており、冷凍式の場合起動してから約5分間部度の予冷
のための準備運転時間が必要とされている。
As the air dryer, a refrigeration type dryer is used, and in the case of a refrigeration type, a preparatory operation time of about 5 minutes is required for pre-cooling the air dryer after startup.

10.11は脱着時に吸気槽l、2からの気体を排出す
る配管で、共通排出配管12に接続されており、排出配
管12の端部には脱着掛ガスを排出するサイレンサ12
aか設けられている。そして、前記配管1.0.11の
途中にはそれぞれ吸着槽1.2内の脱着排ガスを半サイ
クル毎に交互に排出する電磁弁からなる気体排出用弁1
3.14か設けられている。
10.11 is a pipe for discharging gas from the intake tanks 1 and 2 during desorption, and is connected to the common discharge pipe 12, and at the end of the discharge pipe 12 is a silencer 12 for discharging the gas during desorption.
A is provided. In the middle of each of the pipes 1.0.11, there is a gas discharge valve 1, which is a solenoid valve that alternately discharges the desorbed exhaust gas in the adsorption tank 1.2 every half cycle.
3.14 is provided.

15.16は吸気槽1,2の出口側に接続され吸着槽1
,2内で生成された窒素をそれぞれ取出す取出配管、1
7は各配管15.16と連結された取出配管で、配管1
5.16の途中には半サイクルの間だけ後述の制御の下
に交互に開弁する電磁弁からなる取出用弁18.19か
それぞれ設けられている。また前記取出配管17は製品
タンク20の下端に接続されている。
15 and 16 are connected to the outlet sides of intake tanks 1 and 2, and adsorption tank 1
, take-out piping for taking out the nitrogen generated in 2, 1
7 is a take-out pipe connected to each pipe 15 and 16, and pipe 1
5.16 are provided with take-out valves 18 and 19, each consisting of an electromagnetic valve that opens alternately during a half cycle under control to be described later. Further, the extraction pipe 17 is connected to the lower end of the product tank 20.

尚、この取出用弁18.19は後述するように起動時は
製品タンク20内の目的とする純度の窒素ガス(製品ガ
ス)を吸着槽1.2に還流させる際開弁する還流用弁と
しても機能する。
As will be described later, these take-out valves 18 and 19 function as reflux valves that are opened when nitrogen gas (product gas) of the desired purity in the product tank 20 is refluxed to the adsorption tank 1.2 during startup. also works.

21は吸着槽1,2の出口側を連通ずる配管、22は配
管21の途中に設けられた電磁弁からなる均圧用弁で、
均圧用弁22は吸着槽1,2による半サイクルの終了時
に所定の短時間だけ開弁じ、各吸着槽1 2間を均圧す
る。
21 is a pipe that communicates the outlet sides of the adsorption tanks 1 and 2; 22 is a pressure equalization valve consisting of a solenoid valve provided in the middle of the pipe 21;
The pressure equalization valve 22 is opened for a predetermined short time at the end of a half cycle by the adsorption tanks 1 and 2 to equalize the pressure between the adsorption tanks 12.

24は製品タンク20に接続された取出配管で、その途
中には電磁弁からなる取出用弁25か設けられている。
Reference numeral 24 denotes a take-out pipe connected to the product tank 20, and a take-out valve 25 made of a solenoid valve is provided in the middle of the take-out pipe.

27は酸素センサて、製品タンク20に貯溜された気体
の酸素濃度(組成値)を検出する。又、酸素センサ27
からの酸素濃度検出信号は後述する制i卸回路29に入
力される。
An oxygen sensor 27 detects the oxygen concentration (composition value) of the gas stored in the product tank 20. Also, oxygen sensor 27
The oxygen concentration detection signal is input to a control circuit 29, which will be described later.

なお、酸素センサ27としては酸素分子の常磁性を利用
した磁気式酸素センサ、酸素か透過膜を介して電界液に
入ると電極で酸素還元反応か起き電流が流れるのを利用
した電磁式酸素センサ、ジルコニア磁器の内外面に電極
を設け、酸素濃度によって起電力か発生するのを利用し
たジルコニア式酸素センサ等が用いられる。
The oxygen sensor 27 may be a magnetic oxygen sensor that utilizes the paramagnetism of oxygen molecules, or an electromagnetic oxygen sensor that utilizes the fact that when oxygen enters the electrolyte through a permeable membrane, an oxygen reduction reaction occurs at the electrodes and a current flows. A zirconia oxygen sensor is used, which uses electrodes provided on the inner and outer surfaces of zirconia porcelain to generate an electromotive force depending on the oxygen concentration.

28は取出配管24から取出される窒素濃度、即ち酸素
濃度を設定する濃度設定スイッチで、製品タンク20か
ら取出すべき窒素ガス濃度に応じて適宜に設定されるも
のである。
Reference numeral 28 denotes a concentration setting switch for setting the nitrogen concentration, that is, the oxygen concentration taken out from the takeout pipe 24, and is set appropriately according to the nitrogen gas concentration to be taken out from the product tank 20.

30は圧力センサで、製品タンク20内に蓄圧された窒
素ガスの圧力を検出する。
A pressure sensor 30 detects the pressure of nitrogen gas accumulated in the product tank 20.

また、制御回路29は例えばマイクロコンピュータ等に
よって構成される弁制御手段で、入力側には酸素センサ
27.濃度設定スイッチ28か接続されている。又、制
御回路29は第2図に示す処理を実行する還流制御手段
29Aを存する。
The control circuit 29 is a valve control means constituted by, for example, a microcomputer, and has an oxygen sensor 27. A concentration setting switch 28 is also connected. The control circuit 29 also includes a reflux control means 29A that executes the processing shown in FIG.

制御回路29は予め入力されたプログラムに従い、例え
は第4図に示す加圧(■、■)、取出(■、■)、均圧
(■、■)の各工程に応じて、空気供給用弁8,9.気
体排出用弁13,14゜取出用弁18,19.均圧用弁
22.取出用弁25を開閉制御する。
The control circuit 29 controls the air supply according to a program input in advance, for example, according to each process of pressurization (■, ■), extraction (■, ■), and pressure equalization (■, ■) shown in FIG. Valve 8, 9. Gas discharge valve 13, 14° extraction valve 18, 19. Pressure equalization valve 22. Controls the opening and closing of the take-out valve 25.

ここで、第4図に示す如く加圧、取出、均圧、減圧、均
圧の各工程は大きく分けると製品ガスを生成する吸着工
程と、吸着槽1.2内の残存気体と外部に排出する脱着
工程とに分類される。
Here, as shown in Figure 4, the pressurization, extraction, pressure equalization, depressurization, and pressure equalization processes can be roughly divided into the adsorption process to generate product gas, and the residual gas in the adsorption tank 1.2 to be discharged to the outside. It is classified as a desorption process.

尚、上記制御回路29により開閉制御される各電磁弁は
、開弁信号の供給により励磁されたとき開弁じ、励磁さ
れないときにはバネ力で閉弁するようになっている。
Each electromagnetic valve, which is controlled to open and close by the control circuit 29, opens when it is energized by the supply of a valve opening signal, and closes by spring force when it is not energized.

ここで、上記窒素発生装置の窒素発生サイクルの動作に
ついて説明する。
Here, the operation of the nitrogen generation cycle of the nitrogen generator will be explained.

ます、第2図を参照して窒素発生装置としての起動時の
還流動作について説明し、続いて窒素発生の基本動作に
ついて、第3図、第4図を参照しながら説明する。
First, the reflux operation at startup as a nitrogen generator will be explained with reference to FIG. 2, and then the basic operation of nitrogen generation will be explained with reference to FIGS. 3 and 4.

いま、窒素発生装置を起動すると、制御回路29は第2
図に示す処理を実行する。
Now, when the nitrogen generator is started, the control circuit 29
Execute the process shown in the figure.

ます、ステップSl (以下ステップを省略する)ては
、冷凍式の空気ドライヤ4に通電か行なわれ予冷のため
の準備運転を行なう。続いて、気体排出用弁13.14
を開弁させる(S2)。
First, in step S1 (hereinafter the step will be omitted), the refrigerating air dryer 4 is energized and preparatory operation for pre-cooling is performed. Next, the gas discharge valve 13.14
The valve is opened (S2).

気体排出用弁13.14の開弁により吸着槽12内の残
存気体か排出配管12.サイレンザ12aより大気中に
排出され、11秒間経過すると(S3)吸着槽1,2内
か略大気圧に減圧される。
By opening the gas discharge valves 13 and 14, residual gas in the adsorption tank 12 is discharged from the discharge pipe 12. It is discharged into the atmosphere from the silencer 12a, and when 11 seconds have elapsed (S3), the pressure inside the adsorption tanks 1 and 2 is reduced to approximately atmospheric pressure.

次の84では圧カセンザ30からの検出信号より製品タ
ンク20内に蓄圧された窒素ガスの圧力を読み取る。次
に、圧力センサ30により検出された製品タンク20内
の圧力に基ついて、予め決められた窒素ガスの所定流量
か還流するための総還流時間、即ち取出用弁18.19
の総開弁時間を演算する(S5)。続いて、予め記憶さ
れてぃる1回当りの開弁時間と85で求めた還流動作の
総開弁時間とより窒素ガスの還流回数即ち取出用弁18
.1.9の開弁回数nを演算する(S6)。
In the next step 84, the pressure of the nitrogen gas accumulated in the product tank 20 is read from the detection signal from the pressure sensor 30. Next, based on the pressure in the product tank 20 detected by the pressure sensor 30, the total reflux time for refluxing a predetermined flow rate of nitrogen gas, that is, the take-out valve 18.19
The total valve opening time is calculated (S5). Next, the number of times the nitrogen gas is refluxed, that is, the take-out valve 18, is determined based on the pre-stored valve opening time per time and the total valve opening time of the reflux operation determined in step 85.
.. The number of valve openings n of 1.9 is calculated (S6).

次の87では、空気ドライヤ4のべ(何時間Tと86で
求めた開弁回数nとより取出用弁18゜19か閉弁して
から次に開弁するまでの時間間隔12 (インターバル
)を演算する。
In the next step 87, the time interval 12 (interval) from when the take-out valve 18 and 19 is closed until the next valve is opened is calculated based on the total time T of the air dryer 4 and the number of valve openings n obtained in 86. Calculate.

上記S7の演算が終わると、取出用弁18゜I9を開弁
して還流動作が開始される(S8)。
When the calculation in S7 is completed, the take-out valve 18°I9 is opened to start the recirculation operation (S8).

吸着槽1,2内は気体排出用弁13.14の開弁により
大気圧に減圧されているので、取出用弁18.19の開
弁と同時に製品タンク20内の窒素ガスが取出配管17
及び15.16を逆流して吸着槽1,2の上部に供給さ
れる。
Since the pressure inside the adsorption tanks 1 and 2 is reduced to atmospheric pressure by opening the gas discharge valves 13.14, the nitrogen gas in the product tank 20 is released from the extraction pipe 17 at the same time as the extraction valves 18.19 are opened.
and 15 and 16 are reversed and supplied to the upper portions of adsorption tanks 1 and 2.

取出用弁18.19の開弁後予め記憶された開弁時間か
経過すると一旦取出用弁18.19を閉弁させる(S9
)。そして、取出用弁18.19の開弁回数をカウント
しS6において求めた開弁回数nに達したかどうかを確
認する(S 10)。
When the pre-stored opening time has elapsed after the take-out valves 18 and 19 are opened, the take-out valves 18 and 19 are temporarily closed (S9
). Then, the number of openings of the take-out valves 18 and 19 is counted, and it is confirmed whether the number of openings n determined in S6 has been reached (S10).

取出用弁18.19の開弁回数かn回に達していないと
きは、S 1.1に移り、S7で算出した時間間隔t2
が経過したかどうかをみる。従って、取出用弁18.1
9か閉弁してから時間t2か経過すると88に戻り、取
出用弁18.19を再び開弁させる。
If the number of openings of the take-out valve 18 and 19 has not reached n times, proceed to S1.1 and calculate the time interval t2 calculated in S7.
Check whether the period has passed. Therefore, the take-off valve 18.1
When time t2 has elapsed since the valves 18 and 19 were closed, the process returns to 88 and the take-out valves 18 and 19 are opened again.

この88〜Sllの処理はS6で算出された開弁回数(
n回)繰り返される。その結果、取出用弁18.19は
時間間隔t2において、間欠的に開弁される。従って、
製品タンク20内に蓄圧された高純度の窒素ガスは、上
記のような取出用弁18.19の開・閉動作の繰り返し
により少量ずつ吸着槽1.2の上部に断続的に還流され
る。
The processing from 88 to Sll is the number of valve openings (
n times) is repeated. As a result, the take-off valves 18, 19 are opened intermittently during the time interval t2. Therefore,
The high-purity nitrogen gas accumulated in the product tank 20 is intermittently returned to the upper part of the adsorption tank 1.2 little by little by repeating the opening and closing operations of the take-out valves 18, 19 as described above.

そのため、吸着槽1.2の内には上部より目的とする純
度の窒素ガスが断続的に複数回供給され、窒素ガスは徐
々に吸着槽1,2の下方に移動し、吸着槽1,2内をパ
ージする。尚、吸着槽1. 2内の残存気体は窒素ガス
か断続的に供給されるたびに徐々に排出配管12を介し
て大気中に排出される。
Therefore, nitrogen gas of the desired purity is intermittently supplied into the adsorption tank 1.2 from the upper part multiple times, and the nitrogen gas gradually moves to the bottom of the adsorption tank 1, 2. Purge inside. In addition, adsorption tank 1. The remaining gas in the exhaust pipe 12 is gradually discharged into the atmosphere through the exhaust pipe 12 each time nitrogen gas is intermittently supplied.

S12では空気ドライヤ4の準備運転に必要な時間T(
本実施例では約5分間)経過したかどうかをみている。
In S12, the time T(
In this embodiment, it is checked whether approximately 5 minutes have elapsed.

このように長時間窒素ガスが少量ずつ複数回に分けて間
欠的に吸着槽1,2に還流されることにより、分子ふる
いカーボンIA。
In this way, molecular sieve carbon IA is produced by intermittently refluxing nitrogen gas into the adsorption tanks 1 and 2 in small quantities over a long period of time.

2Aに吸着された酸素は比較的少ない窒素ガス流量て効
率良く脱着される。そのため、脱着精度か高められる。
The oxygen adsorbed by 2A is efficiently desorbed with a relatively small flow rate of nitrogen gas. Therefore, the accuracy of attachment and detachment can be improved.

しかも、窒素ガスか複数回に分けて少量ずつ還流される
ので、窒素ガスの消費量を節約することかてき、パージ
時間か長時間になっても窒素ガスの消費量は意外に少な
く浪費されない。
Moreover, since the nitrogen gas is refluxed in small amounts in multiple batches, the amount of nitrogen gas consumed can be saved, and even if the purge time is long, the amount of nitrogen gas consumed is surprisingly small and will not be wasted.

上記時間Tか経過すると空気ドライヤ4の準備運転か完
了し、原料気体の除湿か可能となるとともに、吸着槽1
 2内のパージ(脱着)も完了する(S13)。
After the above-mentioned time T has passed, the preparation operation of the air dryer 4 is completed, and the raw material gas can be dehumidified, and the adsorption tank 1
The purging (desorption) of the internal memory 2 is also completed (S13).

続いて、気体排出用弁13.14を閉弁する(S14)
。そして、コンプレッサ3か始動され(ステップ515
)、窒素発生の準備段階か終了する。
Subsequently, the gas discharge valves 13 and 14 are closed (S14).
. Compressor 3 is then started (step 515).
), the preparatory stage for nitrogen generation ends.

この後は通常の窒素発生動作か行なわれる。その際、吸
着槽1,2内には製品ガスとしての窒素ガスが充満して
いるので、窒素発生の立上りか速く短時間で目的とする
純度の窒素ガスを生成しうる。
After this, normal nitrogen generation operation is performed. At this time, since the adsorption tanks 1 and 2 are filled with nitrogen gas as a product gas, nitrogen gas starts to be generated quickly and nitrogen gas of the desired purity can be generated in a short time.

ここで、通常の窒素発生動作について説明する。Here, the normal nitrogen generation operation will be explained.

ます、第4図に示すように■、■、■の動作か実行され
る。第3図中の■は、空気供給用弁9と気体排出用弁1
3が開弁じ、第2の吸着槽2に原料気体としての圧縮空
気が供給されて第2の吸着槽2は加圧状態(吸着工程)
にあり2分子ふるいカーボン2Aに酸素が吸着される。
First, as shown in FIG. 4, operations ①, ②, ② are executed. ■ in Figure 3 indicates air supply valve 9 and gas discharge valve 1.
3 is opened, compressed air as a raw material gas is supplied to the second adsorption tank 2, and the second adsorption tank 2 is in a pressurized state (adsorption process).
Oxygen is adsorbed on the bimolecular sieve carbon 2A.

一方策1の吸着槽1は減圧状態(脱着工程)にあり、吸
着していた酸素か脱着して排出されている状態を示して
いる。
On the other hand, the adsorption tank 1 of Measure 1 is in a reduced pressure state (desorption process), and the adsorbed oxygen is desorbed and discharged.

次に、第3図中の■は空気供給用弁9と気体排出用弁1
3の他に、新たに取出用弁19を開弁じ、第2の吸着槽
2内の窒素ガスを取出している状態を示している。この
とき、第1の吸着槽lは減圧状態のままである。
Next, ■ in Fig. 3 indicates the air supply valve 9 and the gas discharge valve 1.
3, a state in which the extraction valve 19 is newly opened and the nitrogen gas in the second adsorption tank 2 is being taken out is shown. At this time, the first adsorption tank 1 remains in a reduced pressure state.

次に、第3図中の■は均圧操作て、各取出用弁18.1
9.及び空気供給用弁9.気体排出用弁】3を閉弁する
とともに均圧用弁22を開弁する。
Next, ■ in Figure 3 indicates pressure equalization operation, and each take-out valve 18.1
9. and air supply valve9. Gas discharge valve 3 is closed, and pressure equalization valve 22 is opened.

これにより、第2の吸着槽2内に残存する窒素富化ガス
は第1の吸着槽1に回収され、各吸着槽12は均圧とな
る。なお、前記均圧操作は通常1〜3秒である。
As a result, the nitrogen-enriched gas remaining in the second adsorption tank 2 is recovered to the first adsorption tank 1, and each adsorption tank 12 becomes equal in pressure. Note that the pressure equalization operation usually takes 1 to 3 seconds.

これにより、1サイクルのうちの前半の半サイクルか終
了したことになり、空気供給用弁8.気体排出用弁14
を開弁することによって、第4図(B)に示すように第
3図中の■〜■に示す後半の半サイクルを繰返す。かく
して、吸着槽1.2からは各半サイクルの後半で窒素カ
スを取出し、製品タンク20に供給することかできる。
This means that the first half of one cycle has been completed, and the air supply valve 8. Gas discharge valve 14
By opening the valve, as shown in FIG. 4(B), the latter half cycle shown by ■ to ■ in FIG. 3 is repeated. Thus, nitrogen scum can be removed from the adsorption tank 1.2 in the latter half of each half cycle and supplied to the product tank 20.

そして、吸着槽1,2内には目的とする純度の窒素ガス
が前記還流動作により充填されているため、起動後回時
間て吸着槽1,2より発生する窒素ガスは目的とする純
度で安定する。
Since the adsorption tanks 1 and 2 are filled with nitrogen gas of the desired purity by the reflux operation, the nitrogen gas generated from the adsorption tanks 1 and 2 after startup is stable at the desired purity. do.

尚、上記実施例では窒素発生装置を例に挙げて説明した
か、これに限らず例えは酸素発生装置にも適用できる。
Although the above embodiments have been described using a nitrogen generator as an example, the present invention is not limited to this, and can also be applied to an oxygen generator.

又、」−2実施例では両吸着槽1,2に接続された取出
用弁1.8.19を同時に開弁するようにしたか、各取
出用弁18と19とを夫々独自に開弁させ開弁動作が時
間的にすれるようにしても良いのは勿論である。
In addition, in the "-2 embodiment, the take-out valves 1, 8, and 19 connected to both adsorption tanks 1 and 2 are opened simultaneously, or each take-out valve 18 and 19 is opened independently. Of course, the valve opening operation may be delayed in time.

又、上記実施例では起動時に製品タンク20の製品ガス
を吸着槽1,2へ間欠的に還流させるようにして説明し
たが、これに限らす、通常の窒素発生サイクルにおいて
、即ち第4図に示す脱着工程後に上記実施例の如く製品
ガスを吸着槽1.2へ間欠的に還流させるようにしても
良いのは言うまてもない。
Further, in the above embodiment, the product gas in the product tank 20 is intermittently refluxed to the adsorption tanks 1 and 2 at the time of startup, but this is not limited to the normal nitrogen generation cycle, that is, as shown in FIG. It goes without saying that after the desorption step shown, the product gas may be intermittently refluxed to the adsorption tank 1.2 as in the above embodiment.

発明の効果 上述の如く、本発明になる気体分離装置は、吸着槽か減
圧された状態で製品タンク内に蓄圧された製品ガスを複
数回に分けて間欠的に少量ずつ吸着槽へ還流させるため
、吸着槽内に残存する気体を徐々にパージして還流動作
を繰返すことにより吸着剤に吸着されていた気体を確実
に脱着することができ、脱着精度を高めることかできる
。しかも、還流される製品ガスが短時間に大量に消費さ
れす製品ガスの消費量を節約できるので、パージ時間を
延長しても製品タンク内の製品ガスか浪費されない。従
って、製品ガスを生成する際には吸着槽内に目的とする
純度の製品ガスか残存しており、短時間で目的とする純
度の製品ガスを生成することができる。また、還流用の
配管及び弁を別個に設けず、吸着槽からの製品ガスを取
出す取出用弁を還流用として併用することにより装置の
構成が複雑化することを防止しうる等の特長を有する。
Effects of the Invention As described above, the gas separation device according to the present invention is designed to divide the product gas accumulated in the product tank into a plurality of times and intermittently return it to the adsorption tank in small amounts while the adsorption tank is under reduced pressure. By gradually purging the gas remaining in the adsorption tank and repeating the reflux operation, the gas adsorbed by the adsorbent can be reliably desorbed, and the desorption accuracy can be improved. Moreover, the product gas that is refluxed can save the consumption of product gas, which is consumed in large quantities in a short period of time, so that even if the purge time is extended, the product gas in the product tank will not be wasted. Therefore, when producing the product gas, the product gas of the desired purity remains in the adsorption tank, and the product gas of the desired purity can be produced in a short time. In addition, it has the advantage of not providing separate pipes and valves for reflux, and by using an extraction valve for taking product gas from the adsorption tank for reflux, it is possible to prevent the device configuration from becoming complicated. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる気体分離装置の一実施例の概略構
成図、第2図は製品ガスを還流させる際に制御回路か実
行する処理を説明するためのフローチャート、第3図及
び第4図は夫々製品ガスを生成する際の工程を説明する
ための工程図である。 1.2・・・吸着槽、3・・・コンプレッサ、4・・・
空気ドライヤ、13.14・・・気体排出用弁、18゜
19.25・・・取出用弁、20・・・製品タンク、2
9・・・制御回路、29A・・・還流制御手段、30・
・・圧力センサ。 特許出願人 1・ キ コ 株式会社
FIG. 1 is a schematic configuration diagram of an embodiment of the gas separation device according to the present invention, FIG. 2 is a flowchart for explaining the process executed by the control circuit when refluxing product gas, and FIGS. The figures are process diagrams for explaining the steps in producing the respective product gases. 1.2... Adsorption tank, 3... Compressor, 4...
Air dryer, 13.14... Gas discharge valve, 18° 19.25... Take-out valve, 20... Product tank, 2
9... Control circuit, 29A... Reflux control means, 30.
...Pressure sensor. Patent applicant 1. Kiko Co., Ltd.

Claims (1)

【特許請求の範囲】 内部に一の気体を吸着する吸着剤が充填された吸着槽に
圧縮気体を供給し、該吸着槽と製品タンクとの間に設け
られた弁を開弁し該吸着剤により一の気体が除去された
ことで生成された製品ガスを前記製品タンクに蓄圧する
吸着工程と、前記吸着槽内の残存気体を外部に排出して
吸着槽内を減圧する脱着工程とを繰り返す気体分離装置
において、 前記吸着槽内が減圧された状態で前記弁を間欠的に開弁
し、前記製品タンク内の製品ガスを複数回に分けて前記
吸着槽に還流させる製品ガス還流手段を具備してなるこ
とを特徴とする気体分離装置。
[Claims] Compressed gas is supplied to an adsorption tank filled with an adsorbent that adsorbs one gas, and a valve provided between the adsorption tank and a product tank is opened to absorb the adsorbent. The adsorption step of accumulating the pressure of the product gas generated by the removal of the first gas in the product tank, and the desorption step of exhausting the remaining gas in the adsorption tank to the outside and reducing the pressure inside the adsorption tank are repeated. The gas separation device includes a product gas reflux means that opens the valve intermittently while the pressure inside the adsorption tank is reduced, and returns the product gas in the product tank to the adsorption tank in multiple batches. A gas separation device characterized by:
JP02161878A 1990-06-20 1990-06-20 Gas separation device Expired - Fee Related JP3119659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02161878A JP3119659B2 (en) 1990-06-20 1990-06-20 Gas separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02161878A JP3119659B2 (en) 1990-06-20 1990-06-20 Gas separation device

Publications (2)

Publication Number Publication Date
JPH0459014A true JPH0459014A (en) 1992-02-25
JP3119659B2 JP3119659B2 (en) 2000-12-25

Family

ID=15743704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02161878A Expired - Fee Related JP3119659B2 (en) 1990-06-20 1990-06-20 Gas separation device

Country Status (1)

Country Link
JP (1) JP3119659B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI634263B (en) * 2015-02-04 2018-09-01 日立產機系統股份有限公司 Gas booster compression device and gas compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI634263B (en) * 2015-02-04 2018-09-01 日立產機系統股份有限公司 Gas booster compression device and gas compressor

Also Published As

Publication number Publication date
JP3119659B2 (en) 2000-12-25

Similar Documents

Publication Publication Date Title
JP3891834B2 (en) Gas supply method and apparatus
US6156101A (en) Single bed pressure swing adsorption process and system
CA2255526C (en) Psa process and system using simultaneous top and bottom evacuation of adsorbent bed
JP2872678B2 (en) Reduction operation control method in pressure swing adsorption system
JPH0459014A (en) Gas separator
JP6231363B2 (en) Gas separation apparatus and method
JP3867229B2 (en) Gas separation device
JP2653698B2 (en) Gas separation device
JP3565246B2 (en) Gas separation device
JP3342844B2 (en) Operation control device for oxygen concentrator and operation control method for oxygen concentrator
JP2958032B2 (en) Gas separation device
JPH11267439A (en) Gas separation and gas separator for performing same
JP2006015221A (en) Gas separator
JPH0938443A (en) Gas separator
JPH01184016A (en) Apparatus for gas separation
JP2741889B2 (en) Gas separation device
JPH10118439A (en) Gas separating device based on psa process
JPH0731825A (en) Gas separator
JP3661884B2 (en) Gas separation device
JPH0352614A (en) Gas separation apparatus
JP6027769B2 (en) Gas separation apparatus and method
EP0512780A1 (en) Method and apparatus for continuously separating nitrogen
JPH03188914A (en) Apparatus for separating gas
JP3073061B2 (en) Gas separation device
JPH04156912A (en) Gas separator

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081013

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees