JPH045866A - Optoelectric transducer - Google Patents

Optoelectric transducer

Info

Publication number
JPH045866A
JPH045866A JP2107209A JP10720990A JPH045866A JP H045866 A JPH045866 A JP H045866A JP 2107209 A JP2107209 A JP 2107209A JP 10720990 A JP10720990 A JP 10720990A JP H045866 A JPH045866 A JP H045866A
Authority
JP
Japan
Prior art keywords
electrode
film
electrodes
thin film
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2107209A
Other languages
Japanese (ja)
Inventor
Hitoshi Chiyoma
仁 千代間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2107209A priority Critical patent/JPH045866A/en
Publication of JPH045866A publication Critical patent/JPH045866A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To increase the sensibility of a light output while improving accuracy by forming ohmic connections between both a first conductor electrode formed onto a substrate and a thin-film composed of a semiconductor material and both a second conductor electrode and said thin-film respectively. CONSTITUTION:A conductor electrode 12 is formed onto a glass substrate 11 by using a metal having a small work function such as Ti in an optoelectric transducer 10, and an a-Si:H thin-film 13 is shaped onto the electrode 12 in thickness L of 1mum. A conductor electrode 14 is formed onto the film 13 by employing a metal equal to the electrode 12, and the electrodes 12 and 14 form ohmic connections with the film 13, thus changing the intensity of incident light into the alteration of the resistance value of the element 10. That is, photoconductive currents I are made to flow from the electrode 14 to the electrode 12 in the thickness direction in the film 13, which irradiated with light 15 and a resistance value of which is reduced. Since the space of the electrodes 12, 14 is brought to 1mum as the thickness of the film L, field strength between the electrodes is made larger than conventional devices by approximately tencuple, thus flowing large currents I. Accordingly, the sensibility of a light output is increased, and accuracy can be improved.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、光を電気信号に変換する光電変換装置に関す
る。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a photoelectric conversion device that converts light into an electrical signal.

(従来の技術) 近年、急速に普及しつつあるファクシミリでは、原稿の
画像を電気信号に変換するために、光電変換素子が原稿
と同−巾に所望の解像度で並べられた密着型イメージセ
ンサが用いられている。
(Prior Art) In facsimiles, which have become rapidly popular in recent years, a contact image sensor is used in which photoelectric conversion elements are arranged with the same width as the document and at a desired resolution in order to convert the image of the document into an electrical signal. It is used.

良質な画像を伝送するためには、解像度の数だけ並べら
れる光電変換素子の光出力感度が揃っていることが好ま
しい。
In order to transmit high-quality images, it is preferable that the light output sensitivities of the photoelectric conversion elements arranged as many as the resolution are the same.

このような密着型イメージセンサには、半導体の光導電
効果を利用した光導電型の光電変換素子が広く用いられ
ている。
In such contact type image sensors, photoconductive photoelectric conversion elements that utilize the photoconductive effect of semiconductors are widely used.

第4図は、従来の光導電型の光電変換素子の構造を示す
図である。
FIG. 4 is a diagram showing the structure of a conventional photoconductive type photoelectric conversion element.

同図に示すように、光電変換素子1は、基板2上に形成
された半導体材料の薄膜、例えばa−3i:H薄膜3の
表面に、所定の間隙を設けて対向させた導体電極4.5
を形成してなるものである。
As shown in the figure, the photoelectric conversion element 1 includes a thin film of a semiconductor material, for example, an a-3i:H thin film 3 formed on a substrate 2, and conductor electrodes 4. 5
It is formed by forming.

導体電極4.5は、a−8i:H薄膜3の表面に蒸着さ
せたTiやAIなどの金属を所望のパターンとなるよう
にフォトエツチング方法により不要な部分を除去するこ
とで形成される。
The conductor electrode 4.5 is formed by removing unnecessary portions of a metal such as Ti or AI deposited on the surface of the a-8i:H thin film 3 by photo-etching so as to form a desired pattern.

この光電変換素子に照射された光6は、半導体材料によ
る薄膜3に光導電効果を生じさせ、第5図に示すように
導電電極4.5に印加された電圧により光導電流Iか流
れる。
The light 6 irradiated on this photoelectric conversion element causes a photoconductive effect in the thin film 3 made of a semiconductor material, and as shown in FIG. 5, a photoconductive current I flows due to the voltage applied to the conductive electrode 4.5.

ところで、光導電型の光電変換素子の光出力感度は、導
体電極4.5の間を流れる光導電流Iの電流量に比例す
る。
Incidentally, the light output sensitivity of a photoconductive type photoelectric conversion element is proportional to the amount of photoconductive current I flowing between the conductive electrodes 4.5.

また、薄膜3に用いられる半導体材料は、光によって抵
抗値の変化する抵抗体であると考えることができるので
、導体電極4.5の間を流れる光導電流Iの電流量は、
導体電極4.5間の光導電流■が流れる断面積に比例し
、導体電極4.5の間隔りに反比例する。
Furthermore, since the semiconductor material used for the thin film 3 can be considered to be a resistor whose resistance value changes depending on light, the amount of photoconductive current I flowing between the conductive electrodes 4.5 is
It is proportional to the cross-sectional area through which the photoconductive current (1) flows between the conductor electrodes 4.5, and is inversely proportional to the spacing between the conductor electrodes 4.5.

そこで、従来、光出力感度を大きくするために、第6図
;こ示すごとく導体電極を櫛歯状に形成して、導体電極
4.5間を流れる光導電流■の断面積を大きくすること
が行われていた。
Therefore, conventionally, in order to increase the optical output sensitivity, the conductor electrodes were formed in a comb-teeth shape as shown in FIG. 6 to increase the cross-sectional area of the photoconductive current flowing between the conductor electrodes 4.5. It was done.

また、一方では導体電極4.5の間隔りをできるだけ狭
くすべく努力が払われてきた。
On the other hand, efforts have been made to make the spacing between the conductor electrodes 4.5 as narrow as possible.

しかしながら、導体電極4.5の間隔りを狭めようとす
ると、フォトエツチング方法ではバタン形成工程に困難
が生じるために、間隔りをせいぜい10μm前後にする
のが限界であり、また、間隔りの精度も良くないため素
子ごとの光出力感度がばらつくという問題があった。
However, when trying to narrow the spacing between the conductor electrodes 4.5, the photo-etching method poses difficulties in the step of forming the battens, so the spacing can only be kept at around 10 μm at most, and the accuracy of the spacing is limited. The problem is that the light output sensitivity varies from element to element.

(発明が解決しようとする課題) このように、従来構造の光導電型光電変換素子では、2
つの導体電極の間隙がフォトエツチング方法により形成
されているので、同方法の精度の限界に阻まれて光出力
感度を大きくすることができず、間隔の精度も良くない
ため素子ごとに光出力感度がばらつき、製品の歩留が悪
いという問題があった。
(Problems to be Solved by the Invention) As described above, in the photoconductive photoelectric conversion element of the conventional structure, two
Since the gap between the two conductor electrodes is formed using a photoetching method, it is not possible to increase the light output sensitivity due to the limitations of the accuracy of this method. There was a problem that the yield of the product was poor due to variations in the product quality.

そこで、本発明はこのような従来の課題を解決すべくな
されたもので、光出力感度が大きくかつ精度のよい光電
変換装置を提供するものである。
The present invention has been made to solve these conventional problems, and provides a photoelectric conversion device with high light output sensitivity and high precision.

[発明の構成] (課題を解決するための手段) 本発明は、基板上に設けられた第1の導体電極を覆って
半導体材料による薄膜が形成され、この薄膜の表面に、
前記第1の導体電極とで該薄膜を挟むように第2の導体
電極が設けられ、かつ前記第1の導体電極と前記薄膜、
及び前記第2の導体電極と前記薄膜とがそれぞれオーミ
ック接続を形成してなるものである。
[Structure of the Invention] (Means for Solving the Problems) The present invention is characterized in that a thin film made of a semiconductor material is formed covering a first conductive electrode provided on a substrate, and on the surface of this thin film,
a second conductor electrode is provided so as to sandwich the thin film between the first conductor electrode, and the first conductor electrode and the thin film;
The second conductive electrode and the thin film each form an ohmic connection.

(作 用) 本発明では、2つの導体電極が、半導体材料による薄膜
を挟むように設けられているので、薄膜の厚みが導体電
極の間隔となる。この半導体材料による薄膜の厚みは、
例えば1μm前後に設定することができるので、光出力
感度を大きくでき、しかも精度がよい。
(Function) In the present invention, since two conductor electrodes are provided to sandwich a thin film made of a semiconductor material, the thickness of the thin film becomes the interval between the conductor electrodes. The thickness of the thin film made of this semiconductor material is
For example, since it can be set to around 1 μm, the light output sensitivity can be increased and the accuracy is also good.

(実施例) 以下、本発明の実施例を図面を参照しつつ説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例の光電変換素子の構造を示
す斜視図である。
FIG. 1 is a perspective view showing the structure of a photoelectric conversion element according to an embodiment of the present invention.

同図に示すように、この光電変換素子10では、ガラス
基板11上にTi等の仕事関数の小さい金属を用いて、
蒸着とフォトエツチングにより導体電極12が形成され
ている。この導体電極12の上には、プラズvCVD法
(Chemical Vapor Depositio
n  ;気相成長法)によりa−3i:H薄膜13の膜
厚か1μmとなるよう形成されている。
As shown in the figure, in this photoelectric conversion element 10, a metal with a small work function such as Ti is used on a glass substrate 11.
A conductor electrode 12 is formed by vapor deposition and photoetching. On this conductive electrode 12, a plasma vCVD method (Chemical Vapor Deposition) is applied.
The a-3i:H thin film 13 is formed to have a thickness of about 1 μm using a vapor phase growth method.

さらに、a−3i:H薄膜13の上に、導体電極12と
同等の金属が用いられて導体電極14が形成されている
。導体電極14自体は光電変換素子]0に照射される光
15を透過しないので、a −8i:H薄膜3に光15
が照射されるように導体電極14に切込み部を設けてい
る。
Furthermore, a conductor electrode 14 is formed on the a-3i:H thin film 13 using the same metal as the conductor electrode 12. Since the conductive electrode 14 itself does not transmit the light 15 irradiated to the photoelectric conversion element]0, the light 15 is not transmitted to the a-8i:H thin film 3.
A notch is provided in the conductor electrode 14 so that the light can be irradiated.

Tiなどの金属からなる導体電極12.14は、a−8
i:H薄膜]3とオーミック接続を成すため、上記光電
変換素子]0は、光導電型の光電変換素子を形成する。
The conductor electrode 12.14 made of metal such as Ti is a-8
In order to form an ohmic connection with the i:H thin film]3, the photoelectric conversion element]0 forms a photoconductive type photoelectric conversion element.

即ち、入射光の強度は、光電変換素子]0の抵抗値変化
に変換される。
That is, the intensity of the incident light is converted into a change in the resistance value of the photoelectric conversion element]0.

光15が照射されて抵抗値の減少したa−8i:H薄膜
13には、第2図の断面図に示すように、厚さ方向に導
電電極14から導電電極12に光導電流Iが流れる。
In the a-8i:H thin film 13 whose resistance value has decreased by being irradiated with the light 15, a photoconductive current I flows from the conductive electrode 14 to the conductive electrode 12 in the thickness direction, as shown in the cross-sectional view of FIG.

この光電変換素子10では、導体電極12.14の間隔
を薄膜りの厚みである1μmにすることができたので、
電極間の電界強度は従来例に比すことほぼ10倍となり
、大きな光導電流Iを流すことができ、光感度出力も大
きくできる。
In this photoelectric conversion element 10, the distance between the conductive electrodes 12 and 14 could be set to 1 μm, which is the thickness of the thin film.
The electric field strength between the electrodes is approximately 10 times that of the conventional example, allowing a large photoconducting current I to flow and increasing the photosensitivity output.

なお、上述の実施例では、導体電極コ−2,14に同種
金属を用いた例について説明したが、本発明はこれに限
定されるものではなく、薄膜13に用いられる半導体材
料とオーミック接続が可能な導体材料であれば良い。
In addition, in the above-mentioned embodiment, an example was explained in which the same kind of metal was used for the conductive electrodes 2 and 14, but the present invention is not limited to this, and the ohmic connection with the semiconductor material used for the thin film 13 was explained. Any conductive material that is possible may be used.

また、入射光側の導電電極14に光透過性を有する導体
材料を用いれば、第3図に示すように導電電極14に切
込み部を設けなくとも良く、さらに、光電変換素子10
に照射される光15の利用効率も高い。
Furthermore, if a conductive material having light transparency is used for the conductive electrode 14 on the incident light side, it is not necessary to provide a notch in the conductive electrode 14 as shown in FIG.
The utilization efficiency of the light 15 irradiated to the area is also high.

さらに、半導体材料は、この実施例で用いたaSi:H
以外にも光導電効果を有する半導体であればよく、薄膜
の構成も単層構成のみでなく多層構成として形成しても
よい。
Furthermore, the semiconductor material used in this example is aSi:H
Any other semiconductor may be used as long as it has a photoconductive effect, and the thin film structure may be formed not only in a single layer structure but also in a multilayer structure.

[発明の効果] 本発明では、半導体材料による薄膜の厚みが導体電極の
間隔となるので、導体電極の間隔を精度良く狭くするこ
とが可能となるため、光出力感度を大きくでき、しかも
精度がよい。
[Effects of the Invention] In the present invention, since the thickness of the thin film made of semiconductor material corresponds to the spacing between the conductor electrodes, it is possible to narrow the spacing between the conductor electrodes with high accuracy. good.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光電変換素子の一実施例の構造を示す
斜視図、第2図はこの光電変換素子における光導電流の
流れを示す図、第3図は導電電極を光透過性の材料で形
成した光電変換素子の構造を示す斜視図、第4図は従来
の光電変換素子の構造を示す斜視図、第5図はこの光電
変換素子における光導電流の流れを示す図、第6図は光
導電流の流れる断面積を大きくした光電変換素子の導電
電極の構成を示す図である。 10・・・光電変換素子、11・・・ガラス基板、12
.14・・・導体電極、13・・・a−5i:H薄膜。 出願人      株式会社 東芝 代理人 弁理士  須 山 佐 − 第4図 第5図 第6図
FIG. 1 is a perspective view showing the structure of an embodiment of the photoelectric conversion element of the present invention, FIG. 2 is a diagram showing the flow of photoconducting current in this photoelectric conversion element, and FIG. 3 shows the conductive electrodes made of a light-transmitting material. FIG. 4 is a perspective view showing the structure of a conventional photoelectric conversion element, FIG. 5 is a diagram showing the flow of photoconductive current in this photoelectric conversion element, and FIG. FIG. 2 is a diagram showing a configuration of a conductive electrode of a photoelectric conversion element in which the cross-sectional area through which a photoconductive current flows is increased. 10... Photoelectric conversion element, 11... Glass substrate, 12
.. 14...Conductor electrode, 13...a-5i:H thin film. Applicant Toshiba Corporation Patent Attorney Sasa Suyama - Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)基板上に設けられた第1の導体電極を覆って半導
体材料による薄膜が形成され、この薄膜の表面に、前記
第1の導体電極とで該薄膜を挟むように第2の導体電極
が設けられ、かつ前記第1の導体電極と前記薄膜、及び
前記第2の導体電極と前記薄膜とがそれぞれオーミック
接続を形成してなることを特徴とする光電変換装置。
(1) A thin film made of a semiconductor material is formed to cover a first conductive electrode provided on a substrate, and a second conductive electrode is formed on the surface of this thin film so as to sandwich the thin film with the first conductive electrode. A photoelectric conversion device characterized in that the first conductor electrode and the thin film, and the second conductor electrode and the thin film each form an ohmic connection.
JP2107209A 1990-04-23 1990-04-23 Optoelectric transducer Pending JPH045866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2107209A JPH045866A (en) 1990-04-23 1990-04-23 Optoelectric transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2107209A JPH045866A (en) 1990-04-23 1990-04-23 Optoelectric transducer

Publications (1)

Publication Number Publication Date
JPH045866A true JPH045866A (en) 1992-01-09

Family

ID=14453250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2107209A Pending JPH045866A (en) 1990-04-23 1990-04-23 Optoelectric transducer

Country Status (1)

Country Link
JP (1) JPH045866A (en)

Similar Documents

Publication Publication Date Title
EP0108480B1 (en) Photoelectric conversion element
US5324929A (en) Device for detecting position and intensity of light and position detecting element to be employed therein
US4803375A (en) Image sensors and methods of manufacturing same including semiconductor layer over entire substrate surface
US4943839A (en) Contact type image sensor
US4808833A (en) Image sensors using a photo-sensing element array and matrix wires methods of manufacturing same
JPH045866A (en) Optoelectric transducer
US4698495A (en) Amorphous silicon photo-sensor for a contact type image sensor
US4791466A (en) Line scanner image sensor
JPS63226061A (en) Color image sensor
JPH02132860A (en) Close contact type image sensor
JPH021866Y2 (en)
JPH0548142A (en) Field effect phototransistor
JPS6130069A (en) Photosensor
JP2501107B2 (en) Photoelectric conversion device
JP2709617B2 (en) Linear image sensor
JPH021865Y2 (en)
JPS61203666A (en) Manufacture of photo-diode
JPH03289523A (en) Color sensor
JPS62252968A (en) Amorphous silicon image sensor
JPS63177462A (en) Manfuacture of image sensor
JPH02161774A (en) Linear image sensor
JPH03112171A (en) Thin-film photoelectric conversion element
JPS61141172A (en) Linear image sensor
JPS61232668A (en) Image sensor and manufacture thereof
JPH01184866A (en) Image sensor